Un modelo para la extracción de conocimiento en base de datos, mediante cómputo evolutivo, automátas finitos deterministas y reglas difusas
dc.contributor.author | Arcón Pineda, Aidys | |
dc.date.accessioned | 2019-12-16T15:54:01Z | |
dc.date.available | 2019-12-16T15:54:01Z | |
dc.date.issued | 2019 | |
dc.description.abstract | El objetivo de esta tesis es el desarrollo de un método para la extracción de conocimiento en grandes bases de datos. Hoy en día se genera a través de la tecnología grandes cantidades de datos, tanto en volumen como en la dimensionalidad de sus variables. En este sentido, es necesario resaltar que la manipulación de los datos con un número elevado de variables presenta un problema para las técnicas tradicionales. Por otra parte, el conjunto de soluciones alternativas es tan elevado que la obtención de un óptimo global es inalcanzable en un tiempo razonable. Por tanto, es imprescindible emplear técnicas basadas en meta heurísticas que han demostrado ser una alternativa en la solución de problemas de gran complejidad por su aplicabilidad y eficiencia. El presente trabajo propone un nuevo modelo EKCEAD (A model for the extraction of knowledge in Databases through evolutionary computation, finite deterministic automata and fuzzy rules), para la extracción de conocimiento en grandes bases de datos en forma de reglas difusas mediante el desarrollo de varias herramientas orientadas a procesos de búsqueda y optimización que utiliza las ventajas de autómatas finitos en la obtención de la mejor solución. El cual se prueba con casos reales comparándolo con otros métodos similares referenciados en la literatura, los resultados obtenidos han sido validados mediante el uso de pruebas estadísticas no paramétricas, que muestran un buen desempeño en términos de precisión e interpretabilidad. Los resultados reflejan la bondad del modelo propuesto permitiendo que sea recomendado en la extracción de conocimiento en base de datos e incentivando su uso en futuras investigaciones. | spa |
dc.description.abstract | The objective of this thesis is the development of a method for extracting knowledge in large databases. Today, large amounts of data are generated through technology, both in volume and in the dimensionality of their variables. In this sense, it should be emphasized that the manipulation of data with a large number of variables presents a problem for traditional techniques. On the other hand, the set of alternative solutions is high that obtaining an overall optimal is unattainable in a reasonable time. Therefore, it is essential to employ heuristic meta-based techniques that have proven to be an alternative in solving problems of great complexity because of their applicability and efficiency. This work proposes a new model EKCEAD (A model for the extraction of knowledge in Databases through evolutionary computation, finite deterministic automata and fuzzy rules), for knowledge extraction in large databases in the form of fuzzy rules by developing various tools oriented to search and optimization processes that uses the advantages of finite automata in obtaining the best solution. Which is tested against real-world cases against other similar methods referenced in the literature, the results obtained have been validated using nonparametric statistical tests, which show good performance in terms of accuracy and interpretability? The results reflect the goodness of the proposed model by allowing it to be recommended in the extraction of knowledge in database and incentivizing its use in future research. | eng |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/4476 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ingenierías | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Algoritmo evolutivo | spa |
dc.subject | Autómatas finitos deterministas | spa |
dc.subject | Lógica difusa | spa |
dc.subject | Extracción de conocimiento | spa |
dc.subject | Base de reglas difusas | spa |
dc.subject | Optimización | spa |
dc.subject | Evolutionary algorithm | eng |
dc.subject | Deterministic finite automatons | eng |
dc.subject | Fuzzy logic | eng |
dc.subject | Knowledge extraction | eng |
dc.subject | Fuzzy rule base | eng |
dc.subject | Optimization | eng |
dc.title | Un modelo para la extracción de conocimiento en base de datos, mediante cómputo evolutivo, automátas finitos deterministas y reglas difusas | spa |
dc.type | Other | spa |
dcterms.references | A. Gokil, & S. Rajalakshmi. (2014). Weighted Quamtum Particle Swarm Optimization(WQPSO) and PSO algorithm to association Rule Minng and clustering. Assian Journal of Information Technology, 13(10), 582–587. | eng |
dcterms.references | Abe. S., & Lan M.-S. (1995). A method for fuzzy rules extraction directly from numerical data and its application to pattern classi- fication. IEEE Transactions on Fuzzy Systems, 3(1):, 18–28. | eng |
dcterms.references | Abe.S., & Thawonmas, R. (1997). A fuzzy classifier with ellipsoidal regions. IEEE Transactions on Fuzzy Systems, 5(3):, 358–368. | eng |
dcterms.references | Abonyi. J., Roubos ,J. A., & Szeifert. F. (2003). Data driven genera tion of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization. International Journal of Approximate Reasoning. International Journal of Approximate Reasoning, 32(1):, 1–21. | eng |
dcterms.references | Abonyi J., R. J. A. y S. F. (2003). Data driven genera tion of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization. International Journal of Approximate Reasoning. International Journal of Approximate Reasoning, 32(1):, 1–21. | eng |
dcterms.references | Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo, I. (1996). Fast Discovery of Association Rules, in Advances in Knowladge Discovery and Data Mining (pp. 307–328). pp. 307–328. California. | eng |
dcterms.references | Aguilar. L. (2019). Analisis comparativo en la implementacion de la red neuronal backpropagation usando el metodo de componentes principales y el metodo clasico. Universidad nacional de piura escuela de posgrado. | spa |
dcterms.references | Al-Omairi, L., Abawajy, J., Chowdhury, M., & Al-Quraishi, T. (2019). High-Dimensionality Graph Data Reduction Based on Proposing A New Algorithm. EpiC Series Computing, 63, 1--10. https://doi.org/10.29007/h232 | eng |
dcterms.references | Alcalá R., Alcalá-Fdez J., H. F. y O. J. (2007). Genetic learning of accurate and compact fuzzy rule based systems based on the 2-tuples linguistic representation. International Journal of Approximate Reasoning, 44(1):, 45–64. | eng |
dcterms.references | Alhajj, R., & Kaya, M. (2008). Multi-objective genetic algorithms based automated clustering for fuzzy association rules mining. Journal of Intelligent Information Systems, 31(3), 243–264. https://doi.org/10.1007/s10844-007-0044-1 | eng |
dcterms.references | Alhusaini, N., Karmoshi, S., Hawbani, A., Jing, L., Alhusaini, A., & Al-sharabi, Y. (2019). LUIM: New Low-Utility Itemset Mining Framework. IEEE Access, 7, 100535–100551. https://doi.org/10.1109/access.2019.2929082 | eng |
dcterms.references | Alvarez, A., Boente, G., & Kudraszow, N. (2019). Robust sieve estimators for functional canonical correlation analysis. Journal of Multivariate Analysis, 170, 46–62. https://doi.org/10.1016/j.jmva.2018.03.003 | eng |
dcterms.references | Asadi, A., Afzali, M., Shojaei, A., & Sulaimani, S. (2012). New binary PSO based method for finding best thresholds in association rule mining. Life Science Journal, 9(4), 260–264. | eng |
dcterms.references | Bäck, T. (1996). Evolutionary algorithms in theory and practice. Ox- Ford University Press. | eng |
dcterms.references | Bäck, T., Fogel. D, & Michalewicz. Z. (1997). Handbook of evolutionary computation. . . Oxford University Press. | eng |
dcterms.references | Bäck, T., & Schwefel H. (1991). Extended selection mechanisms in genetic algorithms. En Proc. Fourth International Conference on Genetic Algorithms (ICGA’91), páginas 2–9. San Diego, EE.UU. | eng |
dcterms.references | Baker J. E. (1987). Reducing bias and inefficiency in the selection algorithm. En Grefenstette J. J. (Ed.) Proceedings of the 2nd In- ternational Conference on Genetic Algorithms (ICGA’87),. páginas 14–21. . Lawrence Erlbaum Associates, Hillsdale, NJ, EE.UU. | eng |
dcterms.references | Bandyopadhyay, S., Saha, S., Maulik, U., & Deb, K. (2008). A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Transactions on Evolutionary Computation, 12(3), 269–283. https://doi.org/10.1109/TEVC.2007.900837 | eng |
dcterms.references | Berlanga, F. (2010). Aprendizaje de Sistemas Basados en Reglas difusas compactas y precisas con programacion genetica. Tesis Doctoral.Universidad de Jaen, Andalucia. España., Andalucia ,España. | spa |
dcterms.references | Berlanga, F. J., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2010). GP-COACH: Genetic Programming-based learning of COmpact and ACcurate fuzzy rule-based classification systems for High-dimensional problems. Information Sciences, 180(8), 1183–1200. https://doi.org/10.1016/j.ins.2009.12.020 | eng |
dcterms.references | Bhatt R. B. y Gopal M. (2005). On fuzzy-rough sets approach to feature selection. Pattern Recognition Letters, 26(7):, 965–975. | eng |
dcterms.references | Bouchachia A. Mittermeir R. (2007). Towards incremental fuzzy classifiers. Soft Computing, 11(2):, 193–207. | eng |
dcterms.references | Brad, L. M., & Goldberg, D. E. (1995). Genetic Algorithms, Tournament Selection, and the Effects of Noise. Connect, 9, 13–13. | eng |
dcterms.references | Breiman. L. (1984). Classification and Regression Trees. Monterey, Wadsworth and Brooks. | eng |
dcterms.references | Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and Regresion Tress. | eng |
dcterms.references | C., F., Hernández. J., & Ramírez. J. (2001). Learning MDL-guided Decision Trees for Constructor-Based Languages”. In Proceedings of 11th International Conference on Inductive Logic Programming, 39–50. | eng |
dcterms.references | C. J. van Rijsbergen. (1979). “Information retrieval”. Butterworths. | eng |
dcterms.references | Cagnina, L. (2010). Optimización Mono y Multiobjetivo a través de una Heurística de Inteligencia Colectiva”,. Universidad Nacional de San Luis, Argentina,. | spa |
dcterms.references | Calders, T., & Verwer, S. (2010). Three naive Bayes approaches for discrimination-free classification. Data Mining and Knowledge Discovery, 21(2), 277–292. https://doi.org/10.1007/s10618-010-0190-x | eng |
dcterms.references | Cardoso. P, Jesus. M, & Marquez. A. (20003). MONACO - Multi-Objective Network Optimisation Based on an ACO. (November). | eng |
dcterms.references | Carmona, J. (2011). Descubrimiento de subgrupos mediante sistemas difusos evolutivos. II Jornadas Andaluzas de Informática, Canillas Del Aceituno (España), 30-35. Retrieved from http://simidat-web.ujaen.es/~simidat/sites/default/files/publicaciones/220.pdf | spa |
dcterms.references | Casillas. J., Carse.B., & Bull. L. (2007). Fuzzy-XCS: a michigan ge- netic fuzzy system. IEEE Transactions on Fuzzy Systems, 15(4), 536–550. | eng |
dcterms.references | Casillas. J, Cordón. O, del Jesus M., & Herrera. F. (2005). Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction. IEEE Transactions on Fuzzy Systems, 13(1): ., 13–29. | eng |
dcterms.references | Casillas. J, Cordón. O, Herrera. F, & del Jesus. M. (2001). Genetic feature selection in a fuzzy rule-based classification system learn- ing process for high-dimensional problems. Information Sciences, 136(1-4):, : 135–157. | eng |
dcterms.references | Casillas. J, Cordón. O, Herrera. F, & Magdalena. L. (2003). Interpretability Issues in Fuzzy Modeling. Of Studies in Fuzziness and Soft Computing. Springer-Verlag., 128. | eng |
dcterms.references | Casillas, Cordón. O, Herrera. F., & Magdalena. L. (2003). Accuracy Improvements in Linguistic Fuzzy Modeling,. In Fuzziness and Soft Computing. Springer-Verlag., 129 of Stu. | eng |
dcterms.references | Castellano G., Castiello C., F. A. M. y M. C. (2005). Knowledge discovery by a neuro-fuzzy modeling framework. Fuzzy Sets and Systems, 149(1):, 187–207. | eng |
dcterms.references | Castellano G., Fanelli. A., & Mencar.c. (2002). A neuro-fuzzy network to generate humanunderstandable knowledge from data. Cognitive Systems Research, 3(2):, 125–144. | eng |
dcterms.references | Castellano G. y Fanelli A. M. (2000). A staged approach for gener- ation and compression of fuzzy classification rules. En Proc. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2000), San Antonio, USA., 42– | eng |
dcterms.references | Castro, D. (2004). Teoría de Autómatas, Lenguajes formales Y Gramatica (Universidad de Alcalá). Retrieved from https://portal.uah.es/portal/page/portal/GP_EPD/PG-MA-ASIG/PG-ASIG-78021/TAB42351/talfg_notes.pdf | spa |
dcterms.references | Castro P. A. D. y Camargo H. A. (2004). Learning and optimiza- tion of fuzzy rule base by means of self-adaptive genetic algorithm. En Proc. EEE International Conference on Fuzzy Systems (FUZZ-IEEE 2004) Budapest, Hungary., 1037– 1042. | eng |
dcterms.references | Chaiyaratana, N. (1997). Recent developments in evolutionary and genetic algorithms: theory and applications. (4), 270–277. https://doi.org/10.1049/cp:19971192 | eng |
dcterms.references | Chakraborty. D., & Pal N.R. (2004). A neuro-fuzzy scheme for simul- taneous feature selection and fuzzy rule-based classification. IEEE Transactions on Neural Networks, 15(1):, 110–123. | eng |
dcterms.references | Chen M.-Y. y Linkens D. A. (2004). Rule-base self-generation and simplification for data-driven fuzzy models. Fuzzy Sets and Systems, 142(2):, 243–265. | eng |
dcterms.references | Chen, W., Pradhan, B., Li, S., Shahabi, H., Rizeei, H. M., Hou, E., & Wang, S. (2019). Novel Hybrid Integration Approach of Bagging-Based Fisher’s Linear Discriminant Function for Groundwater Potential Analysis. Natural Resources Research, 28(4), 1239–1258. https://doi.org/10.1007/s11053-019-09465-w | eng |
dcterms.references | Chi Z. y Yan H. (1996). ID3-Derived fuzzy rules and optimized defuzzification for handwritten numeral recognition. IEEE Trans- Actions on Fuzzy Systems, 4(1):, 24–31. | eng |
dcterms.references | Chi Z. Yan H. Pham T. (1996). Fuzzy algorithms with applications to image processing and pattern recognition. World Scientific. | eng |
dcterms.references | Clark, P., & Niblett, T. (1989). The CN2 rule induction algorithm. Machine Learning, 3(4), 261–284. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.3672&rep=rep1&type=pdf | eng |
dcterms.references | Cohen, W. W. (2014). Fast Effective Rule Induction. In Machine Learning Proceedings 1995. https://doi.org/10.1016/b978-1-55860-377-6.50023-2 | eng |
dcterms.references | Combs. W. E., & Andrews. J. (1998). Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Transactions on Fuzzy Systems, 6(1):, 1–11. | eng |
dcterms.references | Cordón, O., Herrera, F., Hoffmann, F., and Magdalena, L. (2001). Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases. World Scientific. | eng |
dcterms.references | Cordón, O., Herrera, F., Hoffmann, F., and Magdalena, L. (2004). Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases. World Scientific. | eng |
dcterms.references | Cordón. O., del Jesus. M., & Herrera. F. (1999). A proposal on reasoning methods in fuzzy rule-based classification systems. In- Ternational Journal of Approximate Reasoning, 20(21–45). | eng |
dcterms.references | Cordon. o., Herrera. F, Magdalena. L., & Hoffmann. F. (2004). Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases. In Fuzzy Sets and Systems (Vol. 141). https://doi.org/10.1016/S0165-0114(03)00262-8 | eng |
dcterms.references | Cordón.O., del Jesus. M, F., H., & Lozano.M. (1999). MOGUL: A Methodology to Obtain Genetic fuzzy rule-based sys- tems Under the iterative rule Learning approach. International Journal of Intelligent Systems, 14 (11), 1123–1153. | eng |
dcterms.references | Cuervo, R. C. N., & Martínez, L. M. S. (2009). Herramienta software para el análisis de canasta de mercado sin selección de candidatos. Ingenieria e Investigacion, 29(1), 60–68. | spa |
dcterms.references | De Jong. K.A. (1975). An analysis of the behavior of a class of genetic adaptive systems, 1975. Univ. Michigan. https://doi.org/Microfilms Number 76-9381 | eng |
dcterms.references | Deb, K. (2001). Multi objetive optimization using evolutionary algortithms. Jhon Wiley & Sons. | eng |
dcterms.references | Del jesus, M., González, P., & Herrera;Francisco. (2005). Induccion evolutiva multiobjetivo de reglas de descripcion de subgrupos en un problema de marketing. Actas Del IV Congreso Español Sobre Metaheuristicas, Algoritmosevolutivos y Bioinspirados MAEB2005, I 84-9732, 661–669. Retrieved from http://sci2s.ugr.es/publications/ficheros/deljesus_gonzalez_herrera_CEDI-MAEB05.pdf | spa |
dcterms.references | Del Jesus, M., González, P., & Herrera, F. (2007). Multiobjective Genetic Algorithm for Extracting Subgroup Discovery Fuzzy Rules. Intelligence in Multicriteria Decision Maeketing, (Mcdm), 50–57. Retrieved from http://sci2s.ugr.es/keel/pdf/algorithm/congreso/2007-delJesus-MCDM.pdf | eng |
dcterms.references | DelJesus, Herrera, Mesonero, & Gonzalez. (2008). Algoritmo Evolutivo de Extracción de Reglas de Asociación aplicado a un Problema de Marketing. Ministerio de Ciencia y Tecnología. Retrieved from http://sci2s.ugr.es/keel/pdf/keel/congreso/maeb04-reglas-jaen-granada.pdf | spa |
dcterms.references | Demšar. J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1–30. | eng |
dcterms.references | Derrac, J., Herrera, F., & García, S. (2010). Un Tutorial Metodológico para hacer Comparaciones Estadísticas con Tests No Paramétricos en Propuestas de Minería de Datos. | spa |
dcterms.references | Dietterich. T.G. (1998). aproximate statisticial test for comparing supervised classification learning algorithms. Neural Commpution, 10 (7). | eng |
dcterms.references | Doerner, K. F., Hartl, R. F., & Reimann, M. (2001). Are {COMPETants} more competent for problem solving? - the case of a routing and scheduling problem. Genetic and Evolutionary Computation Conference, 802. | eng |
dcterms.references | Donoso, Yezid; Fabregat, R. (2007). Multi-Objective Optimization in Computer Networks Using Metaheuristic. Aurbach Publications New York, Estados Unidos, 1 – 3. | eng |
dcterms.references | Duong, Q. H., Fournier-Viger, P., Ramampiaro, H., Nørvåg, K., & Dam, T. L. (2018). Efficient high utility itemset mining using buffered utility-lists. Applied Intelligence, 48(7), 1859–1877. https://doi.org/10.1007/s10489-017-1057-2 | eng |
dcterms.references | E. L. Lawler, Jan Karel Lenstra, A. H. G. Rinnooy Kan, and D. B. S. (1985). The-Traveling-Salesman-Problem-A-Guided-Tour-of-Combinatorial-Optimization- (Wiley & C. Series in Discrete Mathematics & Optimization. Wiley Interscience, Eds.). | eng |
dcterms.references | Eschenauer H.A. (1988). Multicriteria Optimization Techniques for Highly Accurate Focusing Systems. In: Stadler W. (eds) Multicriteria Optimization in Engineering and in the Sciences. Mathematical Concepts and Methods in Science and Engineering, (vol 37.; M. Springer, Boston, Ed.). | eng |
dcterms.references | Fayyad. (1994). Branching on attribute values in decision tree generation”. In Proceedings of the Twelfth National Conference on Artificial Intelligence, 1, 601-606. | eng |
dcterms.references | Fayyad, U., Piatetsky-shapiro, G., & Smyth, P. (1996a). From Data Mining to Knowledge Discovery in Databases. AL MAGAZIN, 17(3), 37–54. | eng |
dcterms.references | Fayyad, U., Piatetsky-shapiro, G., & Smyth, P. (1996b). The KDD Process for Extracting Useful Knowledge from Volumes of Data. 39(11), 27–34. | eng |
dcterms.references | Ferri. C., Hernández. J., & Ramírez. J. (2002). Learning Decision Trees Using the Area Under the ROC Curve. In Proceedings of the 19th International Conference on Machine Learning, 139–146. | eng |
dcterms.references | Flockhart, I.W. and Radcliffe, N. J. (1995). GA-MINER: Parallel data mining with hierarchical genetic algorithms. University of Edimburgh, UK. | eng |
dcterms.references | Fogel D. B. (1988). An evolutionary approach to the travelling sales man problem. Biological Cybernetics. 60(2):, 139–144. | eng |
dcterms.references | Freitas, A. A. (1999). On rule interesting ness measures. Knowledge Based System, 15, 309–315. | eng |
dcterms.references | Freitas, A. A. (2002). Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer. | eng |
dcterms.references | Fuchs, M. (1999). Genetic, Large Populations Are Not Always The Best Choice In Computation, Programming. Proceedings of the Genetic and Evolutionary Conference (GECCO-99)., 1033-1038. Orlando, FL,: Morgan-Kauffman,. | eng |
dcterms.references | Gambardella.L., Taillard. E, & Agazzi. G. (1999). MACS-VRPTW: un sistema de colonias múltiples para problemas de enrutamiento de vehículos con Windows de tiempo. Cite Ceer, 73–76. | spa |
dcterms.references | Garcia. A. L., & Tsang. E. P. (2006). Simplifying Decision Trees Learned by Genetic Programming. In IEEE Congress on Evolutionary Computation, (2142–2148). | eng |
dcterms.references | García, S., Derrac, J., Cano, J. R., & Herrera, F. (2012). Prototype selection for nearest neighbor classification: Taxonomy and empirical study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(3), 417–435. https://doi.org/10.1109/TPAMI.2011.142 | eng |
dcterms.references | Gathercole, C., & Ross, P. (1997). Small Populations over Many Generations can beat Large Populations over Few Generations in Genetic Programming. . In: Koza, J. R., et al., Eds.), Genetic Programming 1997: Proceedings of the Second Annual Conference., 111-118. Stanford University, CA: Morgan Kaufmann,. | eng |
dcterms.references | Gen, Mitsuo; Cheng, R. (2000). Genetic Algorithms & Engineering Optimization. Wiley-Interscience Publications, New York, Estados Unidos, 97–106. | eng |
dcterms.references | Giordana.A., & Filippo. N. (1996). Search-intensive concept induction. Evolutionary Computation, (3(4)), 375-416. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.8986&rep=rep1&type=pdf | eng |
dcterms.references | Goldberg. D. E. (1989). Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, MA. | eng |
dcterms.references | González A. Pérez R. (2001). Selection of relevant features in a fuzzy genetic learning algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B 31, 417–425. | eng |
dcterms.references | González J., Rojas I., Pomares H., Herrera L., Guillén A., P. J. R. F. (2007). Improving the accuracy while preserv- ing the interpretability of fuzzy function approximators by means of multi-objective evolutionary algorithms. International Journal of Approximate Reasoning, 44(1):, 32–44. | eng |
dcterms.references | Gonzalez, P. (2007). Aprendizaje Evolutivo de Reglas Difusas para descripción de Subgrupos. Tesis Doctoral.Universidad de Granada.España. | spa |
dcterms.references | Guerra Diego, A. (2015). Estado del arte y análisis de métodos de optimización de recursos en plantas de producción. Retrieved from https://uvadoc.uva.es/bitstream/10324/13230/1/TFG-P-272.pdf | spa |
dcterms.references | Gunal S. y Edizkan R. (2008). Subspace based feature selection for pattern recognition. Information Sciences, 178(19):, 3716–3726. | eng |
dcterms.references | Gupta, M. (2012). Application of Weighted Particle Swarm Optimization in Association Rule Mining. International Journal of Computer Sc Ience and Informatic, 1(3), 69–74. | eng |
dcterms.references | Hand, D. J. (1981). Driscrimination and Classification. (Wiley., Ed.). Chichester, U.K. | eng |
dcterms.references | Hasperue, W. (2013). Extraccion Del Conocimiento En Grandes Bases De Datos Utilizando Estrategias Adaptativas. In Journal of Chemical Information and Modeling (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004 | spa |
dcterms.references | Hastie, T., Tibshirani, R., & Friedman, J. (2009). Machine Learning. In Elements (Vol. 27). https://doi.org/10.1007/978-0-387-84858-7 | eng |
dcterms.references | Hernandez, J., Ramirez, M., & Ferri, C. (2004). Introducción a la Mineria de Datos (D. F. Aragon, Ed.). madris: Hall, Pearson Prentice. | eng |
dcterms.references | Hernández Riaño, V. L., López Pereira, J. M., & Hernández Riaño, H. E. (2013a). Minimización del retraso extremo a extremo en redes Unicast utilizando técnicas metaheurísticas. Entre Ciencia e Ingeniería, (14), 66–71. Retrieved from http://biblioteca.ucp.edu.co/ojs/index.php/entreciencia/article/view/2218 | spa |
dcterms.references | Hernández Riaño, V. L., López Pereira, J. M., & Hernández Riaño, H. E. (2013b). Minimización del retraso extremo a extremo en redes Unicast utilizando técnicas metaheurísticas. Entre Ciencia e Ingeniería, (14), 66–71. | spa |
dcterms.references | Herrera F., Lozano, M., & L. Verdegay J. (1998). Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artificial. Intelligence Review 12: 265–319. | eng |
dcterms.references | Hincapie, R., Rios, C., & Gallego, R. (2004). Técnicas Heurísticas aplicadas al problema del cartero viajante (TSP). SCIENCIA ET TECHNICA, 24. | spa |
dcterms.references | Ho S. Y., Chen H. M., H. S. J. y C. T. K. (2004). (2004). Design of accurate classifiers with a compact fuzzy-rule base using an evolu- tionary scatter partition of feature space. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(, 1031–1044. | eng |
dcterms.references | Holland . H. J. (1975). Adaptation in natural and artificial systems. Ann arbor: The University of Michigan Press. | eng |
dcterms.references | Holland, J. H. (1975). Adaption in natural and artifical systems. (53), 1975. | eng |
dcterms.references | Horn, J., Nafpliotis, N., & Goldberg, D. E. (2002). A niched Pareto genetic algorithm for multiobjective optimization. 1, 82–87. https://doi.org/10.1109/icec.1994.350037 | eng |
dcterms.references | Hu Q., Yu D., L. J. y W. C. (2008). Neighborhood rough set based heterogeneous feature subset selection. Information Sciences, 178(18):, 3577–3594. | eng |
dcterms.references | Iredi, S., Merkle, D., & Middendorf, M. (2001). Bi-Criterion Optimization with Multi Colony Ant Algorithms. Lecture Notes in Computer Science 1993, 359–372. https://doi.org/10.1007/3-540-44719-9_25 | eng |
dcterms.references | Ishibuchi. H., Nozaki. K., & Tanaka. H. (1994). Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms. Fuzzy Sets and Systems, 65:, 237–253. | eng |
dcterms.references | Ishibuchi. H, Nakashima. T, & Nii. M. (2004). Classification And Modeling With Linguistic Information Granules: Advanced Ap proaches To Linguistic Data Mining. Springer Verlag. | eng |
dcterms.references | Ishibuchi. H, Nozaki. K, & Tanaka. H. (1992). Distributed representation of fuzzy rules and its application to pattern classification. Fuzzy Sets and Systems. 52, 21–32. | eng |
dcterms.references | Ishibuchi .H., Yamamoto. T., & Nakashima.T. (2005). Hybridization of fuzzy gbml approaches for pattern classification problems. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cy, 359–365. | eng |
dcterms.references | Ishibuchi H., Nozaki K., Y. N. y T. H. (1995). Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Transactions on Fuzzy Systems, 3(3):, 260–270. | eng |
dcterms.references | Ishibuchi H. y Nojima Y. (2007). Analysis of interpretability- accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics- based machine learning. International Journal of Approximate Rea- Soning, 44(1):, 4–31. | eng |
dcterms.references | Ishibuchi H. y Yamamoto T. (2004). Fuzzy rule selection by multi- objective genetic local search algorithms and rule evaluation mea- sures in data mining. Fuzzy Sets and Systems, (141(1):), 59–88. | eng |
dcterms.references | J., M. G. (1992). Discriminant analysis and statistical patern recognition (W. Interscience, Ed.). | eng |
dcterms.references | J. Rua, Z. R. (2014). ANÁLISIS DE MODELOS DE REDES NEURONALES ARTIFICIALES, PARA UN SISTEMA DE DIAGNÓSTICOS DE MIGRAÑAS CON AURA Y SIN AURA. Barranquilla – Colombia. | spa |
dcterms.references | J.R, Quinlan. (1993). C4.5: PROGRAMS FOR MACHINE LEARNING J. San Mateo, California. | spa |
dcterms.references | Janikow, C.Z. (1993). A knowledge-intensive genetic algorithm for supervised learning. Machine Learning, 13, 189-228. | eng |
dcterms.references | Kalsoom, A., Maqsood, M., Ghazanfar, M. A., Aadil, F., & Rho, S. (2018). A dimensionality reduction-based efficient software fault prediction using Fisher linear discriminant analysis (FLDA). In Journal of Supercomputing (Vol. 74). https://doi.org/10.1007/s11227-018-2326-5 | eng |
dcterms.references | Kangshun. Li, Yuanxiang. Li, Mo, H., & Chen, Z. (2005). A New Algorithm of Evolving Artificial Neural Networks via Gene Expression Programming. Journal of the Korean Society for Industrial and Applied Mathematics, 9(2), 83–90. | eng |
dcterms.references | Kearns.M., & Mansour. Y. (1995). On the Boosting Ability of Top-Down Decision Tree Learning Algorithms. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, 459–468. | eng |
dcterms.references | Kennedy.Y:S:J:, & Eberhart. R. (2001). Swarrm Intelligence (Morgan. Kaufmann, Ed.). | eng |
dcterms.references | Kim, M., Hiroyasu, T., Miki, M., & Watanabe, S. (2010). SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2. 742–751. https://doi.org/10.1007/978-3-540-30217-9_75 | eng |
dcterms.references | Kohavi R. y John G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):, 273–324. | eng |
dcterms.references | Konijn, R. M., Duivesteijn, W., Kowalczyk, W., & Knobbe, A. (2013). Discovering local subgroups, with an application to fraud detection. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7818 LNAI(PART 1), 1–12. https://doi.org/10.1007/978-3-642-37453-1_1 | eng |
dcterms.references | Koza J. R. (1992). Genetic programming as a means for program- ming computers by natural selection. Statistics and Computing. 4(2), 87–1. | eng |
dcterms.references | Koza J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs. The MIT Press, Cam- Bridge MA, USA. | eng |
dcterms.references | Kumar, P. G., Kavitha, M. S., & Ahn, B. C. (2016). Automated detection of cancer associated genes using a combined fuzzy-rough-set-based f-information and water swirl algorithm of human gene expression data. PLoS ONE, 11(12), 1–24. https://doi.org/10.1371/journal.pone.0167504 | eng |
dcterms.references | Li, H., & Landa-Silva, D. (2008). Evolutionary multi-objective simulated annealing with adaptive and competitive search direction. 2008 IEEE Congress on Evolutionary Computation, CEC 2008, 3311–3318. https://doi.org/10.1109/CEC.2008.4631246 | eng |
dcterms.references | Li R. P., M. M. y B. I. (2002). A fuzzy neural net- work for pattern classification and feature selection. Fuzzy Sets and Systems, 130(1):, 101–108. | eng |
dcterms.references | Linfati, R., Escobar, J. W., & Gatica, G. (2014). Un algoritmo metaheurístico para el problema de localización y ruteo con flota heterogénea. Ingeniería y Ciencia, 10(19), 55–76. https://doi.org/10.17230/ingciencia.10.19.3 | spa |
dcterms.references | Liu H. y Yu L. (2005). Toward integrating feature selection al- gorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(3):, 491–502. | eng |
dcterms.references | Lobo, R. S., & Castro, A. M. (2011). Cromatico, un nuevo metodo de optimizacion que se fundamenta a través de un algoritmo de búsqueda basada en la escala cromática de las notas músicales. Universidad de Córdoba. | spa |
dcterms.references | Lu, Q., & Qiao, X. (2018). Sparse Fisher’s linear discriminant analysis for partially labeled data. Statistical Analysis and Data Mining, 11(1), 17–31. https://doi.org/10.1002/sam.11367 | eng |
dcterms.references | Luc, M., Marc, M., Ali, M., & Hammal, H. (2019). Rank correlated subgroup discovery ´. | spa |
dcterms.references | Ma, J., Guo, D., Liu, M., Ma, Y., & Chen, S. (2009). Rules extraction from ANN based on clustering. Proceedings of the 2009 International Conference on Computational Intelligence and Natural Computing, CINC 2009, (2), 19–21. https://doi.org/10.1109/CINC.2009.168 | eng |
dcterms.references | Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Mahdavi, S., Amani, M., & Granger, J. E. (2018). Fisher Linear Discriminant Analysis of coherency matrix for wetland classification using PolSAR imagery. Remote Sensing of Environment, 206(January 2017), 300–317. https://doi.org/10.1016/j.rse.2017.11.005 | eng |
dcterms.references | Martí, R. (2003). Procedimientos Metahurísticos en Optimización Combinatoria. Valencia, Universidad de Valencia. | spa |
dcterms.references | Martinez. R. (2014). Metodologías Basadas en Minería de Datos para el Diseño y Optimización de Técnicas de Clasificación Automática. Universidad de Murcia. | spa |
dcterms.references | Melián, B., Moreno Pérez, J. A., Marcos, J., & Vega, M. (2003). Metaheuristics: A global view Metaheurísticas: una visión global. Inteligencia Artificial Revista Iberoamericana de Inteligencia Artificial., 19, 7–28. Retrieved from http://www.redalyc.org/pdf/925/92571901.pdf | spa |
dcterms.references | Mendes, R.R.F., Voznika, F.B., Freitas, A.A., and Nievola, J. C. (2001). Discovering fuzzy classification rules with genetic programming and co-evolution,. In Genetic and Evolutionary Computation Conference (GECCO-2001)., 183-194. | eng |
dcterms.references | Mendoza. M. (2016). ESCAPE STRATEGIES ALGORITHM (ESSA) UN NUEVO ALGORITMO META HEURÍSTICO DE OPTIMIZACIÓN GLOBAL PARA PROBLEMAS DE VARIABLE REAL, INSPIRADO EN LA INTERACCIÓN DEPREDADOR-PRESA. Universidad de Cordoba. | spa |
dcterms.references | Merrikh-Bayat, F. (2015). The runner-root algorithm: A metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature. Applied Soft Computing Journal, 33, 292–303. https://doi.org/10.1016/j.asoc.2015.04.048 | eng |
dcterms.references | Michalewicz Z. (1996). Genetic algorithms + data structures = evo- lution programs. Springer-Verlag. | eng |
dcterms.references | Mikut. R., Jäkel..J., & Gröll. L. (2005). Interpretability issues in data- based learning of fuzzy systems. Fuzzy Sets and Systems, 150(2):, 179–197. | eng |
dcterms.references | Monteserin, A., & Armentano, M. G. (2018). Influence-based approach to market basket analysis. Information Systems, 78, 214–224. https://doi.org/10.1016/j.is.2018.01.008 | eng |
dcterms.references | Montgomery, D., Jennings, C., & Kulahci, M. (2008). Introduction to time series analysis and foecasting. | eng |
dcterms.references | Morales. E, & Mariano. E. (1999). A Multiple Objective Ant-Q Algorithm for the Design of Water Distribution Irrigation Networks. Instituto Mexicano de Tecnolog__a Del Agua, (November 1999). | eng |
dcterms.references | Mori, Y., & Suzuki, T. (2018). Generalized ridge estimator and model selection criteria in multivariate linear regression. Journal of Multivariate Analysis, 165, 243–261. https://doi.org/10.1016/j.jmva.2017.12.006 | eng |
dcterms.references | Morillo Torres, D., Moreno, L., & Díaz, J. (2014). Metodologías Analíticas y Heurísticas para la Solución del Problema de Programaciónde Tareas con Recursos Restringidos (RCPSP): una revisión. Parte 2. Ingeniería y Ciencia, 10(20), 203–227. https://doi.org/10.17230/ingciencia.10.20.12 | spa |
dcterms.references | Motoda, H., Wu, X., Kumar, V., McLachlan, G. J., Zhou, Z.-H., Hand, D. J., … Ng, A. (2007). Top 10 algorithms in data mining. In Knowledge and Information Systems (Vol. 14). https://doi.org/10.1007/s10115-007-0114-2 | eng |
dcterms.references | Naghash Asadi, A., Abdollahi Azgomi, M., & Entezari-Maleki, R. (2019). Unified power and performance analysis of cloud computing infrastructure using stochastic reward nets. Computer Communications, 138(June 2018), 67–80. https://doi.org/10.1016/j.comcom.2019.03.004 | eng |
dcterms.references | Nauck D. Kruse R. (1997). A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets and Systems, 89:, 277–288. | eng |
dcterms.references | Naudin, M., Tremblais, B., Guillevin, C., Guillevin, R., & Fernandez, C. (2002). Diffuse Low Grade Glioma NMR Assessment for Better Intra-operative Targeting Using Fuzzy Logic. Computers & Graphics, 26(3), 528. https://doi.org/10.1016/s0097-8493(02)00077-8 | eng |
dcterms.references | Nieto, H. (2011). DISEÑO E IMPLEMENTACION DE UNA METAHEURISTICA HIBRIDA BASADA EN RECOCIDO SIMULADO, ALGORITMOS GENETICOS Y TEORIA DE AUTOMATAS PARA LA OPTIMIZACION BI-OBJETIVO DE PROBLEMAS COMBINATORIOS. Universidad del Norte, Barranquilla, Colombia. | eng |
dcterms.references | Niño. (2012). Evolutionary Algorithms based on the Automata Theory for the Multi-objective Optimization of Combinatorial Problems. INT J COMPUT COMMUN, 7 (5)(1), 916–923. Retrieved from http://journal.univagora.ro/download/pdf/644.pdf | eng |
dcterms.references | Niño., E., & Ardila., C. (2009). Algoritmo basado basado en la obtencion de optimos globales en problemas combnatorios. Ingenieria y Desarrollo, 25, 1–11. | spa |
dcterms.references | Niño, E. (2010). Diseño e implementacion de una metaheuristica badasa en automatas finitos determistas para la optimizacion multiobjetivo de problemas Combinatorios. Universidad del Norte, Barranquilla, Colombia. | spa |
dcterms.references | Niño, E. (2012). SAMODS and SAGAMODS: Novel Algorithms Based on the Automata Theory for the Multiobjective Optimization of Combinatorial Problems. International Journal of Artificial Intelligence, 8 S12. Retrieved from http://ceser.in/ceserp/index.php/ijai/article/view/1287 | eng |
dcterms.references | Niño, E., Ardila, C., Molinares, D., Barrios, A., & Yesid, D. (2011). MODS: A Novel Metaheuristic of Deterministic Swapping for the Multi-Objective Optimization of Combinatorials Problems. Computer Tecnology and Application, 2, 280–292. | eng |
dcterms.references | Niño, E., Nieto, H., & Chinchilla, A. (2011). EMSA : Hybrid Metaheuristic based on Genetic Algorithms , Simulated Annealing and Deterministic Swapping. Universidad Del Norte, (4), 1–12. | eng |
dcterms.references | Noda, E., Freitas, A.A., and Lopes, H. . (1999). Discovering Interesting Prediction Rules with a Genetic Algorithm. In IEEE Congress on Evolutionary Computation (CEC 99). Washington, USA. | eng |
dcterms.references | Noda, E.; Freitas, A.A., and Lopes, H. S. (1999). Discovery Interesting Prediction Rules with a Genetic Algorithm. In IEEE Congress on Evolutionary Computation (CEC99)., Washington. USA. | eng |
dcterms.references | Oberlin.P, Rathinam.S, & Darbha.S. (2009). A transformation for a Multiple Depot, Multiple Traveling Salesman Problem. American Control Conference, 2636–2641. | eng |
dcterms.references | Olivas, F., Valdez, F., Melin, P., Sombra, A., & Castillo, O. (2019). Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Information Sciences, 476, 159–175. https://doi.org/10.1016/j.ins.2018.10.025 | eng |
dcterms.references | Papadakis S. E. y Theocharis J. B. (2006). A genetic method for designing TSK models based on objective weighting: application to classification problems. Soft Computing, 10(9):, 805–824. | eng |
dcterms.references | Parthasarathy, S., Zaki, M. J., Ogihara, M., & Li, W. (1997). New Algorithms for Fast Discovery of Association. 283–286. | eng |
dcterms.references | Pearl J. (1988). Probabilistic reasoning in intelligent systems. Mor- gan Kaufmann, Palo Alto, USA. In Mor- gan Kaufmann, Palo Alto, USA. | eng |
dcterms.references | Pérez-Ortega, J., Castillo-Zacatelco, H., Vilariño-Ayala, D., Mexicano-Santoyo, A., Zavala-Díaz, J. C., Martínez-Rebollar, A., & Estrada-Esquivel, H. (2016). Una nueva estrategia heurística para el problema de Bin Packing. Ingeniería, Investigación y Tecnología, 17(2), 155–168. https://doi.org/10.1016/j.riit.2016.06.001 | spa |
dcterms.references | Pérez. E, Herrera. F., & Hernández. C. (2003). Finding multiple solu- tions in job shop scheduling by niching genetic algorithms. Journal of Intelligent Manufacturing, 14(3-4):, 323–339. | eng |
dcterms.references | Pérez. M, Pérez, . P, Rivera. A, Jesus. M, & López. P. (2010). CO 2 RBFN : predicción de series temporales con un enfoque cooperativo-competitivo. Soft Computing 14, 14, 953–971. Retrieved from https://sci2s.ugr.es/keel/pdf/keel/congreso/maeb09.pdf | spa |
dcterms.references | Pham, B. T., & Prakash, I. (2019). Evaluation and comparison of LogitBoost Ensemble, Fisher’s Linear Discriminant Analysis, logistic regression and support vector machines methods for landslide susceptibility mapping. Geocarto International, 34(3), 316–333. https://doi.org/10.1080/10106049.2017.1404141 | eng |
dcterms.references | Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine Learning, 42(3), 203–231. https://doi.org/10.1023/A:1007601015854 | eng |
dcterms.references | Quinlan. J. R. (1986). Induction of Decision Trees. In Machine Learning, 1, 81-106. | eng |
dcterms.references | Quinlan. J. R. (1993). C4.5: Programs for Machine Learning. In Morgan Kaufmann Publishers. | eng |
dcterms.references | Ramírez. J, Osuna. I, Rojas. J, & Guerrero. S. (2016). Remuestreo Bootstrap y Jackknife en confiabilidad: Caso Exponencial y Weibull. Revista Facultad De Ingeniería, 25(41), 55. https://doi.org/10.19053/01211129.4137 | spa |
dcterms.references | Ranjan, R., & Sharma, A. (2019). Evaluation of Frequent Itemset Mining Platforms using Apriori and FP- Growth Algorithm. Department of Computer Science and Engineering, DIT University, (February), 1–6. | eng |
dcterms.references | Ravi V., R. P. J. y Z. H. J. (2000). Pattern clas- sification with principal component analysis and fuzzy rule bases. European Journal of Operational Research, 126(3):, 526–533. | eng |
dcterms.references | Ravi V. y Zimmermann H. J. (2001). A neural network and fuzzy rule base hybrid for pattern classification. Soft Computing, 5(2):, 152–159. | eng |
dcterms.references | Riaño. J., Prieto. F., Sánchez. E, C, A., & Castellano. G. (2010). Analysis and convergence of weighted dimensionality reduction methods. Revista Facultad De Ingeniería. Universidad de Antioquia, 1–11. | eng |
dcterms.references | Rocha, L.; González, C. y Orjuela, J. (2011). Una revisión al estado del arte del problema de ruteo de vehículos: Evolución histórica y métodos de solución. Ingeniería, Vol. 16, N, 35-55 . | spa |
dcterms.references | Rodríguez.C, Pena. M, & Piñero. P. (2015). Aprendizaje de reglas difusas usando algoritmos genéticos. Congreso Internacional de Matemática y Computación COMPUMAT, At La Habana, Cuba. | spa |
dcterms.references | Romao, W., Freitas, A.A., and Pacheco, R. C. S. (2002a). A Genetic Algorithm for Discovering Interesting Fuzzy Prediction Rules: applications to science and technology data. In Genetic and Evolutionary Computation Conference (GECCO. | eng |
dcterms.references | Romao, W., Freitas, A.A., and Pacheco, R. C. S. (2002b). A Genetic Algorithm for Discovering Interesting Fuzzy Prediction Rules: applications to science and technology data. In Genetic and Evolutionary Computation Conference (GECCO 2002). | eng |
dcterms.references | Romero, G. P., & Niz, A. P. (2013). facultad Ingeniería de Sistemas , con técnicas de minería de datos. Https://Revistas.Unisimon.Edu.Co, 1–6. Retrieved from https://revistas.unisimon.edu.co/index.php/identic/article/view/2484 | spa |
dcterms.references | Roubos J. A., S. M. y A. J. (2003). Learning fuzzy clas- sification rules from labeled data. Information Sciences, 150(1-2):, 77–93. | eng |
dcterms.references | Ruiz, J. (2013). ENTRENAMIENTO DE REDES NEURONALES ARTIFICIALES BASADO EN ALGORITMO EVOLUTIVO Y TEORÍA DE AUTÓMATAS FINITOS. tesis de maestia sin publicacion. Universidad del Norte, Barranquilla, Colombia. | spa |
dcterms.references | S. Garcia., J .Derrac., F. Herrera., & D. Molina. (2012). Un tutorial sobre el uso de test estadısticos no parametricos en comparaciones multiples de metaheurısticas y algoritmos evolutivos. 8–10. | spa |
dcterms.references | Sampieri, R. H., Collado, C. F., & Baptista, M. del pilar. (2010). METODOLOGIA DE LA INVESTIGACIÓN (QUINTA EDI). Mc Graw Hill. | spa |
dcterms.references | Schwefel H. P. (1995). Evolution and Optimum Seeding. Wiley Inc. | eng |
dcterms.references | Setnes M. Roubos H. (2000). GA-fuzzy modeling and classifica- tion: complexity and performance. IEEE Transactions on Fuzzy Systems, 8(5):, 509–522. | eng |
dcterms.references | Setnes M. y Babuška R. (2001). Rule base reduction: Some com- ments on the use of orthogonal transforms. IEEE Transactions on Systems, Man, and Cybernetics, Part B 31:, 199–206. | eng |
dcterms.references | Seymour, L., Brockwell, P. J., & Davis, R. A. (2006). Introduction to Time Series and Forecasting. In Journal of the American Statistical Association (Vol. 92). https://doi.org/10.2307/2965440 | eng |
dcterms.references | Shen Q. Jensen R. (2004). Selecting informative features with fuzzy-rough sets and its application for complex systems monitor ing. Pattern Recognition, 37(7):, 1351–1363. | eng |
dcterms.references | Sheskin, D. J. (2000). PARAMETRIC and NONPARAMETRIC STATISTICAL PROCEDURES SECOND EDITION. Retrieved from www.crcpress.com | eng |
dcterms.references | Silipo R. y Berthold M. R. (2000). Input features’ impact on fuzzy decision processes. IEEE Transactions on Systems, Man, and Cy- Bernetics, Part B 30(, 821–834. | eng |
dcterms.references | Simon, C., Weber, P., & Evsukoff, A. (2008). Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis. Reliability Engineering and System Safety, 93(7), 950–963. https://doi.org/10.1016/j.ress.2007.03.012 | eng |
dcterms.references | Street, W. (1982). SOME PROBLEMS WITH FROM FINITE MIXTURE DISTRIBUTIONS. Contract. | eng |
dcterms.references | Sui. X, & Leung. H. (2008). An Adaptive Bidding Strategy in Multi-round Combinatorial Auctions for Resource Allocation," Tools with Artificial Intelligence. ICTAI ’08. 20th IEEE International Conference, 2, 423–430. https://doi.org/978-0-7695-3440-4 | eng |
dcterms.references | Tovar, L., Coronell, M., & Donoso, Y. (2007). Optimización multiobjetivo en redes ópticas con transmisión Multicast, utilizando algoritmos evolutivos y lógica difusa. Ingeniería & Desarrollo, 21. | spa |
dcterms.references | Tsakiridis, N. L., Theocharis, J. B., & Zalidis, G. C. (2016). DECO3R: A Differential Evolution-based algorithm for generating compact Fuzzy Rule-based Classification Systems. Knowledge-Based Systems, 105, 160–174. https://doi.org/10.1016/j.knosys.2016.05.013 | eng |
dcterms.references | Ulungu, E. L., Teghem, J., Fortemps, P. H., & Tuyttens, D. (1999). MOSA method: A tool for solving multiobjective combinatorial optimization problems. Journal of Multi-Criteria Decision Analysis, 8(4), 221–236. https://doi.org/10.1002/(SICI)1099-1360(199907)8:4<221::AID-MCDA247>3.0.CO;2-O | eng |
dcterms.references | Vaezpour, E., Dehghan, M., & Yousefi’zadeh, H. (2019). Robust joint user association and resource partitioning in heterogeneous cloud RANs with dual connectivity. Computer Communications, 138, 1–10. https://doi.org/10.1016/j.comcom.2019.02.008 | eng |
dcterms.references | Van Broekhoven E., A. V. y D. B. B. (2007). Interpretability-preserving genetic optimization of linguistic terms in fuzzy models for fuzzy ordered classification: An ecological case study. International Journal of Approximate Reasoning, 44(1):, 65– 90. | eng |
dcterms.references | Vidya, V., & Nedunchezhian, R. (2011). A robust weighted association rule mining using FP-tree. European Journal of Scientific Research, 66(4), 600–609. | eng |
dcterms.references | Wang J.-S. Lee C. S. G. (2000). Self-adaptive neuro-fuzzy infer- ence systems for classification applications. IEEE Transactions on Fuzzy Systems, 10(6):, 790–802. | eng |
dcterms.references | Weise, T. (2008). Global Optimization Algorithms Theory and Application (segunda ed). | eng |
dcterms.references | Weiss, S. I., & Kulikowski, C. (1991). Computer System Than Learn: Classification y Prediction Methods from Statistic, Neural Networks, Machine Learning, and Expert System. San francisco, California: Morgan Kaufmann. | eng |
dcterms.references | Whitley L. D. y Kauth J. (1988). GENITOR: A different genetic algorithm. En Proceedings of the Rocky Mountain Conference on Artificial Intelligence, páginas 118–130. Denver, USA. | eng |
dcterms.references | Witten, I. H., & Frank, E. (2000). Machine Learning Algorithms in Java Nuts and bolts. 58. Retrieved from https://www.cs.ru.nl/P.Lucas/teaching/DM/weka.pdf | eng |
dcterms.references | Y. F. Cabrera. (2011). MÉTODOS DE APRENDIZAJE PARA DOMINIOS CON DATOS MEZCLADOS BASADOS EN LA TEORÍA DE LOS CONJUNTOS APROXIMADOS EXTENDIDA. Universidad Central Marta Abreu. | spa |
dcterms.references | Yañez. E. (2009). T ecnicas de Auto-Adaptacion para Algoritmos Evolutivos Multi-objetivo. CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS DEL INSTITUTO POLITECNICO NACIONAL DEPARTAMENTO DE COMPUTACION. | spa |
dcterms.references | Yen J. Wang L. (1999). Simplifying fuzzy rule-based models us- ing orthogonal transformation methods. IEEE Transactions on Systems, Man, and Cybernetics, Part B 29:, 13–24. | eng |
dcterms.references | Yu S., B. S. D. y S. P. (2002). Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for hy- perspectral satellite imagery. Pattern Recognition Letters, 23(1-3):, 183–190. | eng |
dcterms.references | Zadeh L. A. (1975). The concept of a linguistic variable and its applications to approximate reasoning, parts I, II, III. Information Sciences, 199–249, 301–357, 43–80. | eng |
dcterms.references | Zadeh, L.A. (1965). fuzzy sets. Journal of Plant Pathology, 338–353. | eng |
dcterms.references | Zadeh, L.A. (1973). Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3, 28-44. https://doi.org/https://doi.org/10.1109/TSMC.1973.5408575 | eng |
dcterms.references | Zadeh, Lotfi A. (1994). Soft Computing and Fuzzy Logic. IEEE Software, 11(6), 48–56. https://doi.org/10.1109/52.329401 | eng |
dcterms.references | Zhang, J., Wang, Y., & Feng, J. (2013). Attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/259347 | eng |
dcterms.references | Zhang, X., Wang, C., & Wu, Y. (2018). Functional envelope for model-free sufficient dimension reduction. Journal of Multivariate Analysis, 163, 37–50. https://doi.org/10.1016/j.jmva.2017.09.010 | eng |
dcterms.references | Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.: da Fonseca, V. (2003). Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation, Vol 7, No, pag. 117–132,. | eng |
sb.programa | Maestría en Ingeniería de Sistemas y Computación | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: