Mostrar el registro sencillo del ítem

dc.rights.licenselicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.authorAcosta-Humánez, Primitivo B.
dc.contributor.authorMachado Higuera, Maximiliano
dc.contributor.authorSinitsyn, Alexander V.
dc.date.accessioned2018-03-21T22:24:38Z
dc.date.available2018-03-21T22:24:38Z
dc.date.issued2017
dc.identifier.issn09720871
dc.identifier.urihttp://hdl.handle.net/20.500.12442/1895
dc.description.abstractMathematical models for biogas production are studied due to their importance in the use of control and optimization of renewable resources and clean energy. In this paper, we combine two algebraic methods to obtain solutions of Abel equation of first kind that arises from a mathematical model to biogas production formulated in France on 2001. The aim of this paper is to obtain Liouvillian solutions of Abel’s equations through Hamiltonian algebrization. As an illustration, we present graphics of solutions for Abel equations and solutions for Abel equations in algebraic form.eng
dc.language.isoengspa
dc.publisherPushpa Publishing Houseeng
dc.sourceRevista Far East Journal of Mathematical Sciences (FJMS)eng
dc.sourceVol. 101, No. 6 (2017)
dc.source.urihttps://www.researchgate.net/profile/A_Sinitsyn/publication/305809139_A_model_of_anaerobic_digestion_for_biogas_production_using_Abel_equations/links/57a2a91308aeb1604835f5e2/A-model-of-anaerobic-digestion-for-biogas-production-using-Abel-equations.pdfeng
dc.subjectAbel equationeng
dc.subjectBiogaseng
dc.subjectDifferential equationseng
dc.subjectHamiltonian algebrizationeng
dc.subjectLiouvillian solutionseng
dc.titleA model of anaerobic digestion for biogas production using abel equationseng
dc.typearticleeng
dcterms.referencesP. B. Acosta-Humánez, Galoisian Approach to Supersymmetric Quantum Mechanics: The Integrability Analysis of the Schrödinger Equation by Means of Differential Galois Theory, VDM Verlag Dr. Müller, 2010, 128 pp.eng
dcterms.referencesP. B. Acosta-Humánez, Nonautonomous Hamiltonian systems and Morales-Ramis theory I. The case ¨x = f (x, t), SIAM J. Appl. Dyn. Syst. 8 (2009), 279-297. DOI:10.1137/080730329.eng
dcterms.referencesP. B. Acosta-Humánez, J. T. Lázaro, J. Morales-Ruiz and Ch. Pantazi, On the integrability of polynomial vector fields in the plane by means of Picard-Vessiot theory, Discrete and Continuous Dynamical Systems - Series A (DCDS-A) 35 (2015), 1767-1800. http://dx.doi.org/10.3934/dcds.2015.35.1767.eng
dcterms.referencesP. B. Acosta-Humánez, J. J. Morales-Ruiz and J.-A. Weil, Galoisian approach to integrability of Schrödinger equation, Rep. Math. Phys. 67 (2011), 305-374. DOI:10.1016/S0034-4877(11)60019-0.eng
dcterms.referencesP. B. Acosta-Humánez and E. Suazo, Liouvillian propagators, Riccati equation and differential Galois theory, Journal of Physics A: Mathematical and Theoretical 46 (2013), 455203. DOI:10.1088/1751-8113/46/45/455203.eng
dcterms.referencesB. Benyahia, T. Sari, B. Cherki and J. Harmand, Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes, Journal of Process Control 22(6) (2012), 1008-1019. DOI:10.1016/j.jprocont.2012.04.012.eng
dcterms.referencesO. Bernard, Z. Hadj-Sadok, D. Dochain, A. Genovesi and J. Steyer, Dynamical model development and parameter identification for an anaerobic wastewater treatment process, Biotechnology and Bioengineering 75(4) (2001), 424-438. DOI:10.1002/bit.10036.eng
dcterms.referencesF. Mariet, O. Bernard, M. Ras, L. Lardon and J. Steyer, Modeling anaerobic digestion of microalgae using ADM1, Bioresource Technology 102(13) (2011), 6823-6829. DOI:10.1016/j.biortech.2011.04.015.eng
dcterms.referencesM. Machado Higuera and A. V. Sinitsyn, Existence of lower and upper solutions in reverse order with respect to a variable in a model of acidogenesis to anaerobic digestion, Bulletin of the South Ural State University, Ser. Mathematical Modelling, Programming and Computer Software 8(2) (2015), 55-68. DOI:10.14529/mmp150205.eng
dcterms.referencesM. Machado Higuera, Existencia de super y sub soluciones, estabilidad y bifurcación para un modelo matemático de digestión anaerobia para la producción de biogás, Thesis (Ph.D.), Universidad Veracruzana de México, Xalapa, 2015, 124 pp.spa
dcterms.referencesE. Salinas, R. Muñoz, J. Sosa and B. López, Analysis to the solutions of Abel’s differential equations of the first kind under transformation y = u(x) z(x) + v(x), Appl. Math. Sci. 7(41-44) (2013), 2075-2092. DOI:10.12988/ams.eng
dcterms.referencesB. Sialve, N. Bernet and O. Bernard, Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable, Biotechnology Advances 27(4) (2009), 409-416. DOI:10.1016/j.biotechadv.2009.03.001.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem