A model of anaerobic digestion for biogas production using abel equations
dc.contributor.author | Acosta-Humánez, Primitivo B. | |
dc.contributor.author | Machado Higuera, Maximiliano | |
dc.contributor.author | Sinitsyn, Alexander V. | |
dc.date.accessioned | 2018-03-21T22:24:38Z | |
dc.date.available | 2018-03-21T22:24:38Z | |
dc.date.issued | 2017 | |
dc.description.abstract | Mathematical models for biogas production are studied due to their importance in the use of control and optimization of renewable resources and clean energy. In this paper, we combine two algebraic methods to obtain solutions of Abel equation of first kind that arises from a mathematical model to biogas production formulated in France on 2001. The aim of this paper is to obtain Liouvillian solutions of Abel’s equations through Hamiltonian algebrization. As an illustration, we present graphics of solutions for Abel equations and solutions for Abel equations in algebraic form. | eng |
dc.identifier.issn | 09720871 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12442/1895 | |
dc.language.iso | eng | spa |
dc.publisher | Pushpa Publishing House | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional | |
dc.source | Revista Far East Journal of Mathematical Sciences (FJMS) | eng |
dc.source | Vol. 101, No. 6 (2017) | |
dc.source.uri | https://www.researchgate.net/profile/A_Sinitsyn/publication/305809139_A_model_of_anaerobic_digestion_for_biogas_production_using_Abel_equations/links/57a2a91308aeb1604835f5e2/A-model-of-anaerobic-digestion-for-biogas-production-using-Abel-equations.pdf | eng |
dc.subject | Abel equation | eng |
dc.subject | Biogas | eng |
dc.subject | Differential equations | eng |
dc.subject | Hamiltonian algebrization | eng |
dc.subject | Liouvillian solutions | eng |
dc.title | A model of anaerobic digestion for biogas production using abel equations | eng |
dc.type | article | eng |
dcterms.references | P. B. Acosta-Humánez, Galoisian Approach to Supersymmetric Quantum Mechanics: The Integrability Analysis of the Schrödinger Equation by Means of Differential Galois Theory, VDM Verlag Dr. Müller, 2010, 128 pp. | eng |
dcterms.references | P. B. Acosta-Humánez, Nonautonomous Hamiltonian systems and Morales-Ramis theory I. The case ¨x = f (x, t), SIAM J. Appl. Dyn. Syst. 8 (2009), 279-297. DOI:10.1137/080730329. | eng |
dcterms.references | P. B. Acosta-Humánez, J. T. Lázaro, J. Morales-Ruiz and Ch. Pantazi, On the integrability of polynomial vector fields in the plane by means of Picard-Vessiot theory, Discrete and Continuous Dynamical Systems - Series A (DCDS-A) 35 (2015), 1767-1800. http://dx.doi.org/10.3934/dcds.2015.35.1767. | eng |
dcterms.references | P. B. Acosta-Humánez, J. J. Morales-Ruiz and J.-A. Weil, Galoisian approach to integrability of Schrödinger equation, Rep. Math. Phys. 67 (2011), 305-374. DOI:10.1016/S0034-4877(11)60019-0. | eng |
dcterms.references | P. B. Acosta-Humánez and E. Suazo, Liouvillian propagators, Riccati equation and differential Galois theory, Journal of Physics A: Mathematical and Theoretical 46 (2013), 455203. DOI:10.1088/1751-8113/46/45/455203. | eng |
dcterms.references | B. Benyahia, T. Sari, B. Cherki and J. Harmand, Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes, Journal of Process Control 22(6) (2012), 1008-1019. DOI:10.1016/j.jprocont.2012.04.012. | eng |
dcterms.references | O. Bernard, Z. Hadj-Sadok, D. Dochain, A. Genovesi and J. Steyer, Dynamical model development and parameter identification for an anaerobic wastewater treatment process, Biotechnology and Bioengineering 75(4) (2001), 424-438. DOI:10.1002/bit.10036. | eng |
dcterms.references | F. Mariet, O. Bernard, M. Ras, L. Lardon and J. Steyer, Modeling anaerobic digestion of microalgae using ADM1, Bioresource Technology 102(13) (2011), 6823-6829. DOI:10.1016/j.biortech.2011.04.015. | eng |
dcterms.references | M. Machado Higuera and A. V. Sinitsyn, Existence of lower and upper solutions in reverse order with respect to a variable in a model of acidogenesis to anaerobic digestion, Bulletin of the South Ural State University, Ser. Mathematical Modelling, Programming and Computer Software 8(2) (2015), 55-68. DOI:10.14529/mmp150205. | eng |
dcterms.references | M. Machado Higuera, Existencia de super y sub soluciones, estabilidad y bifurcación para un modelo matemático de digestión anaerobia para la producción de biogás, Thesis (Ph.D.), Universidad Veracruzana de México, Xalapa, 2015, 124 pp. | spa |
dcterms.references | E. Salinas, R. Muñoz, J. Sosa and B. López, Analysis to the solutions of Abel’s differential equations of the first kind under transformation y = u(x) z(x) + v(x), Appl. Math. Sci. 7(41-44) (2013), 2075-2092. DOI:10.12988/ams. | eng |
dcterms.references | B. Sialve, N. Bernet and O. Bernard, Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable, Biotechnology Advances 27(4) (2009), 409-416. DOI:10.1016/j.biotechadv.2009.03.001. | eng |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: