Mostrar el registro sencillo del ítem

dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.contributor.authorBravo, Antonio J.
dc.contributor.authorRoa, Felida
dc.contributor.authorVera, Miguel
dc.contributor.authorContreras-Velásquez, Julio
dc.contributor.authorVera, María
dc.contributor.authorChacón, José
dc.contributor.authorWilches- Durán, Sandra
dc.contributor.authorGraterol-Rivas, Modesto
dc.contributor.authorRiaño-Wilches, Daniela
dc.contributor.authorRojas, Joselyn
dc.contributor.authorBermúdez, Valmore
dc.date.accessioned2018-03-12T15:44:10Z
dc.date.available2018-03-12T15:44:10Z
dc.date.issued2017
dc.identifier.issn18564550
dc.identifier.urihttp://hdl.handle.net/20.500.12442/1848
dc.description.abstractLa radiología permite obtener una película radiográfica de la imagen de una parte del cuerpo humano, por su exposición a los rayos X. Cuando la radiación X atraviesa el objeto bajo estudio, sufre una atenuación que depende de la densidad y el espesor del objeto. Los rayos atenuados llegan a un a un receptor que puede ser la película fotográfica, produciendo así una imagen cuyo contraste facilitará el diagnóstico médico. La angiografía es un procedimiento radiológico usado para observar el flujo de sangre, en cualquier órgano del cuerpo. Bajo este procedimiento destacan la angiografía cardiaca para observar las arterias coronarias, la angiografía vascular para estudiar la irrigación del cerebro, y la ventriculografía, para observar la cavidad ventricular. En el presente artículo, se presentan un conjunto de técnicas desarrolladas para el procesamiento de imágenes adquiridas durante procedimientos de angiografía cardiaca.spa
dc.description.abstractRadiology allows to obtain an x-ray film to part of the human body by its exposure to X-rays. The radiation that passes through the studied object is attenuated according to the density and thickness of the object. The attenuated rays arrive at a receiver that can be the photographic film or an image intensificator that produces an image whose contrast is useful to the medical diagnosis. Angiography is a radiological procedure used to analysis blood flow in any organ of the body. Cardiac angiography to observe the coronary arteries, vascular angiography to study the irrigation of the brain, and ventriculography to observe the ventricular cavity are highlighted in this procedure. In this paper, a set of techniques developed for processing images acquired during cardiac angiography procedures is presented.eng
dc.language.isospaspa
dc.publisherResearchgateeng
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceRevista Latinoamericana de Hipertensiónspa
dc.sourceVol. 12, No. 1 (2017)spa
dc.source.urihttps://www.redalyc.org/articulo.oa?id=170250838002
dc.subjectRayos Xspa
dc.subjectAngiografía monoplanaspa
dc.subjectAngiografía biplanaspa
dc.subjectAngiografía rotacionalspa
dc.subjectRed coronariaspa
dc.subjectVentrículo izquierdospa
dc.subjectCardiologíaspa
dc.subjectX rayeng
dc.subjectMonoplane angiographyeng
dc.subjectBiplane angiographyeng
dc.subjectRotational angiographyeng
dc.subjectCoronary networkeng
dc.subjectLeft ventricleeng
dc.subjectCardiologyeng
dc.titleAngiocardiología por rayos Xspa
dc.typearticlespa
dcterms.bibliographicCitationKruger R. X–ray digital cineangiocardiography. En: Collins S, Skorton D (Eds). Cardiac Imaging and Image Processing.New York: McGraw Hill Book Company; 1980: 57–87.eng
dcterms.bibliographicCitationMedina R. Reconstruction Tridimensionelle du Ventricule Gauche en Angiographie Biplan. [Tesis de Doctorado].France: Université de Rennes 1; 1998.eng
dcterms.bibliographicCitationKennedy J, Trenholme S, Kaiser I, Wash S. Left ventricular volume and mass from single–plane cineangiocardiogram. A comparison of anteroposterior and right anterior oblique methods. American Heart Journal. 1970; 80(3):343–352.eng
dcterms.bibliographicCitationOlivier G, Shérif M. Automatic contour detection by encoding knowledge into active contour models. New Jersey: En Proceedings IEEE Workshop on Applications of Computer Vision; 1998.eng
dcterms.bibliographicCitationKervrann C, Heitz F. (1999). Statistical deformable model–based segmentation of image motion. IEEE Transactions on Image Processing. 1999; 8(4):583–588.eng
dcterms.bibliographicCitationFigueiredo M, Leitao J. Bayesian estimation of ventricular contours in angiographic images. IEEE Transactions on Medical Imaging. 1992; 11(3):416–429.eng
dcterms.bibliographicCitationMedina R, Garreau M, Jugo D, Castillo C, Toro J. Segmentation of ventricular angiographic images using fuzzy clustering.Montréal: En Proceedings of the 17th Annual International Conference of the IEEE EMBS; 1995.eng
dcterms.bibliographicCitationSui L, Haralick R, Sheehan F. A knowledge–based boundary delineation system for contrast ventriculograms. IEEE Transactions on Information Technology in Biomedicine. 2001; 5(2):116–132.eng
dcterms.bibliographicCitationSuzuki K, Horiba I, Sugie N, Nanki M. Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector. IEEE Transactions on Medical Imaging. 2004; 23(3):330–339.eng
dcterms.bibliographicCitationBravo A, Medina R. An unsupervised clustering framework for automatic segmentation of left ventricle cavity in human heart angiograms. Computerized Medical Imaging and Graphics. 2008; 32(5):396–408.eng
dcterms.bibliographicCitationVera M. A, Bravo A, Medina R. Myocardial border detection from ventriculograms using support vector machines and real–coded genetic algorithms. Computers in Biology and Medicine. 2010; 40(4):446–455.eng
dcterms.bibliographicCitationRoa F, Cuadros J, Bravo A. Estimación del mapa de contornos del ventrículo izquierdo en angiogramas de corazón humano”.Caracas: XIII Congreso Internacional de Métodos Numéricos en Ingeniería y Ciencias Aplicadas; 2016.spa
dcterms.bibliographicCitationSarry L, Boire, JY. Three–dimensional tracking of coronary arteries from biplane angiographic sequences using parametrically deformables models. IEEE Transactions on Medical Imaging. 2001; 20(12):1341– 1351.eng
dcterms.bibliographicCitationChen SYJ, Carroll JD, Messenger JC. Quantitative analysis of reconstructed 3–D coronary arterial tree and intracoronary devices. IEEE Transactions on Medical Imaging.2002; 21(12):724–740.eng
dcterms.bibliographicCitationMoriyama M, Sato Y, Naito H. K, Hanyama M, Ueguchi T, Harada T, Yoshimoto F, Tamura S. Reconstruction of time–varing 3–D left–ventricular shape from multiview X–ray cineangiocardiogramas. IEEE Transactions on Medical Imaging. 2002; 21(7):773–785.eng
dcterms.bibliographicCitationArvidsson H. Angiocardiographic determination of left ventricular volume. Acta radiologica. 1961; 56(5): 321-339.eng
dcterms.bibliographicCitationMedina R, Garreau M, Toro J, Coatrieux JL, Jugo D. Three– dimensional reconstruction of left ventricle from two angiographic views: A evidence combination approach. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans. 2004; 34(3):359–370.eng
dcterms.bibliographicCitationUtrera N, Maldonado A, Bravo A, y Condado J. Metodología para el análisis de perfusión miocárdica en la cronografía mediante el flujo óptico. IV Congreso Latinoamericano de Ingeniería Biomédica; 2007.eng
dcterms.bibliographicCitationMaddux J, Chen SY, Groves B, Messenger J, Wink O, Carroll J. Rotational angiography and 3D coronary modeling: revolutions in the cardiac cath lab. MedicaMundi.2003; 47(2):8–14.eng
dcterms.bibliographicCitationCornelis G, Bellet A, Van Eygen B, Roisin P, Libon E. Rotational multiple sequence roentgenography of intracranial aneurysms. Acta Radiologica: Diagnosis. 1972; 13(1):74–76.eng
dcterms.bibliographicCitationThron A, Voigt K. Rotational cerebral angiography: procedure and value. American Journal of Neuroradiology. 1983; 4(3):289–291.eng
dcterms.bibliographicCitationSchumacher M, Kutluk K, Ott D. Digital rotational radiography in neuroradiology. American Journal of Neuroradiology. 1989; 10(3):644– 649.eng
dcterms.bibliographicCitationCarsin M, Chabert E, Croci S, Romeas R y Scarabin JM. The role of 3– dimensional reconstructions in the angiographic evaluation of cerebral vascular malformations: 3D morphometry. Journal of Neuro-radiology. 1997; 24(2):137–140.eng
dcterms.bibliographicCitationMoret J, Kemkers R, de Beek J. O, Koppe R, Klotz E, Grass M. 3D rotational angiography: Clinical value in endovascular treatment. MedicaMundi. 1998; 42(3):8–14.eng
dcterms.bibliographicCitationAnxionnat R, Bracard S, Macho J, Costa E. D, Vaillant R, Trousset L. L. Y, Romeas R y Picard L. 3D angiography clinical interest. First applications in interventional neuroradiology. Journal of Neuroradiology. 1998; 25(4):251–262.eng
dcterms.bibliographicCitationBravo A, Medina R, Garreau M, Bedossa M, Toumoulin C, Breton HL. An approach to coronary vessels detection in x–ray rotational angiography. Berlin: Springer-Verlag Berlin Heidelberg En IFMBE; 2007.eng
dcterms.bibliographicCitationBlondel C. Modélisation 3D et 3D+t des arteres coronaires a partir de séquences rotationnelles de projections rayons X. [Tesis de Doctorado]. France: Université de Nice–Sophia Antipolis; 2004.eng
dcterms.bibliographicCitationKelh H, J¨ager J, Papazis N, Dimitrelos D, Gehrmann J, Kassenb¨ohmer R, Vogt J, Sakas G. (2000). 3D heart modeling from biplane rotational angiocardiographic X–ray sequences. Computers & Graphics. 2000; 24(5):731–739.eng
dcterms.bibliographicCitationNatterer F. The Matematics of Computerized Tomography. Philadelphia: SIAM; 2001.eng


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem