Angiocardiología por rayos X
dc.contributor.author | Bravo, Antonio J. | |
dc.contributor.author | Roa, Felida | |
dc.contributor.author | Vera, Miguel | |
dc.contributor.author | Contreras-Velásquez, Julio | |
dc.contributor.author | Vera, María | |
dc.contributor.author | Chacón, José | |
dc.contributor.author | Wilches- Durán, Sandra | |
dc.contributor.author | Graterol-Rivas, Modesto | |
dc.contributor.author | Riaño-Wilches, Daniela | |
dc.contributor.author | Rojas, Joselyn | |
dc.contributor.author | Bermúdez, Valmore | |
dc.date.accessioned | 2018-03-12T15:44:10Z | |
dc.date.available | 2018-03-12T15:44:10Z | |
dc.date.issued | 2017 | |
dc.description.abstract | La radiología permite obtener una película radiográfica de la imagen de una parte del cuerpo humano, por su exposición a los rayos X. Cuando la radiación X atraviesa el objeto bajo estudio, sufre una atenuación que depende de la densidad y el espesor del objeto. Los rayos atenuados llegan a un a un receptor que puede ser la película fotográfica, produciendo así una imagen cuyo contraste facilitará el diagnóstico médico. La angiografía es un procedimiento radiológico usado para observar el flujo de sangre, en cualquier órgano del cuerpo. Bajo este procedimiento destacan la angiografía cardiaca para observar las arterias coronarias, la angiografía vascular para estudiar la irrigación del cerebro, y la ventriculografía, para observar la cavidad ventricular. En el presente artículo, se presentan un conjunto de técnicas desarrolladas para el procesamiento de imágenes adquiridas durante procedimientos de angiografía cardiaca. | spa |
dc.description.abstract | Radiology allows to obtain an x-ray film to part of the human body by its exposure to X-rays. The radiation that passes through the studied object is attenuated according to the density and thickness of the object. The attenuated rays arrive at a receiver that can be the photographic film or an image intensificator that produces an image whose contrast is useful to the medical diagnosis. Angiography is a radiological procedure used to analysis blood flow in any organ of the body. Cardiac angiography to observe the coronary arteries, vascular angiography to study the irrigation of the brain, and ventriculography to observe the ventricular cavity are highlighted in this procedure. In this paper, a set of techniques developed for processing images acquired during cardiac angiography procedures is presented. | eng |
dc.identifier.issn | 18564550 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12442/1848 | |
dc.language.iso | spa | spa |
dc.publisher | Researchgate | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.source | Revista Latinoamericana de Hipertensión | spa |
dc.source | Vol. 12, No. 1 (2017) | spa |
dc.source.uri | https://www.redalyc.org/articulo.oa?id=170250838002 | |
dc.subject | Rayos X | spa |
dc.subject | Angiografía monoplana | spa |
dc.subject | Angiografía biplana | spa |
dc.subject | Angiografía rotacional | spa |
dc.subject | Red coronaria | spa |
dc.subject | Ventrículo izquierdo | spa |
dc.subject | Cardiología | spa |
dc.subject | X ray | eng |
dc.subject | Monoplane angiography | eng |
dc.subject | Biplane angiography | eng |
dc.subject | Rotational angiography | eng |
dc.subject | Coronary network | eng |
dc.subject | Left ventricle | eng |
dc.subject | Cardiology | eng |
dc.title | Angiocardiología por rayos X | spa |
dc.type | article | spa |
dcterms.references | Kruger R. X–ray digital cineangiocardiography. En: Collins S, Skorton D (Eds). Cardiac Imaging and Image Processing.New York: McGraw Hill Book Company; 1980: 57–87. | eng |
dcterms.references | Medina R. Reconstruction Tridimensionelle du Ventricule Gauche en Angiographie Biplan. [Tesis de Doctorado].France: Université de Rennes 1; 1998. | eng |
dcterms.references | Kennedy J, Trenholme S, Kaiser I, Wash S. Left ventricular volume and mass from single–plane cineangiocardiogram. A comparison of anteroposterior and right anterior oblique methods. American Heart Journal. 1970; 80(3):343–352. | eng |
dcterms.references | Olivier G, Shérif M. Automatic contour detection by encoding knowledge into active contour models. New Jersey: En Proceedings IEEE Workshop on Applications of Computer Vision; 1998. | eng |
dcterms.references | Kervrann C, Heitz F. (1999). Statistical deformable model–based segmentation of image motion. IEEE Transactions on Image Processing. 1999; 8(4):583–588. | eng |
dcterms.references | Figueiredo M, Leitao J. Bayesian estimation of ventricular contours in angiographic images. IEEE Transactions on Medical Imaging. 1992; 11(3):416–429. | eng |
dcterms.references | Medina R, Garreau M, Jugo D, Castillo C, Toro J. Segmentation of ventricular angiographic images using fuzzy clustering.Montréal: En Proceedings of the 17th Annual International Conference of the IEEE EMBS; 1995. | eng |
dcterms.references | Sui L, Haralick R, Sheehan F. A knowledge–based boundary delineation system for contrast ventriculograms. IEEE Transactions on Information Technology in Biomedicine. 2001; 5(2):116–132. | eng |
dcterms.references | Suzuki K, Horiba I, Sugie N, Nanki M. Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector. IEEE Transactions on Medical Imaging. 2004; 23(3):330–339. | eng |
dcterms.references | Bravo A, Medina R. An unsupervised clustering framework for automatic segmentation of left ventricle cavity in human heart angiograms. Computerized Medical Imaging and Graphics. 2008; 32(5):396–408. | eng |
dcterms.references | Vera M. A, Bravo A, Medina R. Myocardial border detection from ventriculograms using support vector machines and real–coded genetic algorithms. Computers in Biology and Medicine. 2010; 40(4):446–455. | eng |
dcterms.references | Roa F, Cuadros J, Bravo A. Estimación del mapa de contornos del ventrículo izquierdo en angiogramas de corazón humano”.Caracas: XIII Congreso Internacional de Métodos Numéricos en Ingeniería y Ciencias Aplicadas; 2016. | spa |
dcterms.references | Sarry L, Boire, JY. Three–dimensional tracking of coronary arteries from biplane angiographic sequences using parametrically deformables models. IEEE Transactions on Medical Imaging. 2001; 20(12):1341– 1351. | eng |
dcterms.references | Chen SYJ, Carroll JD, Messenger JC. Quantitative analysis of reconstructed 3–D coronary arterial tree and intracoronary devices. IEEE Transactions on Medical Imaging.2002; 21(12):724–740. | eng |
dcterms.references | Moriyama M, Sato Y, Naito H. K, Hanyama M, Ueguchi T, Harada T, Yoshimoto F, Tamura S. Reconstruction of time–varing 3–D left–ventricular shape from multiview X–ray cineangiocardiogramas. IEEE Transactions on Medical Imaging. 2002; 21(7):773–785. | eng |
dcterms.references | Arvidsson H. Angiocardiographic determination of left ventricular volume. Acta radiologica. 1961; 56(5): 321-339. | eng |
dcterms.references | Medina R, Garreau M, Toro J, Coatrieux JL, Jugo D. Three– dimensional reconstruction of left ventricle from two angiographic views: A evidence combination approach. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans. 2004; 34(3):359–370. | eng |
dcterms.references | Utrera N, Maldonado A, Bravo A, y Condado J. Metodología para el análisis de perfusión miocárdica en la cronografía mediante el flujo óptico. IV Congreso Latinoamericano de Ingeniería Biomédica; 2007. | eng |
dcterms.references | Maddux J, Chen SY, Groves B, Messenger J, Wink O, Carroll J. Rotational angiography and 3D coronary modeling: revolutions in the cardiac cath lab. MedicaMundi.2003; 47(2):8–14. | eng |
dcterms.references | Cornelis G, Bellet A, Van Eygen B, Roisin P, Libon E. Rotational multiple sequence roentgenography of intracranial aneurysms. Acta Radiologica: Diagnosis. 1972; 13(1):74–76. | eng |
dcterms.references | Thron A, Voigt K. Rotational cerebral angiography: procedure and value. American Journal of Neuroradiology. 1983; 4(3):289–291. | eng |
dcterms.references | Schumacher M, Kutluk K, Ott D. Digital rotational radiography in neuroradiology. American Journal of Neuroradiology. 1989; 10(3):644– 649. | eng |
dcterms.references | Carsin M, Chabert E, Croci S, Romeas R y Scarabin JM. The role of 3– dimensional reconstructions in the angiographic evaluation of cerebral vascular malformations: 3D morphometry. Journal of Neuro-radiology. 1997; 24(2):137–140. | eng |
dcterms.references | Moret J, Kemkers R, de Beek J. O, Koppe R, Klotz E, Grass M. 3D rotational angiography: Clinical value in endovascular treatment. MedicaMundi. 1998; 42(3):8–14. | eng |
dcterms.references | Anxionnat R, Bracard S, Macho J, Costa E. D, Vaillant R, Trousset L. L. Y, Romeas R y Picard L. 3D angiography clinical interest. First applications in interventional neuroradiology. Journal of Neuroradiology. 1998; 25(4):251–262. | eng |
dcterms.references | Bravo A, Medina R, Garreau M, Bedossa M, Toumoulin C, Breton HL. An approach to coronary vessels detection in x–ray rotational angiography. Berlin: Springer-Verlag Berlin Heidelberg En IFMBE; 2007. | eng |
dcterms.references | Blondel C. Modélisation 3D et 3D+t des arteres coronaires a partir de séquences rotationnelles de projections rayons X. [Tesis de Doctorado]. France: Université de Nice–Sophia Antipolis; 2004. | eng |
dcterms.references | Kelh H, J¨ager J, Papazis N, Dimitrelos D, Gehrmann J, Kassenb¨ohmer R, Vogt J, Sakas G. (2000). 3D heart modeling from biplane rotational angiocardiographic X–ray sequences. Computers & Graphics. 2000; 24(5):731–739. | eng |
dcterms.references | Natterer F. The Matematics of Computerized Tomography. Philadelphia: SIAM; 2001. | eng |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: