Evaluación del efecto de la infección viral por Epstein-Barr (EBV) en modulación de la respuesta autoinmune en células mononucleares de sangre periférica en pacientes con lupus eritematoso sistémico.

datacite.rightshttp://purl.org/coar/access_right/c_f1cf
dc.contributor.advisorNavarro Quiroz, Elkin
dc.contributor.advisorAcosta Hoyos, Antonio
dc.contributor.authorBello Lemus, Yesit
dc.date.accessioned2025-10-07T15:01:45Z
dc.date.available2025-10-07T15:01:45Z
dc.date.issued2025
dc.description.abstractEl lupus eritematoso sistémico (LES) es una enfermedad autoinmune compleja que aún plantea grandes interrogantes sobre su origen y progresión. En los últimos años, el virus de Epstein-Barr (EBV) ha cobrado especial interés como uno de los posibles desencadenantes y modulador de la respuesta inmune en estos pacientes. Con esta investigación buscamos comprender mejor esa relación, explorando cómo la infección viral y el ambiente inmunológico propio del LES influyen en la regulación de genes y en la actividad de las células inmunes. Al estudiar a pacientes con LES y compararlos con controles sanos, encontramos que la mayoría de los casos presentaban enfermedad activa, con una alta frecuencia de daño renal. En ellos, la expresión de genes clave como TNF-α e IFN-γ estaba reducida, mientras que IL10 aparecía aumentada y correlacionada de manera inversa con TNF-α, revelando un equilibrio alterado en la respuesta inflamatoria. Además, observamos que la mayoría de los pacientes mantenían una infección activa por EBV, asociada con la sobreexpresión de LMP1, una proteína viral capaz de favorecer la supervivencia de células B autorreactivas y de alterar importantes rutas de señalización inmunológica. Otro hallazgo relevante fue la activación de retrovirus endógenos (HERV-E). En los ensayos con plasma heterólogo confirmamos, además, que el ambiente lúpico puede modificar directamente la conducta de células inmunocompetentes sanas, promoviendo cambios en IL6. Finalmente, identificamos una reactividad cruzada entre EBNA1 y Ro60, lo que respalda la hipótesis del mimetismo molecular como uno de los mecanismos que explican la pérdida de tolerancia inmunológica. En conjunto, este estudio ofrece una visión más integrada del papel del EBV, los retrovirus endógenos y las alteraciones inmunorregulatorias en la patogénesis del LES. Más allá de ampliar la comprensión biológica de la enfermedad, estos hallazgos sugieren posibles biomarcadores y rutas terapéuticas que podrían contribuir en el futuro a un manejo más preciso y personalizado del lupus.spa
dc.description.abstractSystemic lupus erythematosus (SLE) is a complex autoimmune disease that continues to raise major questions regarding its origin and progression. In recent years, Epstein–Barr virus (EBV) has gained particular attention as a potential trigger and modulator of the immune response in these patients. This study aimed to better understand that relationship by exploring how viral infection and the immunological environment of SLE influence gene regulation and immune cell activity. When comparing SLE patients with healthy controls, we found that most cases exhibited active disease, with a high frequency of renal involvement. In these patients, the expression of key genes such as TNF-α and IFN-γ was reduced, whereas IL-10 was increased and inversely correlated with TNF-α, indicating a disrupted balance in the inflammatory response. Moreover, most patients showed evidence of active EBV infection, associated with the overexpression of LMP1, a viral protein capable of promoting the survival of autoreactive B cells and altering critical immune signaling pathways. Another relevant finding was the activation of endogenous retroviruses (HERV-E). In heterologous plasma assays, we also confirmed that the lupus environment can directly modify the behavior of healthy immunocompetent cells, particularly by promoting changes in IL-6. Finally, we identified cross-reactivity between EBNA1 and Ro60, supporting the hypothesis of molecular mimicry as one of the mechanisms underlying the loss of immune tolerance. Taken together, this study provides an integrated view of the role of EBV, endogenous retroviruses, and immune dysregulation in the pathogenesis of SLE. Beyond expanding the biological understanding of the disease, these findings suggest potential biomarkers and therapeutic pathways that may contribute to more precise and personalized management of lupus in the future.eng
dc.format.mimetypepdf
dc.identifier.urihttps://hdl.handle.net/20.500.12442/17019
dc.language.isospa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias Básicas y Biomédicasspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationaleng
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectLupus eritematoso sistémico (LES)spa
dc.subjectVirus de Epstein-Barr (EBV)spa
dc.subjectMimetismo molecularspa
dc.subjectCitocinas (TNF-α, IFN-γ, IL-10, IL-6)spa
dc.subjectRetrovirus endógenos (HERV-E)spa
dc.subject.keywordsSystemic lupus erythematosus (SLE)eng
dc.subject.keywordsEpstein-Barr virus (EBV)eng
dc.subject.keywordsMolecular mimicryeng
dc.subject.keywordsCytokines (TNF-α, IFN-γ, IL-10, IL-6)eng
dc.subject.keywordsEndogenous retroviruses (HERV-E)eng
dc.titleEvaluación del efecto de la infección viral por Epstein-Barr (EBV) en modulación de la respuesta autoinmune en células mononucleares de sangre periférica en pacientes con lupus eritematoso sistémico.spa
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.spaTesis de doctorado
dcterms.referencesGarcía Tello A, Villegas Martínez A, González Fernández AF. Manifestaciones hematológicas en el lupus eritematoso sistémico. Anales de Medicina Interna. octubre de 2002;19(10):53-7spa
dcterms.referencesMoulton VR, Suarez-Fueyo A, Meidan E, Li H, Mizui M, Tsokos GC. Pathogenesis of Human Systemic Lupus Erythematosus: A Cellular Perspective. Trends Mol Med. julio de 2017;23(7):615-35eng
dcterms.referencesKaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 16 de junio de 2016;2:16039.eng
dcterms.referencesJiao H, Acar G, Robinson GA, Ciurtin C, Jury EC, Kalea AZ. Diet and Systemic Lupus Erythematosus (SLE): From Supplementation to Intervention. Int J Environ Res Public Health. 20 de septiembre de 2022;19(19):11895eng
dcterms.referencesTan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. noviembre de 1982;25(11):1271-7.eng
dcterms.referencesKarrar S, Cunninghame Graham DS. Abnormal B Cell Development in Systemic Lupus Erythematosus. Arthritis Rheumatol. abril de 2018;70(4):496-507eng
dcterms.referencesLugo LP, Olmos YD, Martínez GA. Biomarcadores en fluídos biológicos y su potencial uso como indicadores de nefritis lúpica en individuos con lupus eritematoso sistémico. Revista Colombiana de Nefrología. 2014;1(1):39-47.spa
dcterms.referencesHa E, Bae SC, Kim K. Recent advances in understanding the genetic basis of systemic lupus erythematosus. Semin Immunopathol. enero de 2022;44(1):29-46.eng
dcterms.referencesYin X, Kim K, Suetsugu H, Bang SY, Wen L, Koido M, et al. Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus. Ann Rheum Dis. mayo de 2021;80(5):632-40.eng
dcterms.referencesSheng Y jun, Xu J hua, Wu Y gui, Zuo X bo, Gao J ping, Lin Y, et al. Association analyses confirm five susceptibility loci for systemic lupus erythematosus in the Han Chinese population. Arthritis Res Ther. 28 de marzo de 2015;17(1):85.eng
dcterms.referencesVaughn SE, Kottyan LC, Munroe ME, Harley JB. Genetic susceptibility to lupus: the biological basis of genetic risk found in B cell signaling pathways. J Leukoc Biol. septiembre de 2012;92(3):577-91.eng
dcterms.referencesJu JY, Xu ZW. Potential genetic basis of B cell hyperactivation in murine lupus models. Lupus. agosto de 2021;30(9):1438-48.eng
dcterms.referencesMitchell AB, Oliver BGG, Glanville AR. Translational Aspects of the Human Respiratory Virome. Am J Respir Crit Care Med. 15 de diciembre de 2016;194(12):1458-64.eng
dcterms.referencesThorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol. octubre de 2001;1(1):75-82.eng
dcterms.referencesDraborg AH, Sandhu N, Larsen N, Lisander Larsen J, Jacobsen S, Houen G. Impaired Cytokine Responses to Epstein-Barr Virus Antigens in Systemic Lupus Erythematosus Patients. Journal of Immunology Research. 27 de marzo de 2016;2016:e6473204.eng
dcterms.referencesAdamson AL, Darr D, Holley-Guthrie E, Johnson RA, Mauser A, Swenson J, et al. Epstein-Barr Virus Immediate-Early Proteins BZLF1 and BRLF1 Activate the ATF2 Transcription Factor by Increasing the Levels of Phosphorylated p38 and c-Jun N-Terminal Kinases. J Virol. febrero de 2000;74(3):1224-33.eng
dcterms.referencesSmatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 19 de agosto de 2019;11(8):762eng
dcterms.referencesTrela M, Nelson PN, Rylance PB. The role of molecular mimicry and other factors in the association of Human Endogenous Retroviruses and autoimmunity. APMIS. 2016;124(1- 2):88-104eng
dcterms.referencesAhn SS, Jung SM, Yoo J, Lee SW, Song JJ, Park YB. Anti-Smith antibody is associated with disease activity in patients with new-onset systemic lupus erythematosus. Rheumatol Int. 1 de noviembre de 2019;39(11):1937-44.eng
dcterms.referencesHeinlen LD, McClain MT, Ritterhouse LL, Bruner BF, Edgerton CC, Keith MP, et al. 60 kD Ro and nRNP A frequently initiate human lupus autoimmunity. PLoS One. 10 de marzo de 2010;5(3):e9599.eng
dcterms.referencesMcClain MT, Heinlen LD, Dennis GJ, Roebuck J, Harley JB, James JA. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med. enero de 2005;11(1):85-9.eng
dcterms.referencesMunroe ME, Anderson JR, Gross TF, Stunz LL, Bishop GA, James JA. Epstein-Barr Functional Mimicry: Pathogenicity of Oncogenic Latent Membrane Protein-1 in Systemic Lupus Erythematosus and Autoimmunity. Front Immunol. 2020;11:606936.eng
dcterms.referencesWu Z, Mei X, Zhao D, Sun Y, Song J, Pan W, et al. DNA methylation modulates HERV-E expression in CD4+ T cells from systemic lupus erythematosus patients. Journal of Dermatological Science. 1 de febrero de 2015;77(2):110-6.eng
dcterms.referencesGuo G, Ye S, Xie S, Ye L, Lin C, Yang M, et al. The cytomegalovirus protein US31 induces inflammation through mono-macrophages in systemic lupus erythematosus by promoting NF-κB2 activation. Cell Death Dis. 24 de enero de 2018;9(2):1-15.eng
dcterms.referencesLaurynenka V, Ding L, Kaufman KM, James JA, Harley JB. A High Prevalence of Anti-EBNA1 Heteroantibodies in Systemic Lupus Erythematosus (SLE) Supports AntiEBNA1 as an Origin for SLE Autoantibodies. Front Immunol. 17 de febrero de 2022;13:830993eng
dcterms.referencesWild CP. Complementing the Genome with an “Exposome”: The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology. Cancer Epidemiology, Biomarkers & Prevention. 15 de agosto de 2005;14(8):1847-50.eng
dcterms.referencesGonzalez-Quintial R, Nguyen A, Kono DH, Oldstone MBA, Theofilopoulos AN, Baccala R. Lupus acceleration by a MAVS-activating RNA virus requires endosomal TLR signaling and host genetic predisposition. PLoS One. 2018;13(9):e0203118.eng
dcterms.referencesRichaud-Patin Y, Alcocer-Varela J, Llorente L. High levels of TH2 cytokine gene expression in systemic lupus erythematosus. Rev Invest Clin. 1995;47(4):267-72.eng
dcterms.referencesLiu TF, Jones BM, Wong RWS, Srivastava G. IMPAIRED PRODUCTION OF IL12 IN SYSTEMIC LUPUS ERYTHEMATOSUS. III: DEFICIENT IL-12p40 GENE EXPRESSION AND CROSS-REGULATION OF IL-12, IL-10 AND IFN-γ GENE EXPRESSION. Cytokine. 1 de octubre de 1999;11(10):805-11.eng
dcterms.referencesHu X, Paik PK, Chen J, Yarilina A, Kockeritz L, Lu TT, et al. IFN-γ Suppresses IL10 Production and Synergizes with TLR2 by Regulating GSK3 and CREB/AP-1 Proteins. Immunity. 1 de mayo de 2006;24(5):563-74eng
dcterms.referencesDraborg AH, Duus K, Houen G. Epstein-Barr Virus in Systemic Autoimmune Diseases. Clin Dev Immunol. 2013;2013:535738.eng
dcterms.referencesShaikho EM, Farrell JJ, Alsultan A, Qutub H, Al-Ali AK, Figueiredo MS, et al. A phased SNP-based classification of sickle cell anemia HBB haplotypes. BMC genomics. 2017;18(1):608.eng
dcterms.referencesUniversidad Autónoma del Estado de México MG. Revista de Medicina e Investigación. Revista de Medicina e Investigación. 1 de enero de 2013;1(1):8-16.spa
dcterms.referencesAlfonso Pacheco L, Pacheco-Lugo L, Díaz-Olmos Y, Aroca-Martínez G. Biomarcadores en fluídos biológicos y su potencial uso como indicadores de nefritis lúpica en individuos con lupus eritematoso sistémico. Rev Colomb Nefrol. 2014;1(1):39-47spa
dcterms.referencesFortuna G, Brennan MT. Systemic Lupus Erythematosus. Dental Clinics of North America. octubre de 2013;57(4):631-55.eng
dcterms.referencesWild CP. Complementing the Genome with an "Exposome": The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology. Cancer Epidemiology Biomarkers & Prevention. 1 de agosto de 2005;14(8):1847-50.eng
dcterms.referencesKarrar S, Cunninghame Graham DS. Review: Abnormal B Cell Development in Systemic Lupus Erythematosus: What the Genetics Tell Us. Arthritis & Rheumatology. abril de 2018;70(4):496-507.eng
dcterms.referencesGonzalez-Quintial R, Nguyen A, Kono DH, Oldstone MBA, Theofilopoulos AN, Baccala R. Lupus acceleration by a MAVS-activating RNA virus requires endosomal TLR signaling and host genetic predisposition. Bobé P, editor. PLOS ONE. 10 de septiembre de 2018;13(9):e0203118.eng
dcterms.referencesGestal M de los ÁS. Con Predisposición a Lupus Eritematoso Sistémico : Universidad de Santiago de Compostela; 2010.spa
dcterms.referencesSiriboonrit U, Tsuchiya N, Sirikong M, Kyogoku C, Bejrachandra S, Suthipinittharm P, et al. Association of Fcgamma receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue antigens. mayo de 2003;61(5):374-83eng
dcterms.referencesContin-Bordes C, Lazaro E, Pellegrin JL, Viallard JF, Moreau JF, Blanco P. Lupus érythémateux systémique : de la physiopathologie au traitement. La Revue de Médecine Interne. diciembre de 2009;30(12):H9-13eng
dcterms.referencesPons-Estel GJ, Ugarte-Gil MF, Alarcón GS. Epidemiology of systemic lupus erythematosus. Expert review of clinical immunology. mayo de 2017;1-16.eng
dcterms.referencesOssa H, Aquino J, Pereira R, Ibarra A, Ossa RH, Pérez LA, et al. Outlining the Ancestry Landscape of Colombian Admixed Populations. PloS one. 2016;11(10):e0164414.eng
dcterms.referencesDaniel G. Fernández-Ávila. Diana N. Rincón-Riaño. Santiago Bernal-Macías JMGDávilaDRC. Prevalencia y características demográficas del Lupus Eritematoso Sistémico, Miopatía Inflamatoria, Osteoporosis, Polimialgia Reumática, Síndrome Sjögren y Vasculitis en Colombia, según información del Sistema Integral de Información de la Protección Socia [Internet]. 2017 [citado 20 de enero de 2020]. Disponible en: https://www.researchgate.net/publication/318967596_Prevalencia_y_caracteristicas_demog raficas_del_Lupus_Eritematoso_Sistemico_Miopatia_Inflamatoria_Osteoporosis_Polimial gia_Reumatica_Sindrome_Sjogren_y_Vasculitis_en_Colombia_segun_informacion_del_Si stspa
dcterms.referencesSestak AL, Furnrohr BG, Harley JB, Merrill JT, Namjou B. The genetics of systemic lupus erythematosus and implications for targeted therapy. Annals of the Rheumatic Diseases. 1 de marzo de 2011;70(Suppl 1):i37-43.eng
dcterms.referencesNeo JYJ, Wee SYK, Bonne I, Tay SH, Raida M, Jovanovic V, et al. Characterisation of a human antibody that potentially links cytomegalovirus infection with systemic lupus erythematosus. Scientific Reports. 10 de diciembre de 2019;9(1):9998.eng
dcterms.referencesPan Q, Liu Z, Liao S, Ye L, Lu X, Chen X, et al. Current mechanistic insights into the role of infection in systemic lupus erythematosus. Biomedicine & Pharmacotherapy. septiembre de 2019;117:109122.eng
dcterms.referencesHarley JB, James JA. Epstein-Barr virus infection induces lupus autoimmunity. Bulletin of the NYU hospital for joint diseases. 2006;64(1-2):45-50.eng
dcterms.referencesSternbæk L, Draborg AH, Østerlund MT, Iversen L V., Troelsen L, Theander E, et al. Increased antibody levels to stage-specific Epstein–Barr virus antigens in systemic autoimmune diseases reveal a common pathology. Scandinavian Journal of Clinical and Laboratory Investigation. 17 de febrero de 2019;79(1-2):7-16.eng
dcterms.referencesJog NR, Young KA, Munroe ME, Harmon MT, Guthridge JM, Kelly JA, et al. Association of Epstein-Barr virus serological reactivation with transitioning to systemic lupus erythematosus in at-risk individuals. Annals of the Rheumatic Diseases. 19 de junio de 2019;annrheumdis-2019-215361.eng
dcterms.referencesJames JA, Kaufman KM, Farris AD, Taylor-Albert E, Lehman TJ, Harley JB. An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. The Journal of clinical investigation. 15 de diciembre de 1997;100(12):3019-26.eng
dcterms.referencesZaki ME, Abou El-Khier NT, Al-Kasaby NM, Abdelsalam M, Nassar MK, Abdelwahab AM. Epstein Barr Virus in Patients with Nephropathy Associated with Systemic Lupus Erythematous, Pilot Study in Egyptian Patients. The Egyptian journal of immunology. enero de 2018;25(1):1-8.eng
dcterms.referencesPoole BD, Scofield RH, Harley JB, James JA. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity. 7 de enero de 2006;39(1):63-70eng
dcterms.referencesIwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, et al. Epstein-Barr virus (EBV)–encoded small RNA is released from EBV-infected cells and activates signaling from toll-like receptor 3. Journal of Experimental Medicine. 28 de septiembre de 2009;206(10):2091-9.eng
dcterms.referencesChau CM, Deng Z, Kang H, Lieberman PM. Cell Cycle Association of the Retinoblastoma Protein Rb and the Histone Demethylase LSD1 with the Epstein-Barr Virus Latency Promoter Cp. Journal of Virology. abril de 2008;82(7):3428.eng
dcterms.referencesYoung LS, Rickinson AB. Epstein–Barr virus: 40 years on. Nature Reviews Cancer. octubre de 2004;4(10):757-68eng
dcterms.referencesTirosh I, Spielman S, Barel O, Ram R, Stauber T, Paret G, et al. Whole exome sequencing in childhood-onset lupus frequently detects single gene etiologies. Pediatric Rheumatology. 2019;17(1):1-11eng
dcterms.referencesBatu ED, Koşukcu C, Taşkıran E, Sahin S, Akman S, Sözeri B, et al. Whole exome sequencing in early-onset systemic lupus erythematosus. Journal of Rheumatology. 2018;45(12):1671-9eng
dcterms.referencesWu Q, Jinde K, Endoh M, Sakai H. Clinical significance of costimulatory molecules CD80/CD86 expression in IgA nephropathy. Kidney International. 1 de marzo de 2004;65(3):888-96eng
dcterms.referencesHori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 14 de febrero de 2003;299(5609):1057-61.eng
dcterms.referencesSuen JL, Chiang BL. CD4+FoxP3+ regulatory T-cells in human systemic lupus erythematosus. Journal of the Formosan Medical Association. 1 de septiembre de 2012;111(9):465-70eng
dcterms.referencesValencia X, Yarboro C, Illei G, Lipsky PE. Deficient CD4+CD25high T Regulatory Cell Function in Patients with Active Systemic Lupus Erythematosus. The Journal of Immunology. 15 de febrero de 2007;178(4):2579-88.eng
dcterms.referencesThorley-Lawson DA, Gross A. Persistence of the Epstein–Barr Virus and the Origins of Associated Lymphomas. New England Journal of Medicine. 25 de marzo de 2004;350(13):1328-37eng
dcterms.referencesTierney RJ, Steven N, Young LS, Rickinson AB. Epstein-Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. Journal of Virology. noviembre de 1994;68(11):7374-85.eng
dcterms.referencesKubota N, Wada K, Ito Y, Shimoyama Y, Nakamura S, Nishiyama Y, et al. One-step multiplex real-time PCR assay to analyse the latency patterns of Epstein-Barr virus infection. Journal of Virological Methods. 1 de enero de 2008;147(1):26-36eng
dcterms.referencesBabcock GJ, Hochberg D, Thorley-Lawson DA. The Expression Pattern of EpsteinBarr Virus Latent Genes In Vivo Is Dependent upon the Differentiation Stage of the Infected B Cell. Immunity. 1 de octubre de 2000;13(4):497-506.eng
dcterms.referencesMinamitani T, Yasui T, Ma Y, Zhou H, Okuzaki D, Tsai CY, et al. Evasion of affinitybased selection in germinal centers by Epstein–Barr virus LMP2A. Proceedings of the National Academy of Sciences. 15 de septiembre de 2015;112(37):11612-7.eng
dcterms.referencesMackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P, et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med. 6 de diciembre de 1999;190(11):1697-710.eng
dcterms.referencesBatten M, Groom J, Cachero TG, Qian F, Schneider P, Tschopp J, et al. Baff Mediates Survival of Peripheral Immature B Lymphocytes. Journal of Experimental Medicine. 20 de noviembre de 2000;192(10):1453-66.eng
dcterms.referencesHuard B, Arlettaz L, Ambrose C, Kindler V, Mauri D, Roosnek E, et al. BAFF production by antigen‐presenting cells provides T cell co‐stimulation. International Immunology. 1 de marzo de 2004;16(3):467-75.eng
dcterms.referencesSomers EC, Marder W, Cagnoli P, Lewis EE, DeGuire P, Gordon C, et al. PopulationBased Incidence and Prevalence of Systemic Lupus Erythematosus: The Michigan Lupus Epidemiology and Surveillance Program. Arthritis & Rheumatology. 2014;66(2):369-78.eng
dcterms.referencesPons-Estel GJ, Alarcón GS, Scofield L, Reinlib L, Cooper GS. Understanding the Epidemiology and Progression of Systemic Lupus Erythematosus. Semin Arthritis Rheum. febrero de 2010;39(4):257.eng
dcterms.referencesPons-Estel GJ, Alarcón GS, Hachuel L, Boggio G, Wojdyla D, Pascual-Ramos V, et al. Anti-malarials exert a protective effect while Mestizo patients are at increased risk of developing SLE renal disease: data from a Latin-American cohort. Rheumatology (Oxford). julio de 2012;51(7):1293-8.eng
dcterms.referencesPrada SI, Pérez AM, Nieto-Aristizábal I, Tobón GJ. Increase in direct costs for health systems due to lupus nephritis: the case of Colombia. Einstein (Sao Paulo). 13 de abril de 2022;20:eAO6553.eng
dcterms.referencesAghdassi E, Zhang W, St-Pierre Y, Clarke AE, Morrison S, Peeva V, et al. Healthcare cost and loss of productivity in a Canadian population of patients with and without lupus nephritis. J Rheumatol. abril de 2011;38(4):658-66.eng
dcterms.referencesPisetsky DS. Role of Epstein-Barr virus infection in SLE: gene-environment interactions at the molecular level. Annals of the Rheumatic Diseases. septiembre de 2018;77(9):1249-50eng
dcterms.referencesBillharz R, Zeng H, Proll SC, Korth MJ, Lederer S, Albrecht R, et al. The NS1 Protein of the 1918 Pandemic Influenza Virus Blocks Host Interferon and Lipid Metabolism Pathways. Journal of Virology. 15 de octubre de 2009;83(20):10557-70eng
dcterms.referencesHan GM, Chen SL, Shen N, Ye S, Bao CD, Gu YY. Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray. Genes & Immunity. 17 de abril de 2003;4(3):177-86.eng
dcterms.referencesKwon YC, Chun S, Kim K, Mak A. Update on the Genetics of Systemic Lupus Erythematosus: Genome-Wide Association Studies and Beyond. Cells. 2019;8(10):1-17.eng
dcterms.referencesYao M, Gao C, Zhang C, Di X, Liang W, Sun W, et al. Identification of Molecular Markers Associated With the Pathophysiology and Treatment of Lupus Nephritis Based on Integrated Transcriptome Analysis. Frontiers in Genetics. 2020;11(December):1-12.eng
dcterms.referencesSystemic lupus erythematosus | Nature Reviews Disease Primers [Internet]. [citado 9 de agosto de 2022]. Disponible en: https://www.nature.com/articles/nrdp201639eng
dcterms.referencesMoustafa A, Xie C, Kirkness E, Biggs W, Wong E, Turpaz Y, et al. The blood DNA virome in 8,000 humans. PLOS Pathogens. 22 de marzo de 2017;13(3):e1006292.eng
dcterms.referencesGuo G, Ye L, Shi X, Yan K, Huang J, Lin K, et al. Dysbiosis in Peripheral Blood Mononuclear Cell Virome Associated With Systemic Lupus Erythematosus. Frontiers in Cellular and Infection Microbiology [Internet]. 2020 [citado 9 de agosto de 2022];10. Disponible en: https://www.frontiersin.org/articles/10.3389/fcimb.2020.00131eng
dcterms.referencesKanegane H, Wakiguchi H, Kanegane C, Kurashige T, Tosato G. Viral Interleukin10 in Chronic Active Epstein-Barr Virus Infection. The Journal of Infectious Diseases. 1 de julio de 1997;176(1):254-75.eng
dcterms.referencesKAUFMAN KM, KIRBY MY, HARLEY JB, JAMES JA. Peptide Mimics of a Major Lupus Epitope of SmB/B′. Annals of the New York Academy of Sciences. 1 de abril de 2003;987(1):215-29.eng
dcterms.referencesMcClain MT, Poole BD, Bruner BF, Kaufman KM, Harley JB, James JA. An altered immune response to Epstein-Barr nuclear antigen 1 in pediatric systemic lupus erythematosus. Arthritis & Rheumatism. 2006;54(1):360-8eng
dcterms.referencesCohen JI. Epstein-Barr virus infection. N Engl J Med. 17 de agosto de 2000;343(7):481-92eng
dcterms.referencesHutt-Fletcher LM. Epstein-Barr Virus Entry. Journal of Virology. agosto de 2007;81(15):7825-32.eng
dcterms.referencesJames JA, Neas BR, Moser KL, Hall T, Bruner GR, Sestak AL, et al. Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum. mayo de 2001;44(5):1122-6.eng
dcterms.referencesTsokos GC. Systemic Lupus Erythematosus. New England Journal of Medicine. 1 de diciembre de 2011;365(22):2110-21.eng
dcterms.referencesJames JA, Harley JB, Scofield RH. Epstein-Barr virus and systemic lupus erythematosus. Curr Opin Rheumatol. septiembre de 2006;18(5):462-7.eng
dcterms.referencesDavis LS, Hutcheson J, Mohan C. The Role of Cytokines in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. Journal of Interferon & Cytokine Research. octubre de 2011;31(10):781-9.eng
dcterms.referencesDraborg AH, Duus K, Houen G. Epstein-Barr Virus and Systemic Lupus Erythematosus. Clin Dev Immunol. 2012;2012:370516.eng
dcterms.referencesSawalha AH, Harley JB. Antinuclear autoantibodies in systemic lupus erythematosus. Curr Opin Rheumatol. septiembre de 2004;16(5):534-40.eng
dcterms.referencesGross AJ, Hochberg D, Rand WM, Thorley-Lawson DA. EBV and systemic lupus erythematosus: a new perspective. J Immunol. 1 de junio de 2005;174(11):6599-607.eng
dcterms.referencesRekvig OP. Systemic Lupus Erythematosus: Definitions, Contexts, Conflicts, Enigmas. Front Immunol. 2018;9:387eng
dcterms.referencesNiller HH, Wolf H, Minarovits J. Regulation and dysregulation of Epstein–Barr virus latency: Implications for the development of autoimmune diseases. Autoimmunity. 1 de enero de 2008;41(4):298-328.eng
dcterms.referencesTaylor GS, Long HM, Brooks JM, Rickinson AB, Hislop AD. The immunology of Epstein-Barr virus-induced disease. Annu Rev Immunol. 2015;33:787-821.eng
dcterms.referencesChen X, Li H, Wu C, Zhang Y. Epstein‒Barr virus and human herpesvirus 6 infection in patients with systemic lupus erythematosus. Virol J. 12 de febrero de 2023;20:29eng
dcterms.referencesEsen BA, Yılmaz G, Uzun S, Ozdamar M, Aksözek A, Kamalı S, et al. Serologic response to Epstein-Barr virus antigens in patients with systemic lupus erythematosus: a controlled study. Rheumatol Int. enero de 2012;32(1):79-83.eng
dcterms.referencesIzadi S, Najafizadeh SR, Nejati A, Teymoori-Rad M, Shahmahmoodi S, Golsaz Shirazi F, et al. Overall Status of Epstein-Barr virus Infection, IFN-a, and TLR-7/9 in Patients with Systemic Lupus Erythematous. Iran J Immunol. septiembre de 2021;18(3):230-40.eng
dcterms.referencesDas P, Minz RW, Saikia B, Sharma A, Anand S, Singh H, et al. Association of Human Leucocyte Antigen Class II, with viral load and immune response to Epstein–Barr virus in adult and pediatric Systemic lupus erythematosus patients. Lupus. 1 de agosto de 2022;31(9):1054-66eng
dcterms.referencesChougule D, Nadkar M, Rajadhyaksha A, Pandit-Shende P, Surve P, Dawkar N, et al. Association of clinical and serological parameters of systemic lupus erythematosus patients with Epstein-Barr virus antibody profile. J Med Virol. marzo de 2018;90(3):559-63.eng
dcterms.referencesFattal I, Shental N, Molad Y, Gabrielli A, Pokroy-Shapira E, Oren S, et al. EpsteinBarr virus antibodies mark systemic lupus erythematosus and scleroderma patients negative for anti-DNA. Immunology. febrero de 2014;141(2):276-85eng
dcterms.referencesJog NR, Young KA, Munroe ME, Harmon MT, Guthridge JM, Kelly JA, et al. Association of Epstein-Barr virus serological reactivation with transitioning to systemic lupus erythematosus in at-risk individuals. Annals of the Rheumatic Diseases. 1 de septiembre de 2019;78(9):1235-41eng
dcterms.referencesFei Y, Shi X, Gan F, Li X, Zhang W, Li M, et al. Death causes and pathogens analysis of systemic lupus erythematosus during the past 26 years. Clin Rheumatol. enero de 2014;33(1):57-63eng
dcterms.referencesLee YH, Choi SJ, Ji JD, Song GG. Overall and cause-specific mortality in systemic lupus erythematosus: an updated meta-analysis. Lupus. junio de 2016;25(7):727-34eng
dcterms.referencesHu L, Tu J, Gui J, Fang M, Sun L. Landscape of immune cells in systematic lupus erythematosus patients with Epstein–Barr virus infection: assessed by single-cell sequencing. Rheumatology. 11 de diciembre de 2023;kead673.eng
dcterms.referencesSu R, Li Z, Wang Y, Liu Y, Zheng X, Gao C, et al. Imbalance between Th17 and regulatory T cells in patients with systemic lupus erythematosus combined EBV/CMV viraemia. Clin Exp Rheumatol. 2020;38(5):864-73.eng
dcterms.referencesJouanguy E, Béziat V, Mogensen TH, Casanova JL, Tangye SG, Zhang SY. Human inborn errors of immunity to herpes viruses. Curr Opin Immunol. febrero de 2020;62:106- 22eng
dcterms.referencesProta AE, Sage DR, Stehle T, Fingeroth JD. The crystal structure of human CD21: Implications for Epstein–Barr virus and C3d binding. Proceedings of the National Academy of Sciences. 6 de agosto de 2002;99(16):10641-6.eng
dcterms.referencesLatour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: Lessons from genetic diseases. Immunol Rev. septiembre de 2019;291(1):174-89.eng
dcterms.referencesGill MB, Roecklein-Canfield J, Sage DR, Zambela-Soediono M, Longtine N, Uknis M, et al. EBV attachment stimulates FHOS/FHOD1 redistribution and co-aggregation with CD21: formin interactions with the cytoplasmic domain of human CD21. J Cell Sci. 1 de junio de 2004;117(Pt 13):2709-20.eng
dcterms.referencesTsao SW, Tsang CM, To KF, Lo KW. The role of Epstein–Barr virus in epithelial malignancies. J Pathol. enero de 2015;235(2):323-33eng
dcterms.referencesArvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, et al., editores. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis [Internet]. Cambridge: Cambridge University Press; 2007 [citado 6 de febrero de 2024]. Disponible en: http://www.ncbi.nlm.nih.gov/books/NBK47376/eng
dcterms.referencesDraborg AH, Jacobsen S, Westergaard M, Mortensen S, Larsen JL, Houen G, et al. Reduced response to Epstein–Barr virus antigens by T-cells in systemic lupus erythematosus patients. Lupus Sci Med [Internet]. 3 de abril de 2014 [citado 17 de enero de 2025];1(1). Disponible en: https://lupus.bmj.com/content/1/1/e000015eng
dcterms.referencesGulley ML. Molecular Diagnosis of Epstein-Barr Virus-Related Diseases. J Mol Diagn. febrero de 2001;3(1):1-10eng
dcterms.referencesBabcock GJ, Thorley-Lawson DA. Tonsillar memory B cells, latently infected with Epstein–Barr virus, express the restricted pattern of latent genes previously found only in Epstein–Barr virus-associated tumors. Proc Natl Acad Sci U S A. 24 de octubre de 2000;97(22):12250-5eng
dcterms.referencesJog NR, James JA. Epstein Barr Virus and Autoimmune Responses in Systemic Lupus Erythematosus. Frontiers in Immunology [Internet]. 2021 [citado 6 de febrero de 2024];11. Disponible en: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2020.623944eng
dcterms.referencesArleevskaya MI, Manukyan G, Inoue R, Aminov R. Editorial: Microbial and Environmental Factors in Autoimmune and Inflammatory Diseases. Front Immunol. 2017;8:243.eng
dcterms.referencesFujinami RS, von Herrath MG, Christen U, Whitton JL. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev. enero de 2006;19(1):80-94.eng
dcterms.referencesKang I, Quan T, Nolasco H, Park SH, Hong MS, Crouch J, et al. Defective control of latent Epstein-Barr virus infection in systemic lupus erythematosus. J Immunol. 15 de enero de 2004;172(2):1287-94eng
dcterms.referencesPoole BD, Templeton AK, Guthridge JM, Brown EJ, Harley JB, James JA. Aberrant Epstein-Barr viral infection in systemic lupus erythematosus. Autoimmun Rev. febrero de 2009;8(4):337-42.eng
dcterms.referencesNanbo A, Inoue K, Adachi-Takasawa K, Takada K. Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt’s lymphoma. EMBO J. 1 de marzo de 2002;21(5):954-65eng
dcterms.referencesBanko A, Cirkovic A, Miskovic R, Jeremic I, Grk M, Basaric M, et al. Epstein-Barr virus infection as potential indicator of the occurrence and clinical presentation of systemic lupus erythematosus. Front Immunol. 2023;14:1307589eng
dcterms.referencesGetts DR, Chastain EML, Terry RL, Miller SD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev. septiembre de 2013;255(1):197-209eng
dcterms.referencesPoole BD, Scofield RH, Harley JB, James JA. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity. febrero de 2006;39(1):63-70.eng
dcterms.referencesSabbatini A, Bombardieri S, Migliorini P. Autoantibodies from patients with systemic lupus erythematosus bind a shared sequence of SmD and Epstein-Barr virus-encoded nuclear antigen EBNA I. Eur J Immunol. mayo de 1993;23(5):1146-52.eng
dcterms.referencesCanaan A, Haviv I, Urban AE, Schulz VP, Hartman S, Zhang Z, et al. EBNA1 regulates cellular gene expression by binding cellular promoters. Proc Natl Acad Sci U S A. 29 de diciembre de 2009;106(52):22421-6.eng
dcterms.referencesPalendira U, Low C, Chan A, Hislop AD, Ho E, Phan TG, et al. Molecular pathogenesis of EBV susceptibility in XLP as revealed by analysis of female carriers with heterozygous expression of SAP. PLoS Biol. noviembre de 2011;9(11):e1001187.eng
dcterms.referencesDelecluse HJ, Hammerschmidt W. The genetic approach to the Epstein-Barr virus: from basic virology to gene therapy. Mol Pathol. octubre de 2000;53(5):270-9.eng
dcterms.referencesSawalha AH. Epigenetics and T-cell immunity. Autoimmunity. 1 de enero de 2008;41(4):245-52eng
dcterms.referencesBird JJ, Brown DR, Mullen AC, Moskowitz NH, Mahowald MA, Sider JR, et al. Helper T Cell Differentiation Is Controlled by the Cell Cycle. Immunity. 1 de agosto de 1998;9(2):229-37eng
dcterms.referencesAfrasiabi A, Keane JT, Ong LTC, Alinejad-Rokny H, Fewings NL, Booth DR, et al. Genetic and transcriptomic analyses support a switch to lytic phase in Epstein Barr virus infection as an important driver in developing Systemic Lupus Erythematosus. J Autoimmun. febrero de 2022;127:102781eng
dcterms.referencesJames JA, Kaufman KM, Farris AD, Taylor-Albert E, Lehman TJ, Harley JB. An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J Clin Invest. 15 de diciembre de 1997;100(12):3019-26.eng
dcterms.referencesEvans A, Rothfield N, Niederman J. RAISED ANTIBODY TITRES TO E.B. VIRUS IN SYSTEMIC LUPUS ERYTHEMATOSUS. The Lancet. 23 de enero de 1971;297(7691):167-8.eng
dcterms.referencesGuo R, Jiang C, Zhang Y, Govande A, Trudeau SJ, Chen F, et al. MYC CONTROLS THE EPSTEIN-BARR VIRUS LYTIC SWITCH. Mol Cell. 21 de mayo de 2020;78(4):653- 669.e8.eng
dcterms.referencesPich D, Mrozek-Gorska P, Bouvet M, Sugimoto A, Akidil E, Grundhoff A, et al. First Days in the Life of Naive Human B Lymphocytes Infected with Epstein-Barr Virus. mBio. 17 de septiembre de 2019;10(5):e01723-19eng
dcterms.referencesLee N, Pimienta G, Steitz JA. AUF1/hnRNP D is a novel protein partner of the EBER1 noncoding RNA of Epstein-Barr virus. RNA. noviembre de 2012;18(11):2073-82eng
dcterms.referencesPimienta G, Fok V, Haslip M, Nagy M, Takyar S, Steitz JA. Proteomics and Transcriptomics of BJAB Cells Expressing the Epstein-Barr Virus Noncoding RNAs EBER1 and EBER2. PLoS One. 29 de junio de 2015;10(6):e0124638.eng
dcterms.referencesZhao B, Zou J, Wang H, Johannsen E, Peng C wen, Quackenbush J, et al. EpsteinBarr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc Natl Acad Sci U S A. 6 de septiembre de 2011;108(36):14902-7.eng
dcterms.referencesRohban S, Campaner S. Myc induced replicative stress response: How to cope with it and exploit it. Biochim Biophys Acta. mayo de 2015;1849(5):517-24.eng
dcterms.referencesGhabeshi S, Najafi A, Zamani B, Soltani M, Arero AG, Izadi S, et al. Evaluation of molecular apoptosis signaling pathways and its correlation with EBV viral load in SLE patients using systems biology approach. Hum Antibodies. 2022;30(1):37-46.eng
dcterms.referencesCrawford DH, Ando I. EB virus induction is associated with B-cell maturation. Immunology. noviembre de 1986;59(3):405-9eng
dcterms.referencesLaichalk LL, Thorley-Lawson DA. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol. enero de 2005;79(2):1296-307.eng
dcterms.referencesMurata T, Sugimoto A, Inagaki T, Yanagi Y, Watanabe T, Sato Y, et al. Molecular Basis of Epstein–Barr Virus Latency Establishment and Lytic Reactivation. Viruses. 23 de noviembre de 2021;13(12):2344eng
dcterms.referencesHarley JB, Chen X, Pujato M, Miller D, Maddox A, Forney C, et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat Genet. mayo de 2018;50(5):699-707eng
dcterms.referencesHouen G, Trier NH. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front Immunol. 7 de enero de 2021;11:587380.eng
dcterms.referencesViel KCMF, Parameswaran S, Donmez OA, Forney CR, Hass MR, Yin C, et al. Shared and distinct interactions of type 1 and type 2 Epstein-Barr Nuclear Antigen 2 with the human genome. BMC Genomics. 12 de marzo de 2024;25(1):273.eng
dcterms.referencesStrobl LJ, Höfelmayr H, Stein C, Marschall G, Brielmeier M, Laux G, et al. Both Epstein-Barr viral nuclear antigen 2 (EBNA2) and activated Notch1 transactivate genes by interacting with the cellular protein RBP-J kappa. Immunobiology. diciembre de 1997;198(1- 3):299-306eng
dcterms.referencesBeer S, Wange LE, Zhang X, Kuklik-Roos C, Enard W, Hammerschmidt W, et al. EBNA2-EBF1 complexes promote MYC expression and metabolic processes driving Sphase progression of Epstein-Barr virus–infected B cells. Proc Natl Acad Sci U S A. 26 de julio de 2022;119(30):e2200512119.eng
dcterms.referencesHan L, Zhang Y, Wang Q, Xin M, Yang K, Lei K, et al. Epstein-Barr virus infection and type I interferon signature in patients with systemic lupus erythematosus. Lupus. 1 de enero de 2018;961203317753069.eng
dcterms.referencesThien M, Phan TG, Gardam S, Amesbury M, Basten A, Mackay F, et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity. junio de 2004;20(6):785-98eng
dcterms.referencesHe B, Raab-Traub N, Casali P, Cerutti A. EBV-Encoded Latent Membrane Protein 1 Cooperates with BAFF/BLyS and APRIL to Induce T Cell-Independent Ig Heavy Chain Class Switching. J Immunol. 15 de noviembre de 2003;171(10):5215-24.eng
dcterms.referencesJackson SW, Davidson A. BAFF inhibition in SLE – is tolerance restored? Immunol Rev. noviembre de 2019;292(1):102-19.eng
dcterms.referencesRigante D, Esposito S. Infections and Systemic Lupus Erythematosus: Binding or Sparring Partners? Int J Mol Sci. 29 de julio de 2015;16(8):17331-43.eng
dcterms.referencesPetri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. agosto de 2012;64(8):2677-86.eng
dcterms.referencesRuiz Irastorza G, Espinosa G, Frutos MA, Jiménez Alonso J, Praga M, Pallarés L, et al. Diagnosis and treatment of lupus nephritis. Consensus document from the systemic autoimmune disease group (GEAS) of the Spanish Society of Internal Medicine (SEMI) and Spanish Society of Nephrology (S.E.N.). Nefrologia. 2012;32 Suppl 1:1-35eng
dcterms.referencesRio DC, Ares M, Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. junio de 2010;2010(6):pdb.prot5439.eng
dcterms.referencesLivak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using RealTime Quantitative PCR and the 2−ΔΔCT Method. Methods. 1 de diciembre de 2001;25(4):402-8.eng
dcterms.referencesMesquita FV, Ferreira V, Mesquita D, Andrade LEC. CD4 T lymphocyte subsets display heterogeneous susceptibility to apoptosis induced by serum from patients with systemic lupus erythematosus. Advances in Rheumatology. 16 de agosto de 2023;63(1):40.eng
dcterms.referencesMoreno-Estrada A, Gravel S, Zakharia F, McCauley JL, Byrnes JK, Gignoux CR, et al. Reconstructing the Population Genetic History of the Caribbean. PLoS Genet. 14 de noviembre de 2013;9(11):e1003925.eng
dcterms.referencesCatalina MD, Owen KA, Labonte AC, Grammer AC, Lipsky PE. The pathogenesis of systemic lupus erythematosus: Harnessing big data to understand the molecular basis of lupus. J Autoimmun. junio de 2020;110:102359.eng
dcterms.referencesPan L, Lu MP, Wang JH, Xu M, Yang SR. Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr. febrero de 2020;16(1):19-30.eng
dcterms.referencesBarbhaiya M, Costenbader KH. Environmental exposures and the development of systemic lupus erythematosus. Curr Opin Rheumatol. septiembre de 2016;28(5):497-505.eng
dcterms.referencesRamírez-Bello J, Cadena-Sandoval D, Mendoza-Rincón JF, Barbosa-Cobos RE, Sánchez-Muñoz F, Amezcua-Guerra LM, et al. Tumor necrosis factor gene polymorphisms are associated with systemic lupus erythematosus susceptibility or lupus nephritis in Mexican patients. Immunol Res. junio de 2018;66(3):348-54.eng
dcterms.referencesStudnicka-Benke A, Steiner G, Petera P, Smolen JS. Tumour necrosis factor alpha and its soluble receptors parallel clinical disease and autoimmune activity in systemic lupus erythematosus. Br J Rheumatol. noviembre de 1996;35(11):1067-74eng
dcterms.referencesHabib HM, Taher TE, Isenberg DA, Mageed RA. Enhanced propensity of T lymphocytes in patients with systemic lupus erythematosus to apoptosis in the presence of tumour necrosis factor alpha. Scand J Rheumatol. 2009;38(2):112-20.eng
dcterms.referencesMitamura K, Kang H, Tomita Y, Hashimoto H, Sawada S, Horie T. Impaired tumour necrosis factor-alpha (TNF-alpha) production and abnormal B cell response to TNF-alpha in patients with systemic lupus erythematosus (SLE). Clin Exp Immunol. septiembre de 1991;85(3):386-91.eng
dcterms.referencesDavas EM, Tsirogianni A, Kappou I, Karamitsos D, Economidou I, Dantis PC. Serum IL-6, TNFalpha, p55 srTNFalpha, p75srTNFalpha, srIL-2alpha levels and disease activity in systemic lupus erythematosus. Clin Rheumatol. 1999;18(1):17-22.eng
dcterms.referencesPostal M, Appenzeller S. The role of Tumor Necrosis Factor-alpha (TNF-α) in the pathogenesis of systemic lupus erythematosus. Cytokine. diciembre de 2011;56(3):537-43eng
dcterms.referencesAringer M, Smolen JS. SLE - Complex cytokine effects in a complex autoimmune disease: tumor necrosis factor in systemic lupus erythematosus. Arthritis Res Ther. 2003;5(4):172-7.eng
dcterms.referencesKontoyiannis D, Kollias G. Accelerated autoimmunity and lupus nephritis in NZB mice with an engineered heterozygous deficiency in tumor necrosis factor. Eur J Immunol. julio de 2000;30(7):2038-47.eng
dcterms.referencesLiu X, Sadaoka T, Krogmann T, Cohen JI. Epstein-Barr Virus (EBV) Tegument Protein BGLF2 Suppresses Type I Interferon Signaling To Promote EBV Reactivation. J Virol. 18 de mayo de 2020;94(11):e00258-20.eng
dcterms.referencesLi Y, Long X, Huang L, Yang M, Yuan Y, Wang Y, et al. Epstein-Barr Virus BZLF1- Mediated Downregulation of Proinflammatory Factors Is Essential for Optimal Lytic Viral Replication. J Virol. 15 de enero de 2016;90(2):887-903.eng
dcterms.referencesMorrison TE, Mauser A, Wong A, Ting JP, Kenney SC. Inhibition of IFN-gamma signaling by an Epstein-Barr virus immediate-early protein. Immunity. noviembre de 2001;15(5):787-99.eng
dcterms.referencesHohenadl C, Germaier H, Walchner M, Hagenhofer M, Herrmann M, Stürzl M, et al. Transcriptional Activation of Endogenous Retroviral Sequences in Human Epidermal Keratinocytes by UVB Irradiation. Journal of Investigative Dermatology. 1 de octubre de 1999;113(4):587-94eng
dcterms.referencesAhsan N, Kanda T, Nagashima K, Takada K. Epstein-Barr virus transforming protein LMP1 plays a critical role in virus production. J Virol. abril de 2005;79(7):4415-24.eng
dcterms.referencesHarley JB, James JA. Everyone Comes from Somewhere: Systemic lupus erythematosus (SLE) and Epstein-Barr Virus, induction of host interferon (INF) and humoral anti-EBNA1 immunity. Arthritis Rheum. junio de 2010;62(6):1571-5.eng
dcterms.referencesMoon UY, Park SJ, Oh ST, Kim WU, Park SH, Lee SH, et al. Patients with systemic lupus erythematosus have abnormally elevated Epstein-Barr virus load in blood. Arthritis Res Ther. 2004;6(4):R295-302eng
dcterms.referencesBentz GL, Shackelford J, Pagano JS. Epstein-Barr Virus Latent Membrane Protein 1 Regulates the Function of Interferon Regulatory Factor 7 by Inducing Its Sumoylation. J Virol. noviembre de 2012;86(22):12251-61.eng
dcterms.referencesJohansson P, Jansson A, Rüetschi U, Rymo L. The p38 Signaling Pathway Upregulates Expression of the Epstein-Barr Virus LMP1 Oncogene. J Virol. marzo de 2010;84(6):2787-97eng
dcterms.referencesYang L, Liu L, Xu Z, Liao W, Feng D, Dong X, et al. EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget. 21 de enero de 2015;6(8):5804-17eng
dcterms.referencesLam N, Sugden B. LMP1, a viral relative of the TNF receptor family, signals principally from intracellular compartments. EMBO J. 16 de junio de 2003;22(12):3027-38.eng
dcterms.referencesOkada M, Ogasawara H, Kaneko H, Hishikawa T, Sekigawa I, Hashimoto H, et al. Role of DNA methylation in transcription of human endogenous retrovirus in the pathogenesis of systemic lupus erythematosus. J Rheumatol. agosto de 2002;29(8):1678-82.eng
dcterms.referencesTalotta R, Atzeni F, Laska MJ. The contribution of HERV-E clone 4-1 and other HERV-E members to the pathogenesis of rheumatic autoimmune diseases. APMIS. mayo de 2020;128(5):367-77eng
dcterms.referencesTugnet N, Rylance P, Roden D, Trela M, Nelson P. Human Endogenous Retroviruses (HERVs) and Autoimmune Rheumatic Disease: Is There a Link? Open Rheumatol J. 22 de marzo de 2013;7:13-21.eng
dcterms.referencesSugita K, Hirose T, Rothstein DM, Donahue C, Schlossman SF, Morimoto C. CD27, a member of the nerve growth factor receptor family, is preferentially expressed on CD45RA+ CD4 T cell clones and involved in distinct immunoregulatory functions. J Immunol. 15 de noviembre de 1992;149(10):3208-16.eng
dcterms.referencesDörner T, Lipsky PE. Correlation of circulating CD27high plasma cells and disease activity in systemic lupus erythematosus. Lupus. 2004;13(5):283-9eng
dcterms.referencesBlenman KRM, Duan B, Xu Z, Wan S, Atkinson MA, Flotte TR, et al. IL-10 regulation of lupus in the NZM2410 murine model. Laboratory Investigation. 1 de noviembre de 2006;86(11):1136-48.eng
dcterms.referencesLing GS, Cook HT, Botto M, Lau YL, Huang FP. An essential protective role of IL10 in the immunological mechanism underlying resistance vs susceptibility to lupus induction by dendritic cells and dying cells. Rheumatology (Oxford). octubre de 2011;50(10):1773-84eng
dcterms.referencesClarke CJP, Hales A, Hunt A, Foxwell BMJ. IL-10-mediated suppression of TNF-α production is independent of its ability to inhibit NFκB activity. European Journal of Immunology. 1998;28(5):1719-26.eng
dcterms.referencesMaiti S, Dai W, Alaniz RC, Hahn J, Jayaraman A. Mathematical Modeling of Proand Anti-Inflammatory Signaling in Macrophages. Processes. marzo de 2015;3(1):1-18.eng
dcterms.referencesde Waal Malefyt R, Haanen J, Spits H, Roncarolo MG, te Velde A, Figdor C, et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med. 1 de octubre de 1991;174(4):915-24.eng
dcterms.referencesRanjith-Kumar CT, Miller W, Sun J, Xiong J, Santos J, Yarbrough I, et al. Effects of single nucleotide polymorphisms on Toll-like receptor 3 activity and expression in cultured cells. J Biol Chem. 15 de junio de 2007;282(24):17696-705eng
dcterms.referencesIwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, et al. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med. 28 de septiembre de 2009;206(10):2091-9.eng
dcterms.referencesRazin M, Abdel-Ghaffar ARB, Hamdy GM, Abd-Elshafy DN, Kamel S, Bahgat MM, et al. TLR3\TLR7 as Differentially Expressed Markers Among Viral, Nonviral, and Autoimmune Diseases in Egyptian Patients. Viral Immunol. noviembre de 2021;34(9):607- 21.eng
dcterms.referencesEliopoulos AG, Young LS. LMP1 structure and signal transduction. Semin Cancer Biol. diciembre de 2001;11(6):435-44.eng
dcterms.referencesCaielli S, Veiga DT, Balasubramanian P, Athale S, Domic B, Murat E, et al. A CD4+ T cell population expanded in lupus blood provides B cell help through interleukin-10 and succinate. Nat Med. enero de 2019;25(1):75-81.eng
dcterms.referencesGeginat J, Vasco M, Gerosa M, Tas SW, Pagani M, Grassi F, et al. IL-10 producing regulatory and helper T-cells in systemic lupus erythematosus. Seminars in Immunology. 1 de agosto de 2019;44:101330.eng
dcterms.referencesWei C, Anolik J, Cappione A, Zheng B, Pugh-Bernard A, Brooks J, et al. A New Population of Cells Lacking Expression of CD27 Represents a Notable Component of the B Cell Memory Compartment in Systemic Lupus Erythematosus1. The Journal of Immunology. 15 de mayo de 2007;178(10):6624-33.eng
dcterms.referencesWu YCB, Kipling D, Dunn-Walters DK. The Relationship between CD27 Negative and Positive B Cell Populations in Human Peripheral Blood. Front Immunol [Internet]. 26 de diciembre de 2011 [citado 25 de julio de 2024];2. Disponible en: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2011.00081/fulleng
dcterms.referencesLi Y, Li Z, Hu F. Double-negative (DN) B cells: an under-recognized effector memory B cell subset in autoimmunity. Clinical and Experimental Immunology. 1 de agosto de 2021;205(2):119-27.eng
dcterms.referencesJacobi AM, Mei H, Hoyer BF, Mumtaz IM, Thiele K, Radbruch A, et al. HLADRhigh/CD27high plasmablasts indicate active disease in patients with systemic lupus erythematosus. Ann Rheum Dis. enero de 2010;69(1):305-8eng
dcterms.referencesMameli G, Astone V, Arru G, Marconi S, Lovato L, Serra C, et al. Brains and peripheral blood mononuclear cells of multiple sclerosis (MS) patients hyperexpress MSassociated retrovirus/HERV-W endogenous retrovirus, but not Human herpesvirus 6. J Gen Virol. enero de 2007;88(Pt 1):264-74.eng
dcterms.referencesKitsou K, Lagiou P, Magiorkinis G. Human endogenous retroviruses in cancer: Oncogenesis mechanisms and clinical implications. J Med Virol. enero de 2023;95(1):e28350eng
dcterms.referencesSun B, Hu L, Luo ZY, Chen XP, Zhou HH, Zhang W. DNA methylation perspectives in the pathogenesis of autoimmune diseases. Clinical Immunology. 1 de marzo de 2016;164:21-7.eng
dcterms.referencesRelle M, Foehr B, Schwarting A. Epigenetic Aspects of Systemic Lupus Erythematosus. Rheumatol Ther. 1 de junio de 2015;2(1):33-46.eng
dcterms.referencesBENGTSSON AA, STURFELT G, GULLSTRAND B, TRUEDSSON L. Induction of apoptosis in monocytes and lymphocytes by serum from patients with systemic lupus erythematosus − an additional mechanism to increased autoantigen load? Clin Exp Immunol. marzo de 2004;135(3):535-43eng
dcterms.referencesRonchetti S, Ayroldi E, Ricci E, Gentili M, Migliorati G, Riccardi C. A Glance at the Use of Glucocorticoids in Rare Inflammatory and Autoimmune Diseases: Still an Indispensable Pharmacological Tool? Front Immunol. 2020;11:613435eng
dcterms.referencesUlander L, Tolppanen H, Hartman O, Rissanen TT, Paakkanen R, Kuusisto J, et al. Hydroxychloroquine reduces interleukin-6 levels after myocardial infarction: The randomized, double-blind, placebo-controlled OXI pilot trial. Int J Cardiol. 15 de agosto de 2021;337:21-7.eng
dcterms.referencesJang CH, Choi JH, Byun MS, Jue DM. Chloroquine inhibits production of TNF-α, IL-1β and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. 2006 [citado 21 de agosto de 2025];45. Disponible en: https://dx.doi.org/10.1093/rheumatology/kei282eng
dcterms.referencesDuellman SJ, Burgess RR. Overproduction in Escherichia coli and purification of Epstein–Barr virus EBNA-1. Protein Expression and Purification. 1 de junio de 2006;47(2):434-40.eng
oaire.versioninfo:eu-repo/semantics/acceptedVersion
sb.investigacionVirologíaspa
sb.programaDoctorado en Genética y Biología Molecularspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PDF_Resumen.pdf
Tamaño:
276.48 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
4.56 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones