Evaluación del efecto de la infección viral por Epstein-Barr (EBV) en modulación de la respuesta autoinmune en células mononucleares de sangre periférica en pacientes con lupus eritematoso sistémico.
datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.contributor.advisor | Navarro Quiroz, Elkin | |
dc.contributor.advisor | Acosta Hoyos, Antonio | |
dc.contributor.author | Bello Lemus, Yesit | |
dc.date.accessioned | 2025-10-07T15:01:45Z | |
dc.date.available | 2025-10-07T15:01:45Z | |
dc.date.issued | 2025 | |
dc.description.abstract | El lupus eritematoso sistémico (LES) es una enfermedad autoinmune compleja que aún plantea grandes interrogantes sobre su origen y progresión. En los últimos años, el virus de Epstein-Barr (EBV) ha cobrado especial interés como uno de los posibles desencadenantes y modulador de la respuesta inmune en estos pacientes. Con esta investigación buscamos comprender mejor esa relación, explorando cómo la infección viral y el ambiente inmunológico propio del LES influyen en la regulación de genes y en la actividad de las células inmunes. Al estudiar a pacientes con LES y compararlos con controles sanos, encontramos que la mayoría de los casos presentaban enfermedad activa, con una alta frecuencia de daño renal. En ellos, la expresión de genes clave como TNF-α e IFN-γ estaba reducida, mientras que IL10 aparecía aumentada y correlacionada de manera inversa con TNF-α, revelando un equilibrio alterado en la respuesta inflamatoria. Además, observamos que la mayoría de los pacientes mantenían una infección activa por EBV, asociada con la sobreexpresión de LMP1, una proteína viral capaz de favorecer la supervivencia de células B autorreactivas y de alterar importantes rutas de señalización inmunológica. Otro hallazgo relevante fue la activación de retrovirus endógenos (HERV-E). En los ensayos con plasma heterólogo confirmamos, además, que el ambiente lúpico puede modificar directamente la conducta de células inmunocompetentes sanas, promoviendo cambios en IL6. Finalmente, identificamos una reactividad cruzada entre EBNA1 y Ro60, lo que respalda la hipótesis del mimetismo molecular como uno de los mecanismos que explican la pérdida de tolerancia inmunológica. En conjunto, este estudio ofrece una visión más integrada del papel del EBV, los retrovirus endógenos y las alteraciones inmunorregulatorias en la patogénesis del LES. Más allá de ampliar la comprensión biológica de la enfermedad, estos hallazgos sugieren posibles biomarcadores y rutas terapéuticas que podrían contribuir en el futuro a un manejo más preciso y personalizado del lupus. | spa |
dc.description.abstract | Systemic lupus erythematosus (SLE) is a complex autoimmune disease that continues to raise major questions regarding its origin and progression. In recent years, Epstein–Barr virus (EBV) has gained particular attention as a potential trigger and modulator of the immune response in these patients. This study aimed to better understand that relationship by exploring how viral infection and the immunological environment of SLE influence gene regulation and immune cell activity. When comparing SLE patients with healthy controls, we found that most cases exhibited active disease, with a high frequency of renal involvement. In these patients, the expression of key genes such as TNF-α and IFN-γ was reduced, whereas IL-10 was increased and inversely correlated with TNF-α, indicating a disrupted balance in the inflammatory response. Moreover, most patients showed evidence of active EBV infection, associated with the overexpression of LMP1, a viral protein capable of promoting the survival of autoreactive B cells and altering critical immune signaling pathways. Another relevant finding was the activation of endogenous retroviruses (HERV-E). In heterologous plasma assays, we also confirmed that the lupus environment can directly modify the behavior of healthy immunocompetent cells, particularly by promoting changes in IL-6. Finally, we identified cross-reactivity between EBNA1 and Ro60, supporting the hypothesis of molecular mimicry as one of the mechanisms underlying the loss of immune tolerance. Taken together, this study provides an integrated view of the role of EBV, endogenous retroviruses, and immune dysregulation in the pathogenesis of SLE. Beyond expanding the biological understanding of the disease, these findings suggest potential biomarkers and therapeutic pathways that may contribute to more precise and personalized management of lupus in the future. | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/17019 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | eng |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Lupus eritematoso sistémico (LES) | spa |
dc.subject | Virus de Epstein-Barr (EBV) | spa |
dc.subject | Mimetismo molecular | spa |
dc.subject | Citocinas (TNF-α, IFN-γ, IL-10, IL-6) | spa |
dc.subject | Retrovirus endógenos (HERV-E) | spa |
dc.subject.keywords | Systemic lupus erythematosus (SLE) | eng |
dc.subject.keywords | Epstein-Barr virus (EBV) | eng |
dc.subject.keywords | Molecular mimicry | eng |
dc.subject.keywords | Cytokines (TNF-α, IFN-γ, IL-10, IL-6) | eng |
dc.subject.keywords | Endogenous retroviruses (HERV-E) | eng |
dc.title | Evaluación del efecto de la infección viral por Epstein-Barr (EBV) en modulación de la respuesta autoinmune en células mononucleares de sangre periférica en pacientes con lupus eritematoso sistémico. | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
dc.type.spa | Tesis de doctorado | |
dcterms.references | García Tello A, Villegas Martínez A, González Fernández AF. Manifestaciones hematológicas en el lupus eritematoso sistémico. Anales de Medicina Interna. octubre de 2002;19(10):53-7 | spa |
dcterms.references | Moulton VR, Suarez-Fueyo A, Meidan E, Li H, Mizui M, Tsokos GC. Pathogenesis of Human Systemic Lupus Erythematosus: A Cellular Perspective. Trends Mol Med. julio de 2017;23(7):615-35 | eng |
dcterms.references | Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 16 de junio de 2016;2:16039. | eng |
dcterms.references | Jiao H, Acar G, Robinson GA, Ciurtin C, Jury EC, Kalea AZ. Diet and Systemic Lupus Erythematosus (SLE): From Supplementation to Intervention. Int J Environ Res Public Health. 20 de septiembre de 2022;19(19):11895 | eng |
dcterms.references | Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. noviembre de 1982;25(11):1271-7. | eng |
dcterms.references | Karrar S, Cunninghame Graham DS. Abnormal B Cell Development in Systemic Lupus Erythematosus. Arthritis Rheumatol. abril de 2018;70(4):496-507 | eng |
dcterms.references | Lugo LP, Olmos YD, Martínez GA. Biomarcadores en fluídos biológicos y su potencial uso como indicadores de nefritis lúpica en individuos con lupus eritematoso sistémico. Revista Colombiana de Nefrología. 2014;1(1):39-47. | spa |
dcterms.references | Ha E, Bae SC, Kim K. Recent advances in understanding the genetic basis of systemic lupus erythematosus. Semin Immunopathol. enero de 2022;44(1):29-46. | eng |
dcterms.references | Yin X, Kim K, Suetsugu H, Bang SY, Wen L, Koido M, et al. Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus. Ann Rheum Dis. mayo de 2021;80(5):632-40. | eng |
dcterms.references | Sheng Y jun, Xu J hua, Wu Y gui, Zuo X bo, Gao J ping, Lin Y, et al. Association analyses confirm five susceptibility loci for systemic lupus erythematosus in the Han Chinese population. Arthritis Res Ther. 28 de marzo de 2015;17(1):85. | eng |
dcterms.references | Vaughn SE, Kottyan LC, Munroe ME, Harley JB. Genetic susceptibility to lupus: the biological basis of genetic risk found in B cell signaling pathways. J Leukoc Biol. septiembre de 2012;92(3):577-91. | eng |
dcterms.references | Ju JY, Xu ZW. Potential genetic basis of B cell hyperactivation in murine lupus models. Lupus. agosto de 2021;30(9):1438-48. | eng |
dcterms.references | Mitchell AB, Oliver BGG, Glanville AR. Translational Aspects of the Human Respiratory Virome. Am J Respir Crit Care Med. 15 de diciembre de 2016;194(12):1458-64. | eng |
dcterms.references | Thorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol. octubre de 2001;1(1):75-82. | eng |
dcterms.references | Draborg AH, Sandhu N, Larsen N, Lisander Larsen J, Jacobsen S, Houen G. Impaired Cytokine Responses to Epstein-Barr Virus Antigens in Systemic Lupus Erythematosus Patients. Journal of Immunology Research. 27 de marzo de 2016;2016:e6473204. | eng |
dcterms.references | Adamson AL, Darr D, Holley-Guthrie E, Johnson RA, Mauser A, Swenson J, et al. Epstein-Barr Virus Immediate-Early Proteins BZLF1 and BRLF1 Activate the ATF2 Transcription Factor by Increasing the Levels of Phosphorylated p38 and c-Jun N-Terminal Kinases. J Virol. febrero de 2000;74(3):1224-33. | eng |
dcterms.references | Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 19 de agosto de 2019;11(8):762 | eng |
dcterms.references | Trela M, Nelson PN, Rylance PB. The role of molecular mimicry and other factors in the association of Human Endogenous Retroviruses and autoimmunity. APMIS. 2016;124(1- 2):88-104 | eng |
dcterms.references | Ahn SS, Jung SM, Yoo J, Lee SW, Song JJ, Park YB. Anti-Smith antibody is associated with disease activity in patients with new-onset systemic lupus erythematosus. Rheumatol Int. 1 de noviembre de 2019;39(11):1937-44. | eng |
dcterms.references | Heinlen LD, McClain MT, Ritterhouse LL, Bruner BF, Edgerton CC, Keith MP, et al. 60 kD Ro and nRNP A frequently initiate human lupus autoimmunity. PLoS One. 10 de marzo de 2010;5(3):e9599. | eng |
dcterms.references | McClain MT, Heinlen LD, Dennis GJ, Roebuck J, Harley JB, James JA. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med. enero de 2005;11(1):85-9. | eng |
dcterms.references | Munroe ME, Anderson JR, Gross TF, Stunz LL, Bishop GA, James JA. Epstein-Barr Functional Mimicry: Pathogenicity of Oncogenic Latent Membrane Protein-1 in Systemic Lupus Erythematosus and Autoimmunity. Front Immunol. 2020;11:606936. | eng |
dcterms.references | Wu Z, Mei X, Zhao D, Sun Y, Song J, Pan W, et al. DNA methylation modulates HERV-E expression in CD4+ T cells from systemic lupus erythematosus patients. Journal of Dermatological Science. 1 de febrero de 2015;77(2):110-6. | eng |
dcterms.references | Guo G, Ye S, Xie S, Ye L, Lin C, Yang M, et al. The cytomegalovirus protein US31 induces inflammation through mono-macrophages in systemic lupus erythematosus by promoting NF-κB2 activation. Cell Death Dis. 24 de enero de 2018;9(2):1-15. | eng |
dcterms.references | Laurynenka V, Ding L, Kaufman KM, James JA, Harley JB. A High Prevalence of Anti-EBNA1 Heteroantibodies in Systemic Lupus Erythematosus (SLE) Supports AntiEBNA1 as an Origin for SLE Autoantibodies. Front Immunol. 17 de febrero de 2022;13:830993 | eng |
dcterms.references | Wild CP. Complementing the Genome with an “Exposome”: The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology. Cancer Epidemiology, Biomarkers & Prevention. 15 de agosto de 2005;14(8):1847-50. | eng |
dcterms.references | Gonzalez-Quintial R, Nguyen A, Kono DH, Oldstone MBA, Theofilopoulos AN, Baccala R. Lupus acceleration by a MAVS-activating RNA virus requires endosomal TLR signaling and host genetic predisposition. PLoS One. 2018;13(9):e0203118. | eng |
dcterms.references | Richaud-Patin Y, Alcocer-Varela J, Llorente L. High levels of TH2 cytokine gene expression in systemic lupus erythematosus. Rev Invest Clin. 1995;47(4):267-72. | eng |
dcterms.references | Liu TF, Jones BM, Wong RWS, Srivastava G. IMPAIRED PRODUCTION OF IL12 IN SYSTEMIC LUPUS ERYTHEMATOSUS. III: DEFICIENT IL-12p40 GENE EXPRESSION AND CROSS-REGULATION OF IL-12, IL-10 AND IFN-γ GENE EXPRESSION. Cytokine. 1 de octubre de 1999;11(10):805-11. | eng |
dcterms.references | Hu X, Paik PK, Chen J, Yarilina A, Kockeritz L, Lu TT, et al. IFN-γ Suppresses IL10 Production and Synergizes with TLR2 by Regulating GSK3 and CREB/AP-1 Proteins. Immunity. 1 de mayo de 2006;24(5):563-74 | eng |
dcterms.references | Draborg AH, Duus K, Houen G. Epstein-Barr Virus in Systemic Autoimmune Diseases. Clin Dev Immunol. 2013;2013:535738. | eng |
dcterms.references | Shaikho EM, Farrell JJ, Alsultan A, Qutub H, Al-Ali AK, Figueiredo MS, et al. A phased SNP-based classification of sickle cell anemia HBB haplotypes. BMC genomics. 2017;18(1):608. | eng |
dcterms.references | Universidad Autónoma del Estado de México MG. Revista de Medicina e Investigación. Revista de Medicina e Investigación. 1 de enero de 2013;1(1):8-16. | spa |
dcterms.references | Alfonso Pacheco L, Pacheco-Lugo L, Díaz-Olmos Y, Aroca-Martínez G. Biomarcadores en fluídos biológicos y su potencial uso como indicadores de nefritis lúpica en individuos con lupus eritematoso sistémico. Rev Colomb Nefrol. 2014;1(1):39-47 | spa |
dcterms.references | Fortuna G, Brennan MT. Systemic Lupus Erythematosus. Dental Clinics of North America. octubre de 2013;57(4):631-55. | eng |
dcterms.references | Wild CP. Complementing the Genome with an "Exposome": The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology. Cancer Epidemiology Biomarkers & Prevention. 1 de agosto de 2005;14(8):1847-50. | eng |
dcterms.references | Karrar S, Cunninghame Graham DS. Review: Abnormal B Cell Development in Systemic Lupus Erythematosus: What the Genetics Tell Us. Arthritis & Rheumatology. abril de 2018;70(4):496-507. | eng |
dcterms.references | Gonzalez-Quintial R, Nguyen A, Kono DH, Oldstone MBA, Theofilopoulos AN, Baccala R. Lupus acceleration by a MAVS-activating RNA virus requires endosomal TLR signaling and host genetic predisposition. Bobé P, editor. PLOS ONE. 10 de septiembre de 2018;13(9):e0203118. | eng |
dcterms.references | Gestal M de los ÁS. Con Predisposición a Lupus Eritematoso Sistémico : Universidad de Santiago de Compostela; 2010. | spa |
dcterms.references | Siriboonrit U, Tsuchiya N, Sirikong M, Kyogoku C, Bejrachandra S, Suthipinittharm P, et al. Association of Fcgamma receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue antigens. mayo de 2003;61(5):374-83 | eng |
dcterms.references | Contin-Bordes C, Lazaro E, Pellegrin JL, Viallard JF, Moreau JF, Blanco P. Lupus érythémateux systémique : de la physiopathologie au traitement. La Revue de Médecine Interne. diciembre de 2009;30(12):H9-13 | eng |
dcterms.references | Pons-Estel GJ, Ugarte-Gil MF, Alarcón GS. Epidemiology of systemic lupus erythematosus. Expert review of clinical immunology. mayo de 2017;1-16. | eng |
dcterms.references | Ossa H, Aquino J, Pereira R, Ibarra A, Ossa RH, Pérez LA, et al. Outlining the Ancestry Landscape of Colombian Admixed Populations. PloS one. 2016;11(10):e0164414. | eng |
dcterms.references | Daniel G. Fernández-Ávila. Diana N. Rincón-Riaño. Santiago Bernal-Macías JMGDávilaDRC. Prevalencia y características demográficas del Lupus Eritematoso Sistémico, Miopatía Inflamatoria, Osteoporosis, Polimialgia Reumática, Síndrome Sjögren y Vasculitis en Colombia, según información del Sistema Integral de Información de la Protección Socia [Internet]. 2017 [citado 20 de enero de 2020]. Disponible en: https://www.researchgate.net/publication/318967596_Prevalencia_y_caracteristicas_demog raficas_del_Lupus_Eritematoso_Sistemico_Miopatia_Inflamatoria_Osteoporosis_Polimial gia_Reumatica_Sindrome_Sjogren_y_Vasculitis_en_Colombia_segun_informacion_del_Si st | spa |
dcterms.references | Sestak AL, Furnrohr BG, Harley JB, Merrill JT, Namjou B. The genetics of systemic lupus erythematosus and implications for targeted therapy. Annals of the Rheumatic Diseases. 1 de marzo de 2011;70(Suppl 1):i37-43. | eng |
dcterms.references | Neo JYJ, Wee SYK, Bonne I, Tay SH, Raida M, Jovanovic V, et al. Characterisation of a human antibody that potentially links cytomegalovirus infection with systemic lupus erythematosus. Scientific Reports. 10 de diciembre de 2019;9(1):9998. | eng |
dcterms.references | Pan Q, Liu Z, Liao S, Ye L, Lu X, Chen X, et al. Current mechanistic insights into the role of infection in systemic lupus erythematosus. Biomedicine & Pharmacotherapy. septiembre de 2019;117:109122. | eng |
dcterms.references | Harley JB, James JA. Epstein-Barr virus infection induces lupus autoimmunity. Bulletin of the NYU hospital for joint diseases. 2006;64(1-2):45-50. | eng |
dcterms.references | Sternbæk L, Draborg AH, Østerlund MT, Iversen L V., Troelsen L, Theander E, et al. Increased antibody levels to stage-specific Epstein–Barr virus antigens in systemic autoimmune diseases reveal a common pathology. Scandinavian Journal of Clinical and Laboratory Investigation. 17 de febrero de 2019;79(1-2):7-16. | eng |
dcterms.references | Jog NR, Young KA, Munroe ME, Harmon MT, Guthridge JM, Kelly JA, et al. Association of Epstein-Barr virus serological reactivation with transitioning to systemic lupus erythematosus in at-risk individuals. Annals of the Rheumatic Diseases. 19 de junio de 2019;annrheumdis-2019-215361. | eng |
dcterms.references | James JA, Kaufman KM, Farris AD, Taylor-Albert E, Lehman TJ, Harley JB. An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. The Journal of clinical investigation. 15 de diciembre de 1997;100(12):3019-26. | eng |
dcterms.references | Zaki ME, Abou El-Khier NT, Al-Kasaby NM, Abdelsalam M, Nassar MK, Abdelwahab AM. Epstein Barr Virus in Patients with Nephropathy Associated with Systemic Lupus Erythematous, Pilot Study in Egyptian Patients. The Egyptian journal of immunology. enero de 2018;25(1):1-8. | eng |
dcterms.references | Poole BD, Scofield RH, Harley JB, James JA. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity. 7 de enero de 2006;39(1):63-70 | eng |
dcterms.references | Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, et al. Epstein-Barr virus (EBV)–encoded small RNA is released from EBV-infected cells and activates signaling from toll-like receptor 3. Journal of Experimental Medicine. 28 de septiembre de 2009;206(10):2091-9. | eng |
dcterms.references | Chau CM, Deng Z, Kang H, Lieberman PM. Cell Cycle Association of the Retinoblastoma Protein Rb and the Histone Demethylase LSD1 with the Epstein-Barr Virus Latency Promoter Cp. Journal of Virology. abril de 2008;82(7):3428. | eng |
dcterms.references | Young LS, Rickinson AB. Epstein–Barr virus: 40 years on. Nature Reviews Cancer. octubre de 2004;4(10):757-68 | eng |
dcterms.references | Tirosh I, Spielman S, Barel O, Ram R, Stauber T, Paret G, et al. Whole exome sequencing in childhood-onset lupus frequently detects single gene etiologies. Pediatric Rheumatology. 2019;17(1):1-11 | eng |
dcterms.references | Batu ED, Koşukcu C, Taşkıran E, Sahin S, Akman S, Sözeri B, et al. Whole exome sequencing in early-onset systemic lupus erythematosus. Journal of Rheumatology. 2018;45(12):1671-9 | eng |
dcterms.references | Wu Q, Jinde K, Endoh M, Sakai H. Clinical significance of costimulatory molecules CD80/CD86 expression in IgA nephropathy. Kidney International. 1 de marzo de 2004;65(3):888-96 | eng |
dcterms.references | Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 14 de febrero de 2003;299(5609):1057-61. | eng |
dcterms.references | Suen JL, Chiang BL. CD4+FoxP3+ regulatory T-cells in human systemic lupus erythematosus. Journal of the Formosan Medical Association. 1 de septiembre de 2012;111(9):465-70 | eng |
dcterms.references | Valencia X, Yarboro C, Illei G, Lipsky PE. Deficient CD4+CD25high T Regulatory Cell Function in Patients with Active Systemic Lupus Erythematosus. The Journal of Immunology. 15 de febrero de 2007;178(4):2579-88. | eng |
dcterms.references | Thorley-Lawson DA, Gross A. Persistence of the Epstein–Barr Virus and the Origins of Associated Lymphomas. New England Journal of Medicine. 25 de marzo de 2004;350(13):1328-37 | eng |
dcterms.references | Tierney RJ, Steven N, Young LS, Rickinson AB. Epstein-Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. Journal of Virology. noviembre de 1994;68(11):7374-85. | eng |
dcterms.references | Kubota N, Wada K, Ito Y, Shimoyama Y, Nakamura S, Nishiyama Y, et al. One-step multiplex real-time PCR assay to analyse the latency patterns of Epstein-Barr virus infection. Journal of Virological Methods. 1 de enero de 2008;147(1):26-36 | eng |
dcterms.references | Babcock GJ, Hochberg D, Thorley-Lawson DA. The Expression Pattern of EpsteinBarr Virus Latent Genes In Vivo Is Dependent upon the Differentiation Stage of the Infected B Cell. Immunity. 1 de octubre de 2000;13(4):497-506. | eng |
dcterms.references | Minamitani T, Yasui T, Ma Y, Zhou H, Okuzaki D, Tsai CY, et al. Evasion of affinitybased selection in germinal centers by Epstein–Barr virus LMP2A. Proceedings of the National Academy of Sciences. 15 de septiembre de 2015;112(37):11612-7. | eng |
dcterms.references | Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P, et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med. 6 de diciembre de 1999;190(11):1697-710. | eng |
dcterms.references | Batten M, Groom J, Cachero TG, Qian F, Schneider P, Tschopp J, et al. Baff Mediates Survival of Peripheral Immature B Lymphocytes. Journal of Experimental Medicine. 20 de noviembre de 2000;192(10):1453-66. | eng |
dcterms.references | Huard B, Arlettaz L, Ambrose C, Kindler V, Mauri D, Roosnek E, et al. BAFF production by antigen‐presenting cells provides T cell co‐stimulation. International Immunology. 1 de marzo de 2004;16(3):467-75. | eng |
dcterms.references | Somers EC, Marder W, Cagnoli P, Lewis EE, DeGuire P, Gordon C, et al. PopulationBased Incidence and Prevalence of Systemic Lupus Erythematosus: The Michigan Lupus Epidemiology and Surveillance Program. Arthritis & Rheumatology. 2014;66(2):369-78. | eng |
dcterms.references | Pons-Estel GJ, Alarcón GS, Scofield L, Reinlib L, Cooper GS. Understanding the Epidemiology and Progression of Systemic Lupus Erythematosus. Semin Arthritis Rheum. febrero de 2010;39(4):257. | eng |
dcterms.references | Pons-Estel GJ, Alarcón GS, Hachuel L, Boggio G, Wojdyla D, Pascual-Ramos V, et al. Anti-malarials exert a protective effect while Mestizo patients are at increased risk of developing SLE renal disease: data from a Latin-American cohort. Rheumatology (Oxford). julio de 2012;51(7):1293-8. | eng |
dcterms.references | Prada SI, Pérez AM, Nieto-Aristizábal I, Tobón GJ. Increase in direct costs for health systems due to lupus nephritis: the case of Colombia. Einstein (Sao Paulo). 13 de abril de 2022;20:eAO6553. | eng |
dcterms.references | Aghdassi E, Zhang W, St-Pierre Y, Clarke AE, Morrison S, Peeva V, et al. Healthcare cost and loss of productivity in a Canadian population of patients with and without lupus nephritis. J Rheumatol. abril de 2011;38(4):658-66. | eng |
dcterms.references | Pisetsky DS. Role of Epstein-Barr virus infection in SLE: gene-environment interactions at the molecular level. Annals of the Rheumatic Diseases. septiembre de 2018;77(9):1249-50 | eng |
dcterms.references | Billharz R, Zeng H, Proll SC, Korth MJ, Lederer S, Albrecht R, et al. The NS1 Protein of the 1918 Pandemic Influenza Virus Blocks Host Interferon and Lipid Metabolism Pathways. Journal of Virology. 15 de octubre de 2009;83(20):10557-70 | eng |
dcterms.references | Han GM, Chen SL, Shen N, Ye S, Bao CD, Gu YY. Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray. Genes & Immunity. 17 de abril de 2003;4(3):177-86. | eng |
dcterms.references | Kwon YC, Chun S, Kim K, Mak A. Update on the Genetics of Systemic Lupus Erythematosus: Genome-Wide Association Studies and Beyond. Cells. 2019;8(10):1-17. | eng |
dcterms.references | Yao M, Gao C, Zhang C, Di X, Liang W, Sun W, et al. Identification of Molecular Markers Associated With the Pathophysiology and Treatment of Lupus Nephritis Based on Integrated Transcriptome Analysis. Frontiers in Genetics. 2020;11(December):1-12. | eng |
dcterms.references | Systemic lupus erythematosus | Nature Reviews Disease Primers [Internet]. [citado 9 de agosto de 2022]. Disponible en: https://www.nature.com/articles/nrdp201639 | eng |
dcterms.references | Moustafa A, Xie C, Kirkness E, Biggs W, Wong E, Turpaz Y, et al. The blood DNA virome in 8,000 humans. PLOS Pathogens. 22 de marzo de 2017;13(3):e1006292. | eng |
dcterms.references | Guo G, Ye L, Shi X, Yan K, Huang J, Lin K, et al. Dysbiosis in Peripheral Blood Mononuclear Cell Virome Associated With Systemic Lupus Erythematosus. Frontiers in Cellular and Infection Microbiology [Internet]. 2020 [citado 9 de agosto de 2022];10. Disponible en: https://www.frontiersin.org/articles/10.3389/fcimb.2020.00131 | eng |
dcterms.references | Kanegane H, Wakiguchi H, Kanegane C, Kurashige T, Tosato G. Viral Interleukin10 in Chronic Active Epstein-Barr Virus Infection. The Journal of Infectious Diseases. 1 de julio de 1997;176(1):254-75. | eng |
dcterms.references | KAUFMAN KM, KIRBY MY, HARLEY JB, JAMES JA. Peptide Mimics of a Major Lupus Epitope of SmB/B′. Annals of the New York Academy of Sciences. 1 de abril de 2003;987(1):215-29. | eng |
dcterms.references | McClain MT, Poole BD, Bruner BF, Kaufman KM, Harley JB, James JA. An altered immune response to Epstein-Barr nuclear antigen 1 in pediatric systemic lupus erythematosus. Arthritis & Rheumatism. 2006;54(1):360-8 | eng |
dcterms.references | Cohen JI. Epstein-Barr virus infection. N Engl J Med. 17 de agosto de 2000;343(7):481-92 | eng |
dcterms.references | Hutt-Fletcher LM. Epstein-Barr Virus Entry. Journal of Virology. agosto de 2007;81(15):7825-32. | eng |
dcterms.references | James JA, Neas BR, Moser KL, Hall T, Bruner GR, Sestak AL, et al. Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum. mayo de 2001;44(5):1122-6. | eng |
dcterms.references | Tsokos GC. Systemic Lupus Erythematosus. New England Journal of Medicine. 1 de diciembre de 2011;365(22):2110-21. | eng |
dcterms.references | James JA, Harley JB, Scofield RH. Epstein-Barr virus and systemic lupus erythematosus. Curr Opin Rheumatol. septiembre de 2006;18(5):462-7. | eng |
dcterms.references | Davis LS, Hutcheson J, Mohan C. The Role of Cytokines in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. Journal of Interferon & Cytokine Research. octubre de 2011;31(10):781-9. | eng |
dcterms.references | Draborg AH, Duus K, Houen G. Epstein-Barr Virus and Systemic Lupus Erythematosus. Clin Dev Immunol. 2012;2012:370516. | eng |
dcterms.references | Sawalha AH, Harley JB. Antinuclear autoantibodies in systemic lupus erythematosus. Curr Opin Rheumatol. septiembre de 2004;16(5):534-40. | eng |
dcterms.references | Gross AJ, Hochberg D, Rand WM, Thorley-Lawson DA. EBV and systemic lupus erythematosus: a new perspective. J Immunol. 1 de junio de 2005;174(11):6599-607. | eng |
dcterms.references | Rekvig OP. Systemic Lupus Erythematosus: Definitions, Contexts, Conflicts, Enigmas. Front Immunol. 2018;9:387 | eng |
dcterms.references | Niller HH, Wolf H, Minarovits J. Regulation and dysregulation of Epstein–Barr virus latency: Implications for the development of autoimmune diseases. Autoimmunity. 1 de enero de 2008;41(4):298-328. | eng |
dcterms.references | Taylor GS, Long HM, Brooks JM, Rickinson AB, Hislop AD. The immunology of Epstein-Barr virus-induced disease. Annu Rev Immunol. 2015;33:787-821. | eng |
dcterms.references | Chen X, Li H, Wu C, Zhang Y. Epstein‒Barr virus and human herpesvirus 6 infection in patients with systemic lupus erythematosus. Virol J. 12 de febrero de 2023;20:29 | eng |
dcterms.references | Esen BA, Yılmaz G, Uzun S, Ozdamar M, Aksözek A, Kamalı S, et al. Serologic response to Epstein-Barr virus antigens in patients with systemic lupus erythematosus: a controlled study. Rheumatol Int. enero de 2012;32(1):79-83. | eng |
dcterms.references | Izadi S, Najafizadeh SR, Nejati A, Teymoori-Rad M, Shahmahmoodi S, Golsaz Shirazi F, et al. Overall Status of Epstein-Barr virus Infection, IFN-a, and TLR-7/9 in Patients with Systemic Lupus Erythematous. Iran J Immunol. septiembre de 2021;18(3):230-40. | eng |
dcterms.references | Das P, Minz RW, Saikia B, Sharma A, Anand S, Singh H, et al. Association of Human Leucocyte Antigen Class II, with viral load and immune response to Epstein–Barr virus in adult and pediatric Systemic lupus erythematosus patients. Lupus. 1 de agosto de 2022;31(9):1054-66 | eng |
dcterms.references | Chougule D, Nadkar M, Rajadhyaksha A, Pandit-Shende P, Surve P, Dawkar N, et al. Association of clinical and serological parameters of systemic lupus erythematosus patients with Epstein-Barr virus antibody profile. J Med Virol. marzo de 2018;90(3):559-63. | eng |
dcterms.references | Fattal I, Shental N, Molad Y, Gabrielli A, Pokroy-Shapira E, Oren S, et al. EpsteinBarr virus antibodies mark systemic lupus erythematosus and scleroderma patients negative for anti-DNA. Immunology. febrero de 2014;141(2):276-85 | eng |
dcterms.references | Jog NR, Young KA, Munroe ME, Harmon MT, Guthridge JM, Kelly JA, et al. Association of Epstein-Barr virus serological reactivation with transitioning to systemic lupus erythematosus in at-risk individuals. Annals of the Rheumatic Diseases. 1 de septiembre de 2019;78(9):1235-41 | eng |
dcterms.references | Fei Y, Shi X, Gan F, Li X, Zhang W, Li M, et al. Death causes and pathogens analysis of systemic lupus erythematosus during the past 26 years. Clin Rheumatol. enero de 2014;33(1):57-63 | eng |
dcterms.references | Lee YH, Choi SJ, Ji JD, Song GG. Overall and cause-specific mortality in systemic lupus erythematosus: an updated meta-analysis. Lupus. junio de 2016;25(7):727-34 | eng |
dcterms.references | Hu L, Tu J, Gui J, Fang M, Sun L. Landscape of immune cells in systematic lupus erythematosus patients with Epstein–Barr virus infection: assessed by single-cell sequencing. Rheumatology. 11 de diciembre de 2023;kead673. | eng |
dcterms.references | Su R, Li Z, Wang Y, Liu Y, Zheng X, Gao C, et al. Imbalance between Th17 and regulatory T cells in patients with systemic lupus erythematosus combined EBV/CMV viraemia. Clin Exp Rheumatol. 2020;38(5):864-73. | eng |
dcterms.references | Jouanguy E, Béziat V, Mogensen TH, Casanova JL, Tangye SG, Zhang SY. Human inborn errors of immunity to herpes viruses. Curr Opin Immunol. febrero de 2020;62:106- 22 | eng |
dcterms.references | Prota AE, Sage DR, Stehle T, Fingeroth JD. The crystal structure of human CD21: Implications for Epstein–Barr virus and C3d binding. Proceedings of the National Academy of Sciences. 6 de agosto de 2002;99(16):10641-6. | eng |
dcterms.references | Latour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: Lessons from genetic diseases. Immunol Rev. septiembre de 2019;291(1):174-89. | eng |
dcterms.references | Gill MB, Roecklein-Canfield J, Sage DR, Zambela-Soediono M, Longtine N, Uknis M, et al. EBV attachment stimulates FHOS/FHOD1 redistribution and co-aggregation with CD21: formin interactions with the cytoplasmic domain of human CD21. J Cell Sci. 1 de junio de 2004;117(Pt 13):2709-20. | eng |
dcterms.references | Tsao SW, Tsang CM, To KF, Lo KW. The role of Epstein–Barr virus in epithelial malignancies. J Pathol. enero de 2015;235(2):323-33 | eng |
dcterms.references | Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, et al., editores. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis [Internet]. Cambridge: Cambridge University Press; 2007 [citado 6 de febrero de 2024]. Disponible en: http://www.ncbi.nlm.nih.gov/books/NBK47376/ | eng |
dcterms.references | Draborg AH, Jacobsen S, Westergaard M, Mortensen S, Larsen JL, Houen G, et al. Reduced response to Epstein–Barr virus antigens by T-cells in systemic lupus erythematosus patients. Lupus Sci Med [Internet]. 3 de abril de 2014 [citado 17 de enero de 2025];1(1). Disponible en: https://lupus.bmj.com/content/1/1/e000015 | eng |
dcterms.references | Gulley ML. Molecular Diagnosis of Epstein-Barr Virus-Related Diseases. J Mol Diagn. febrero de 2001;3(1):1-10 | eng |
dcterms.references | Babcock GJ, Thorley-Lawson DA. Tonsillar memory B cells, latently infected with Epstein–Barr virus, express the restricted pattern of latent genes previously found only in Epstein–Barr virus-associated tumors. Proc Natl Acad Sci U S A. 24 de octubre de 2000;97(22):12250-5 | eng |
dcterms.references | Jog NR, James JA. Epstein Barr Virus and Autoimmune Responses in Systemic Lupus Erythematosus. Frontiers in Immunology [Internet]. 2021 [citado 6 de febrero de 2024];11. Disponible en: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2020.623944 | eng |
dcterms.references | Arleevskaya MI, Manukyan G, Inoue R, Aminov R. Editorial: Microbial and Environmental Factors in Autoimmune and Inflammatory Diseases. Front Immunol. 2017;8:243. | eng |
dcterms.references | Fujinami RS, von Herrath MG, Christen U, Whitton JL. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev. enero de 2006;19(1):80-94. | eng |
dcterms.references | Kang I, Quan T, Nolasco H, Park SH, Hong MS, Crouch J, et al. Defective control of latent Epstein-Barr virus infection in systemic lupus erythematosus. J Immunol. 15 de enero de 2004;172(2):1287-94 | eng |
dcterms.references | Poole BD, Templeton AK, Guthridge JM, Brown EJ, Harley JB, James JA. Aberrant Epstein-Barr viral infection in systemic lupus erythematosus. Autoimmun Rev. febrero de 2009;8(4):337-42. | eng |
dcterms.references | Nanbo A, Inoue K, Adachi-Takasawa K, Takada K. Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt’s lymphoma. EMBO J. 1 de marzo de 2002;21(5):954-65 | eng |
dcterms.references | Banko A, Cirkovic A, Miskovic R, Jeremic I, Grk M, Basaric M, et al. Epstein-Barr virus infection as potential indicator of the occurrence and clinical presentation of systemic lupus erythematosus. Front Immunol. 2023;14:1307589 | eng |
dcterms.references | Getts DR, Chastain EML, Terry RL, Miller SD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev. septiembre de 2013;255(1):197-209 | eng |
dcterms.references | Poole BD, Scofield RH, Harley JB, James JA. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity. febrero de 2006;39(1):63-70. | eng |
dcterms.references | Sabbatini A, Bombardieri S, Migliorini P. Autoantibodies from patients with systemic lupus erythematosus bind a shared sequence of SmD and Epstein-Barr virus-encoded nuclear antigen EBNA I. Eur J Immunol. mayo de 1993;23(5):1146-52. | eng |
dcterms.references | Canaan A, Haviv I, Urban AE, Schulz VP, Hartman S, Zhang Z, et al. EBNA1 regulates cellular gene expression by binding cellular promoters. Proc Natl Acad Sci U S A. 29 de diciembre de 2009;106(52):22421-6. | eng |
dcterms.references | Palendira U, Low C, Chan A, Hislop AD, Ho E, Phan TG, et al. Molecular pathogenesis of EBV susceptibility in XLP as revealed by analysis of female carriers with heterozygous expression of SAP. PLoS Biol. noviembre de 2011;9(11):e1001187. | eng |
dcterms.references | Delecluse HJ, Hammerschmidt W. The genetic approach to the Epstein-Barr virus: from basic virology to gene therapy. Mol Pathol. octubre de 2000;53(5):270-9. | eng |
dcterms.references | Sawalha AH. Epigenetics and T-cell immunity. Autoimmunity. 1 de enero de 2008;41(4):245-52 | eng |
dcterms.references | Bird JJ, Brown DR, Mullen AC, Moskowitz NH, Mahowald MA, Sider JR, et al. Helper T Cell Differentiation Is Controlled by the Cell Cycle. Immunity. 1 de agosto de 1998;9(2):229-37 | eng |
dcterms.references | Afrasiabi A, Keane JT, Ong LTC, Alinejad-Rokny H, Fewings NL, Booth DR, et al. Genetic and transcriptomic analyses support a switch to lytic phase in Epstein Barr virus infection as an important driver in developing Systemic Lupus Erythematosus. J Autoimmun. febrero de 2022;127:102781 | eng |
dcterms.references | James JA, Kaufman KM, Farris AD, Taylor-Albert E, Lehman TJ, Harley JB. An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J Clin Invest. 15 de diciembre de 1997;100(12):3019-26. | eng |
dcterms.references | Evans A, Rothfield N, Niederman J. RAISED ANTIBODY TITRES TO E.B. VIRUS IN SYSTEMIC LUPUS ERYTHEMATOSUS. The Lancet. 23 de enero de 1971;297(7691):167-8. | eng |
dcterms.references | Guo R, Jiang C, Zhang Y, Govande A, Trudeau SJ, Chen F, et al. MYC CONTROLS THE EPSTEIN-BARR VIRUS LYTIC SWITCH. Mol Cell. 21 de mayo de 2020;78(4):653- 669.e8. | eng |
dcterms.references | Pich D, Mrozek-Gorska P, Bouvet M, Sugimoto A, Akidil E, Grundhoff A, et al. First Days in the Life of Naive Human B Lymphocytes Infected with Epstein-Barr Virus. mBio. 17 de septiembre de 2019;10(5):e01723-19 | eng |
dcterms.references | Lee N, Pimienta G, Steitz JA. AUF1/hnRNP D is a novel protein partner of the EBER1 noncoding RNA of Epstein-Barr virus. RNA. noviembre de 2012;18(11):2073-82 | eng |
dcterms.references | Pimienta G, Fok V, Haslip M, Nagy M, Takyar S, Steitz JA. Proteomics and Transcriptomics of BJAB Cells Expressing the Epstein-Barr Virus Noncoding RNAs EBER1 and EBER2. PLoS One. 29 de junio de 2015;10(6):e0124638. | eng |
dcterms.references | Zhao B, Zou J, Wang H, Johannsen E, Peng C wen, Quackenbush J, et al. EpsteinBarr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc Natl Acad Sci U S A. 6 de septiembre de 2011;108(36):14902-7. | eng |
dcterms.references | Rohban S, Campaner S. Myc induced replicative stress response: How to cope with it and exploit it. Biochim Biophys Acta. mayo de 2015;1849(5):517-24. | eng |
dcterms.references | Ghabeshi S, Najafi A, Zamani B, Soltani M, Arero AG, Izadi S, et al. Evaluation of molecular apoptosis signaling pathways and its correlation with EBV viral load in SLE patients using systems biology approach. Hum Antibodies. 2022;30(1):37-46. | eng |
dcterms.references | Crawford DH, Ando I. EB virus induction is associated with B-cell maturation. Immunology. noviembre de 1986;59(3):405-9 | eng |
dcterms.references | Laichalk LL, Thorley-Lawson DA. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol. enero de 2005;79(2):1296-307. | eng |
dcterms.references | Murata T, Sugimoto A, Inagaki T, Yanagi Y, Watanabe T, Sato Y, et al. Molecular Basis of Epstein–Barr Virus Latency Establishment and Lytic Reactivation. Viruses. 23 de noviembre de 2021;13(12):2344 | eng |
dcterms.references | Harley JB, Chen X, Pujato M, Miller D, Maddox A, Forney C, et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat Genet. mayo de 2018;50(5):699-707 | eng |
dcterms.references | Houen G, Trier NH. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front Immunol. 7 de enero de 2021;11:587380. | eng |
dcterms.references | Viel KCMF, Parameswaran S, Donmez OA, Forney CR, Hass MR, Yin C, et al. Shared and distinct interactions of type 1 and type 2 Epstein-Barr Nuclear Antigen 2 with the human genome. BMC Genomics. 12 de marzo de 2024;25(1):273. | eng |
dcterms.references | Strobl LJ, Höfelmayr H, Stein C, Marschall G, Brielmeier M, Laux G, et al. Both Epstein-Barr viral nuclear antigen 2 (EBNA2) and activated Notch1 transactivate genes by interacting with the cellular protein RBP-J kappa. Immunobiology. diciembre de 1997;198(1- 3):299-306 | eng |
dcterms.references | Beer S, Wange LE, Zhang X, Kuklik-Roos C, Enard W, Hammerschmidt W, et al. EBNA2-EBF1 complexes promote MYC expression and metabolic processes driving Sphase progression of Epstein-Barr virus–infected B cells. Proc Natl Acad Sci U S A. 26 de julio de 2022;119(30):e2200512119. | eng |
dcterms.references | Han L, Zhang Y, Wang Q, Xin M, Yang K, Lei K, et al. Epstein-Barr virus infection and type I interferon signature in patients with systemic lupus erythematosus. Lupus. 1 de enero de 2018;961203317753069. | eng |
dcterms.references | Thien M, Phan TG, Gardam S, Amesbury M, Basten A, Mackay F, et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity. junio de 2004;20(6):785-98 | eng |
dcterms.references | He B, Raab-Traub N, Casali P, Cerutti A. EBV-Encoded Latent Membrane Protein 1 Cooperates with BAFF/BLyS and APRIL to Induce T Cell-Independent Ig Heavy Chain Class Switching. J Immunol. 15 de noviembre de 2003;171(10):5215-24. | eng |
dcterms.references | Jackson SW, Davidson A. BAFF inhibition in SLE – is tolerance restored? Immunol Rev. noviembre de 2019;292(1):102-19. | eng |
dcterms.references | Rigante D, Esposito S. Infections and Systemic Lupus Erythematosus: Binding or Sparring Partners? Int J Mol Sci. 29 de julio de 2015;16(8):17331-43. | eng |
dcterms.references | Petri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. agosto de 2012;64(8):2677-86. | eng |
dcterms.references | Ruiz Irastorza G, Espinosa G, Frutos MA, Jiménez Alonso J, Praga M, Pallarés L, et al. Diagnosis and treatment of lupus nephritis. Consensus document from the systemic autoimmune disease group (GEAS) of the Spanish Society of Internal Medicine (SEMI) and Spanish Society of Nephrology (S.E.N.). Nefrologia. 2012;32 Suppl 1:1-35 | eng |
dcterms.references | Rio DC, Ares M, Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. junio de 2010;2010(6):pdb.prot5439. | eng |
dcterms.references | Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using RealTime Quantitative PCR and the 2−ΔΔCT Method. Methods. 1 de diciembre de 2001;25(4):402-8. | eng |
dcterms.references | Mesquita FV, Ferreira V, Mesquita D, Andrade LEC. CD4 T lymphocyte subsets display heterogeneous susceptibility to apoptosis induced by serum from patients with systemic lupus erythematosus. Advances in Rheumatology. 16 de agosto de 2023;63(1):40. | eng |
dcterms.references | Moreno-Estrada A, Gravel S, Zakharia F, McCauley JL, Byrnes JK, Gignoux CR, et al. Reconstructing the Population Genetic History of the Caribbean. PLoS Genet. 14 de noviembre de 2013;9(11):e1003925. | eng |
dcterms.references | Catalina MD, Owen KA, Labonte AC, Grammer AC, Lipsky PE. The pathogenesis of systemic lupus erythematosus: Harnessing big data to understand the molecular basis of lupus. J Autoimmun. junio de 2020;110:102359. | eng |
dcterms.references | Pan L, Lu MP, Wang JH, Xu M, Yang SR. Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr. febrero de 2020;16(1):19-30. | eng |
dcterms.references | Barbhaiya M, Costenbader KH. Environmental exposures and the development of systemic lupus erythematosus. Curr Opin Rheumatol. septiembre de 2016;28(5):497-505. | eng |
dcterms.references | Ramírez-Bello J, Cadena-Sandoval D, Mendoza-Rincón JF, Barbosa-Cobos RE, Sánchez-Muñoz F, Amezcua-Guerra LM, et al. Tumor necrosis factor gene polymorphisms are associated with systemic lupus erythematosus susceptibility or lupus nephritis in Mexican patients. Immunol Res. junio de 2018;66(3):348-54. | eng |
dcterms.references | Studnicka-Benke A, Steiner G, Petera P, Smolen JS. Tumour necrosis factor alpha and its soluble receptors parallel clinical disease and autoimmune activity in systemic lupus erythematosus. Br J Rheumatol. noviembre de 1996;35(11):1067-74 | eng |
dcterms.references | Habib HM, Taher TE, Isenberg DA, Mageed RA. Enhanced propensity of T lymphocytes in patients with systemic lupus erythematosus to apoptosis in the presence of tumour necrosis factor alpha. Scand J Rheumatol. 2009;38(2):112-20. | eng |
dcterms.references | Mitamura K, Kang H, Tomita Y, Hashimoto H, Sawada S, Horie T. Impaired tumour necrosis factor-alpha (TNF-alpha) production and abnormal B cell response to TNF-alpha in patients with systemic lupus erythematosus (SLE). Clin Exp Immunol. septiembre de 1991;85(3):386-91. | eng |
dcterms.references | Davas EM, Tsirogianni A, Kappou I, Karamitsos D, Economidou I, Dantis PC. Serum IL-6, TNFalpha, p55 srTNFalpha, p75srTNFalpha, srIL-2alpha levels and disease activity in systemic lupus erythematosus. Clin Rheumatol. 1999;18(1):17-22. | eng |
dcterms.references | Postal M, Appenzeller S. The role of Tumor Necrosis Factor-alpha (TNF-α) in the pathogenesis of systemic lupus erythematosus. Cytokine. diciembre de 2011;56(3):537-43 | eng |
dcterms.references | Aringer M, Smolen JS. SLE - Complex cytokine effects in a complex autoimmune disease: tumor necrosis factor in systemic lupus erythematosus. Arthritis Res Ther. 2003;5(4):172-7. | eng |
dcterms.references | Kontoyiannis D, Kollias G. Accelerated autoimmunity and lupus nephritis in NZB mice with an engineered heterozygous deficiency in tumor necrosis factor. Eur J Immunol. julio de 2000;30(7):2038-47. | eng |
dcterms.references | Liu X, Sadaoka T, Krogmann T, Cohen JI. Epstein-Barr Virus (EBV) Tegument Protein BGLF2 Suppresses Type I Interferon Signaling To Promote EBV Reactivation. J Virol. 18 de mayo de 2020;94(11):e00258-20. | eng |
dcterms.references | Li Y, Long X, Huang L, Yang M, Yuan Y, Wang Y, et al. Epstein-Barr Virus BZLF1- Mediated Downregulation of Proinflammatory Factors Is Essential for Optimal Lytic Viral Replication. J Virol. 15 de enero de 2016;90(2):887-903. | eng |
dcterms.references | Morrison TE, Mauser A, Wong A, Ting JP, Kenney SC. Inhibition of IFN-gamma signaling by an Epstein-Barr virus immediate-early protein. Immunity. noviembre de 2001;15(5):787-99. | eng |
dcterms.references | Hohenadl C, Germaier H, Walchner M, Hagenhofer M, Herrmann M, Stürzl M, et al. Transcriptional Activation of Endogenous Retroviral Sequences in Human Epidermal Keratinocytes by UVB Irradiation. Journal of Investigative Dermatology. 1 de octubre de 1999;113(4):587-94 | eng |
dcterms.references | Ahsan N, Kanda T, Nagashima K, Takada K. Epstein-Barr virus transforming protein LMP1 plays a critical role in virus production. J Virol. abril de 2005;79(7):4415-24. | eng |
dcterms.references | Harley JB, James JA. Everyone Comes from Somewhere: Systemic lupus erythematosus (SLE) and Epstein-Barr Virus, induction of host interferon (INF) and humoral anti-EBNA1 immunity. Arthritis Rheum. junio de 2010;62(6):1571-5. | eng |
dcterms.references | Moon UY, Park SJ, Oh ST, Kim WU, Park SH, Lee SH, et al. Patients with systemic lupus erythematosus have abnormally elevated Epstein-Barr virus load in blood. Arthritis Res Ther. 2004;6(4):R295-302 | eng |
dcterms.references | Bentz GL, Shackelford J, Pagano JS. Epstein-Barr Virus Latent Membrane Protein 1 Regulates the Function of Interferon Regulatory Factor 7 by Inducing Its Sumoylation. J Virol. noviembre de 2012;86(22):12251-61. | eng |
dcterms.references | Johansson P, Jansson A, Rüetschi U, Rymo L. The p38 Signaling Pathway Upregulates Expression of the Epstein-Barr Virus LMP1 Oncogene. J Virol. marzo de 2010;84(6):2787-97 | eng |
dcterms.references | Yang L, Liu L, Xu Z, Liao W, Feng D, Dong X, et al. EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget. 21 de enero de 2015;6(8):5804-17 | eng |
dcterms.references | Lam N, Sugden B. LMP1, a viral relative of the TNF receptor family, signals principally from intracellular compartments. EMBO J. 16 de junio de 2003;22(12):3027-38. | eng |
dcterms.references | Okada M, Ogasawara H, Kaneko H, Hishikawa T, Sekigawa I, Hashimoto H, et al. Role of DNA methylation in transcription of human endogenous retrovirus in the pathogenesis of systemic lupus erythematosus. J Rheumatol. agosto de 2002;29(8):1678-82. | eng |
dcterms.references | Talotta R, Atzeni F, Laska MJ. The contribution of HERV-E clone 4-1 and other HERV-E members to the pathogenesis of rheumatic autoimmune diseases. APMIS. mayo de 2020;128(5):367-77 | eng |
dcterms.references | Tugnet N, Rylance P, Roden D, Trela M, Nelson P. Human Endogenous Retroviruses (HERVs) and Autoimmune Rheumatic Disease: Is There a Link? Open Rheumatol J. 22 de marzo de 2013;7:13-21. | eng |
dcterms.references | Sugita K, Hirose T, Rothstein DM, Donahue C, Schlossman SF, Morimoto C. CD27, a member of the nerve growth factor receptor family, is preferentially expressed on CD45RA+ CD4 T cell clones and involved in distinct immunoregulatory functions. J Immunol. 15 de noviembre de 1992;149(10):3208-16. | eng |
dcterms.references | Dörner T, Lipsky PE. Correlation of circulating CD27high plasma cells and disease activity in systemic lupus erythematosus. Lupus. 2004;13(5):283-9 | eng |
dcterms.references | Blenman KRM, Duan B, Xu Z, Wan S, Atkinson MA, Flotte TR, et al. IL-10 regulation of lupus in the NZM2410 murine model. Laboratory Investigation. 1 de noviembre de 2006;86(11):1136-48. | eng |
dcterms.references | Ling GS, Cook HT, Botto M, Lau YL, Huang FP. An essential protective role of IL10 in the immunological mechanism underlying resistance vs susceptibility to lupus induction by dendritic cells and dying cells. Rheumatology (Oxford). octubre de 2011;50(10):1773-84 | eng |
dcterms.references | Clarke CJP, Hales A, Hunt A, Foxwell BMJ. IL-10-mediated suppression of TNF-α production is independent of its ability to inhibit NFκB activity. European Journal of Immunology. 1998;28(5):1719-26. | eng |
dcterms.references | Maiti S, Dai W, Alaniz RC, Hahn J, Jayaraman A. Mathematical Modeling of Proand Anti-Inflammatory Signaling in Macrophages. Processes. marzo de 2015;3(1):1-18. | eng |
dcterms.references | de Waal Malefyt R, Haanen J, Spits H, Roncarolo MG, te Velde A, Figdor C, et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med. 1 de octubre de 1991;174(4):915-24. | eng |
dcterms.references | Ranjith-Kumar CT, Miller W, Sun J, Xiong J, Santos J, Yarbrough I, et al. Effects of single nucleotide polymorphisms on Toll-like receptor 3 activity and expression in cultured cells. J Biol Chem. 15 de junio de 2007;282(24):17696-705 | eng |
dcterms.references | Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, et al. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med. 28 de septiembre de 2009;206(10):2091-9. | eng |
dcterms.references | Razin M, Abdel-Ghaffar ARB, Hamdy GM, Abd-Elshafy DN, Kamel S, Bahgat MM, et al. TLR3\TLR7 as Differentially Expressed Markers Among Viral, Nonviral, and Autoimmune Diseases in Egyptian Patients. Viral Immunol. noviembre de 2021;34(9):607- 21. | eng |
dcterms.references | Eliopoulos AG, Young LS. LMP1 structure and signal transduction. Semin Cancer Biol. diciembre de 2001;11(6):435-44. | eng |
dcterms.references | Caielli S, Veiga DT, Balasubramanian P, Athale S, Domic B, Murat E, et al. A CD4+ T cell population expanded in lupus blood provides B cell help through interleukin-10 and succinate. Nat Med. enero de 2019;25(1):75-81. | eng |
dcterms.references | Geginat J, Vasco M, Gerosa M, Tas SW, Pagani M, Grassi F, et al. IL-10 producing regulatory and helper T-cells in systemic lupus erythematosus. Seminars in Immunology. 1 de agosto de 2019;44:101330. | eng |
dcterms.references | Wei C, Anolik J, Cappione A, Zheng B, Pugh-Bernard A, Brooks J, et al. A New Population of Cells Lacking Expression of CD27 Represents a Notable Component of the B Cell Memory Compartment in Systemic Lupus Erythematosus1. The Journal of Immunology. 15 de mayo de 2007;178(10):6624-33. | eng |
dcterms.references | Wu YCB, Kipling D, Dunn-Walters DK. The Relationship between CD27 Negative and Positive B Cell Populations in Human Peripheral Blood. Front Immunol [Internet]. 26 de diciembre de 2011 [citado 25 de julio de 2024];2. Disponible en: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2011.00081/full | eng |
dcterms.references | Li Y, Li Z, Hu F. Double-negative (DN) B cells: an under-recognized effector memory B cell subset in autoimmunity. Clinical and Experimental Immunology. 1 de agosto de 2021;205(2):119-27. | eng |
dcterms.references | Jacobi AM, Mei H, Hoyer BF, Mumtaz IM, Thiele K, Radbruch A, et al. HLADRhigh/CD27high plasmablasts indicate active disease in patients with systemic lupus erythematosus. Ann Rheum Dis. enero de 2010;69(1):305-8 | eng |
dcterms.references | Mameli G, Astone V, Arru G, Marconi S, Lovato L, Serra C, et al. Brains and peripheral blood mononuclear cells of multiple sclerosis (MS) patients hyperexpress MSassociated retrovirus/HERV-W endogenous retrovirus, but not Human herpesvirus 6. J Gen Virol. enero de 2007;88(Pt 1):264-74. | eng |
dcterms.references | Kitsou K, Lagiou P, Magiorkinis G. Human endogenous retroviruses in cancer: Oncogenesis mechanisms and clinical implications. J Med Virol. enero de 2023;95(1):e28350 | eng |
dcterms.references | Sun B, Hu L, Luo ZY, Chen XP, Zhou HH, Zhang W. DNA methylation perspectives in the pathogenesis of autoimmune diseases. Clinical Immunology. 1 de marzo de 2016;164:21-7. | eng |
dcterms.references | Relle M, Foehr B, Schwarting A. Epigenetic Aspects of Systemic Lupus Erythematosus. Rheumatol Ther. 1 de junio de 2015;2(1):33-46. | eng |
dcterms.references | BENGTSSON AA, STURFELT G, GULLSTRAND B, TRUEDSSON L. Induction of apoptosis in monocytes and lymphocytes by serum from patients with systemic lupus erythematosus − an additional mechanism to increased autoantigen load? Clin Exp Immunol. marzo de 2004;135(3):535-43 | eng |
dcterms.references | Ronchetti S, Ayroldi E, Ricci E, Gentili M, Migliorati G, Riccardi C. A Glance at the Use of Glucocorticoids in Rare Inflammatory and Autoimmune Diseases: Still an Indispensable Pharmacological Tool? Front Immunol. 2020;11:613435 | eng |
dcterms.references | Ulander L, Tolppanen H, Hartman O, Rissanen TT, Paakkanen R, Kuusisto J, et al. Hydroxychloroquine reduces interleukin-6 levels after myocardial infarction: The randomized, double-blind, placebo-controlled OXI pilot trial. Int J Cardiol. 15 de agosto de 2021;337:21-7. | eng |
dcterms.references | Jang CH, Choi JH, Byun MS, Jue DM. Chloroquine inhibits production of TNF-α, IL-1β and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. 2006 [citado 21 de agosto de 2025];45. Disponible en: https://dx.doi.org/10.1093/rheumatology/kei282 | eng |
dcterms.references | Duellman SJ, Burgess RR. Overproduction in Escherichia coli and purification of Epstein–Barr virus EBNA-1. Protein Expression and Purification. 1 de junio de 2006;47(2):434-40. | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.investigacion | Virología | spa |
sb.programa | Doctorado en Genética y Biología Molecular | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: