SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence

datacite.rightshttp://purl.org/coar/access_right/c_abf2eng
dc.contributor.authorD'Marco, Luis
dc.contributor.authorMorillo, Valery
dc.contributor.authorGorriz, José Luis
dc.contributor.authorSuarez, María K.
dc.contributor.authorNava, Manuel
dc.contributor.authorOrtega, Ángel
dc.contributor.authorParra, Heliana
dc.contributor.authorVillasmil, Nelson
dc.contributor.authorRojas-Quintero, Joselyn
dc.contributor.authorBermúdez, Valmore
dc.date.accessioned2022-04-06T20:41:21Z
dc.date.available2022-04-06T20:41:21Z
dc.date.issued2021
dc.description.abstractBackground. Over the last few years, the use of sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP-1RA) has increased substantially in medical practice due to their documented benefits in cardiorenal and metabolic health. In this sense, and in addition to being used for glycemic control in diabetic patients, these drugs also have other favorable effects such as weight loss and lowering blood pressure, and more recently, they have been shown to have cardio and renoprotective effects with anti-inflammatory properties. Concerning the latter, the individual or associated use of these antihyperglycemic agents has been linked with a decrease in proinflammatory cytokines and with an improvement in the inflammatory profile in chronic endocrine-metabolic diseases. Hence, these drugs have been positioned as first-line therapy in the management of diabetes and its multiple comorbidities, such as obesity, which has been associated with persistent inflammatory states that induce dysfunction of the adipose tissue. Moreover, other frequent comorbidities in long-standing diabetic patients are chronic complications such as diabetic kidney disease, whose progression can be slowed by SGLT2i and/or GLP-1RA. The neuroendocrine and immunometabolism mechanisms underlying adipose tissue inflammation in individuals with diabetes and cardiometabolic and renal diseases are complex and not fully understood. Summary. This review intends to expose the probable molecular mechanisms and compile evidence of the synergistic or additive anti-inflammatory effects of SGLT2i and GLP-1RA and their potential impact on the management of patients with obesity and cardiorenal compromise.eng
dc.format.mimetypepdfspa
dc.identifier.citationLuis D'Marco, Valery Morillo, José Luis Gorriz, María K. Suarez, Manuel Nava, Ángel Ortega, Heliana Parra, Nelson Villasmil, Joselyn Rojas-Quintero, Valmore Bermúdez, "SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence", Journal of Diabetes Research, vol. 2021, Article ID 9032378, 17 pages, 2021. https://doi.org/10.1155/2021/9032378eng
dc.identifier.doihttps://doi.org/10.1155/2021/9032378
dc.identifier.issn23146753
dc.identifier.urihttps://hdl.handle.net/20.500.12442/9525
dc.language.isoengeng
dc.publisherHindawieng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Diabetes Researcheng
dc.sourceVolume 2021, Article ID 9032378eng
dc.subjectSodium-glucose cotransporter 2 inhibitors (SGLT2i)eng
dc.subjectGlucagon-like peptide 1 receptor agonists (GLP-1RA)eng
dc.subjectglycemic controleng
dc.subjectantihyperglycemiceng
dc.subjectManagement of diabeteseng
dc.subjectPatients obesity and cardiorenal compromiseeng
dc.titleSGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescenceeng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesF. Paneni, J. A. Beckman, M. A. Creager, and F. Cosentino, “Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I,” European Heart Journal, vol. 34, no. 31, pp. 2436–2443, 2013eng
dcterms.referencesM. Izaguirre, J. Gómez-Ambrosi, A. Rodríguez et al., “GLP-1 limits adipocyte inflammation and its low circulating pre-operative concentrations predict worse type 2 diabetes remission after bariatric surgery in obese patients,” Journal of Clinical Medicine, vol. 8, no. 4, p. 479, 2019eng
dcterms.referencesL. Castillo Parodi, E. Navarro Jiménez, Y. Arango Quiroz et al., “Obesity association with chronic renal disease in patients attended at Clínica de La Costa. Barranquilla, Colombia. 2005-2014,” Revista Colombiana de Nefrología, vol. 3, no. 1, pp. 14–19, 2016.eng
dcterms.referencesI. M. Stratton, A. I. Adler, H. A. Neil et al., “Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study,” BMJ, vol. 321, no. 7258, pp. 405–412, 2000.eng
dcterms.referencesC. Diaz, J. Toala, P. Barrera et al., “Explorando Nuevas Opciones Farmacológicas En El Tratamiento de La Diabetes Mellitus,” Archivos Venezolanos de Farmacología y Terapéutica, vol. 38, pp. 754–757, 2019spa
dcterms.referencesK. Takebayashi and T. Inukai, “Effect of sodium glucose cotransporter 2 inhibitors with low SGLT2/SGLT1 selectivity on circulating glucagon-like peptide 1 levels in type 2 diabetes mellitus,” Journal of Clinical Medicine Research, vol. 9, no. 9, pp. 745–753, 2017.eng
dcterms.referencesC. K. Kramer and B. Zinman, “Sodium-glucose cotransporter-2 (SGLT-2) inhibitors and the treatment of type 2 diabetes,” Annual Review of Medicine, vol. 70, no. 1, pp. 323–334, 2019.eng
dcterms.referencesV. A. Fonseca, “New developments in diabetes management: medications of the 21st century,” Clinical Therapeutics, vol. 36, no. 4, pp. 477–484, 2014.eng
dcterms.referencesF. Iannantuoni, A. M. de Marañon, N. Diaz-Morales et al., “The SGLT2 inhibitor empagliflozin ameliorates the inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in leukocytes,” Journal of Clinical Medicine, vol. 8, no. 11, p. 1814, 2019.eng
dcterms.referencesM. H. Elnaem, N. O. Mansour, A. F. Nahas, M. A. Baraka, R. Elkalmi, and E. Cheema, “Renal outcomes associated with the use of non-insulin antidiabetic pharmacotherapy: a review of current evidence and recommendations,” International Journal of General Medicine, vol. Volume 13, pp. 1395–1409, 2020.eng
dcterms.referencesA. Chewcharat, N. Prasitlumkum, C. Thongprayoon et al., “Efficacy and safety of SGLT-2 inhibitors for treatment of diabetes mellitus among kidney transplant patients: a systematic review and meta-analysis,” Medical Science, vol. 8, no. 4, p. 47, 2020.eng
dcterms.referencesP. Sarafidis, C. J. Ferro, E. Morales et al., “SGLT-2 inhibitors and GLP-1 receptor agonists for nephroprotection and cardioprotection in patients with diabetes mellitus and chronic kidney disease. A consensus statement by the EURECA-m and the DIABESITY working groups of the ERA-EDTA,” Nephrology, Dialysis, Transplantation, vol. 34, no. 2, pp. 208–230, 2019.eng
dcterms.referencesH. C. Gerstein, H. M. Colhoun, G. R. Dagenais et al., “Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial,” The Lancet, vol. 394, no. 10193, pp. 131–138, 2019eng
dcterms.referencesO. Mosenzon, S. D. Wiviott, A. Cahn et al., “Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial,” The Lancet Diabetes & Endocrinology, vol. 7, no. 8, pp. 606–617, 2019.eng
dcterms.referencesC.-H. Lin, L. Shao, Y.-M. Zhang et al., “An evaluation of liraglutide including its efficacy and safety for the treatment of obesity,” Expert Opinion on Pharmacotherapy, vol. 21, no. 3, pp. 275–285, 2020eng
dcterms.referencesL. Briceño Iragorry, L. A. Briceño, and B. G. Valero, “Obesidad ¿Es una realidad en Venezuela? Epidemiología Pandemia del siglo XXI,” Gaceta Médica de Caracas, vol. 120, pp. 93–107, 2020.spa
dcterms.referencesL. Zhao, A. Q. Li, T. F. Zhou, M. Q. Zhang, and X. M. Qin, “Exendin-4 alleviates angiotensin II-induced senescence in vascular smooth muscle cells by inhibiting Rac1 activation via a CAMP/PKA-dependent pathway,” American Journal of Physiology-Cell Physiology, vol. 307, no. 12, pp. C1130–C1141, 2014.eng
dcterms.referencesR. A. DeFronzo, M. Hompesch, S. Kasichayanula et al., “Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes,” Diabetes Care, vol. 36, no. 10, pp. 3169–3176, 2013.eng
dcterms.referencesE. Ferrannini, S. A. Veltkamp, R. A. Smulders, and T. Kadokura, “Renal glucose handling: impact of chronic kidney disease and sodium-glucose cotransporter 2 inhibition in patients with type 2 diabetes,” Diabetes Care, vol. 36, no. 5, pp. 1260–1265, 2013eng
dcterms.referencesH. Rahmoune, P. W. Thompson, J. M. Ward, C. D. Smith, G. Hong, and J. Brown, “Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes,” Diabetes, vol. 54, no. 12, pp. 3427–3434, 2005.eng
dcterms.referencesX. X. Wang, J. Levi, Y. Luo et al., “SGLT2 Inhibition and Diabetic Nephropathy,” Journal of Biological Chemistry, vol. 292, no. 13, pp. 5335–5348, 2017eng
dcterms.referencesB. Komoroski, N. Vachharajani, Y. Feng, L. Li, D. Kornhauser, and M. Pfister, “Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus,” Clinical Pharmacology & Therapeutics, vol. 85, no. 5, pp. 513–519, 2009eng
dcterms.referencesH. J. L. Heerspink, B. V. Stefánsson, R. Correa-Rotter et al., “Dapagliflozin in patients with chronic kidney disease,” New England Journal of Medicine, vol. 383, no. 15, pp. 1436–1446, 2020eng
dcterms.referencesJ. J. V. McMurray, S. D. Solomon, S. E. Inzucchi et al., “Dapagliflozin in patients with heart failure and reduced ejection fraction,” New England Journal of Medicine, vol. 381, no. 21, pp. 1995–2008, 2019.eng
dcterms.referencesM. Packer, S. D. Anker, J. Butler et al., “Cardiovascular and renal outcomes with empagliflozin in heart failure,” New England Journal of Medicine, vol. 383, no. 15, pp. 1413–1424, 2020.eng
dcterms.referencesC. Wang, Y. Zhou, Z. Kong et al., “The renoprotective effects of sodium-glucose cotransporter 2 inhibitors versus placebo in patients with type 2 diabetes with or without prevalent kidney disease: a systematic review and meta-analysis,” Diabetes, Obesity and Metabolism, vol. 21, no. 4, pp. 1018–1026, 2019.eng
dcterms.referencesJ. H. Bae, E.-G. Park, S. Kim, S. G. Kim, S. Hahn, and N. H. Kim, “Effects of sodium-glucose cotransporter 2 inhibitors on renal outcomes in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials,” Scientific Reports, vol. 9, no. 1, article 13009, 2019.eng
dcterms.referencesT. Toyama, B. L. Neuen, M. Jun et al., “Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: a systematic review and meta-analysis,” Diabetes, Obesity and Metabolism, vol. 21, no. 5, pp. 1237–1250, 2019eng
dcterms.referencesB. L. Neuen, T. Young, H. J. L. Heerspink et al., “SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis,” The Lancet Diabetes and Endocrinology, vol. 7, no. 11, pp. 845–854, 2019.eng
dcterms.referencesM. Škrtić, G. K. Yang, B. A. Perkins et al., “Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration,” Diabetologia, vol. 57, no. 12, pp. 2599–2602, 2014.eng
dcterms.referencesA. T. Layton, V. Vallon, and A. Edwards, “Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron,” American Journal of Physiology - Renal Physiology, vol. 310, no. 11, pp. F1269–F1283, 2016.eng
dcterms.referencesV. Vallon, M. Gerasimova, M. A. Rose et al., “SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic akita mice,” American Journal of Physiology - Renal Physiology, vol. 306, no. 2, pp. F194–F204, 2014.eng
dcterms.referencesZ. Ashrafi Jigheh, A. Ghorbani Haghjo, H. Argani et al., “Empagliflozin alleviates renal inflammation and oxidative stress in streptozotocin-induced diabetic rats partly by repressing HMGB1-TLR4 receptor axis,” Iranian Journal of Basic Medical Sciences, vol. 22, no. 4, pp. 384–390, 2019.eng
dcterms.referencesC. C. J. Dekkers, S. Petrykiv, G. D. Laverman, D. Z. Cherney, R. T. Gansevoort, and H. J. L. Heerspink, “Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers,” Diabetes, Obesity and Metabolism, vol. 20, no. 8, pp. 1988–1993, 2018.eng
dcterms.referencesB. Zinman, C. Wanner, J. M. Lachin et al., “Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes,” New England Journal of Medicine, vol. 373, no. 22, pp. 2117–2128, 2015.eng
dcterms.referencesS. D. Wiviott, I. Raz, M. P. Bonaca et al., “Dapagliflozin and cardiovascular outcomes in type 2 diabetes,” New England Journal of Medicine, vol. 380, no. 4, pp. 347–357, 2019.eng
dcterms.referencesE. Díaz-Rodríguez, R. M. Agra, Á. L. Fernández et al., “Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability,” Cardiovascular Research, vol. 114, no. 2, pp. 336–346, 2018.eng
dcterms.referencesB. Neal, V. Perkovic, K. W. Mahaffey et al., “Optimizing the analysis strategy for the CANVAS program: a prespecified plan for the integrated analyses of the CANVAS and CANVAS-R trials,” Diabetes, Obesity and Metabolism, vol. 19, no. 7, pp. 926–935, 2017.eng
dcterms.referencesI. Tikkanen, K. Narko, C. Zeller et al., “Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension,” Diabetes Care, vol. 38, no. 3, pp. 420–428, 2015.eng
dcterms.referencesC. G. Santos-Gallego, J. A. Requena-Ibanez, R. San Antonio et al., “Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics,” Journal of the American College of Cardiology, vol. 73, no. 15, pp. 1931–1944, 2019eng
dcterms.referencesL. Uthman, A. Baartscheer, B. Bleijlevens et al., “Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation,” Diabetologia, vol. 61, no. 3, pp. 722–726, 2018.eng
dcterms.referencesN. J. Byrne, N. Matsumura, Z. H. Maayah et al., “Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure,” Circulation: Heart Failure, vol. 13, no. 1, article e006277, 2020.eng
dcterms.referencesG. D. Lopaschuk and S. Verma, “Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review,” JACC: Basic to Translational Science, vol. 5, no. 6, pp. 632–644, 2020.eng
dcterms.referencesR. Abdelmasih, R. Abdelmaseih, R. Thakker et al., “Update on the Cardiovascular benefits of sodium-glucose co-transporter-2 inhibitors: mechanism of action, available agents and comprehensive review of literature,” Cardiology Research, vol. 12, no. 4, pp. 210–218, 2021.eng
dcterms.referencesS. Verma, “Potential mechanisms of sodium-glucose co-transporter 2 inhibitor-related cardiovascular benefits,” The American Journal of Cardiology, vol. 124, Suppl 1, pp. S36–S44, 2019eng
dcterms.referencesT. A. Zelniker, S. D. Wiviott, I. Raz et al., “SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials,” The Lancet, vol. 393, pp. 31–39, 2019.eng
dcterms.referencesJ. Bolinder, Ö. Ljunggren, L. Johansson et al., “Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin,” Diabetes, Obesity & Metabolism, vol. 16, pp. 159–169, 2014.eng
dcterms.referencesA. Yoshida, Y. Matsubayashi, T. Nojima et al., “Attenuation of weight loss through improved antilipolytic effect in adipose tissue via the SGLT2 inhibitor tofogliflozin,” The Journal of Clinical Endocrinology and Metabolism, vol. 104, pp. 3647–3660, 2019.eng
dcterms.referencesR. Bouchi, N. Sonoda, J. Itoh et al., “Effects of intensive exercise combined with dapagliflozin on body composition in patients with type 2 diabetes: a randomized controlled trial,” Endocrine Journal, vol. 68, no. 3, pp. 329–343, 2020.eng
dcterms.referencesJ. Bolinder, Ö. Ljunggren, J. Kullberg et al., “Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin,” The Journal of Clinical Endocrinology and Metabolism, vol. 97, pp. 1020–1031, 2012.eng
dcterms.referencesA. Merovci, C. Solis-Herrera, G. Daniele et al., “Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production,” The Journal of Clinical Investigation, vol. 124, pp. 509–514, 2014.eng
dcterms.referencesE. Ferrannini, S. Baldi, S. Frascerra et al., “Shift to fatty substrate utilization in response to sodium–glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes,” Diabetes, vol. 65, pp. 1190–1195, 2016.eng
dcterms.referencesJ. J. Devenny, H. E. Godonis, S. J. Harvey, S. Rooney, M. J. Cullen, and M. A. Pelleymounter, “Weight loss induced by chronic dapagliflozin treatment is attenuated by compensatory hyperphagia in diet-induced obese (DIO) rats,” Obesity, vol. 20, pp. 1645–1652, 2012.eng
dcterms.referencesE. Ferrannini, E. Muscelli, S. Frascerra et al., “Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients,” Journal of Clinical Investigation, vol. 124, pp. 499–508, 2014.eng
dcterms.referencesN. Inagaki, M. Goda, S. Yokota, N. Maruyama, and H. Iijima, “Safety and efficacy of canagliflozin in Japanese patients with type 2 diabetes mellitus: post hoc subgroup analyses according to body mass index in a 52-week open-label study,” Expert Opinion on Pharmacotherapy, vol. 16, pp. 1577–1591, 2015eng
dcterms.referencesE. Hoeben, W. De Winter, M. Neyens, D. Devineni, A. Vermeulen, and A. Dunne, “Population pharmacokinetic modeling of canagliflozin in healthy volunteers and patients with type 2 diabetes mellitus,” Clinical Pharmacokinetics, vol. 55, pp. 209–223, 2016.eng
dcterms.referencesR. E. Brown, N. Gupta, and R. Aronson, “Effect of dapagliflozin on glycemic control, weight, and blood pressure in patients with type 2 diabetes attending a specialist endocrinology practice in Canada: a retrospective cohort analysis,” Diabetes Technology & Therapeutics, vol. 19, pp. 685–691, 2017.eng
dcterms.referencesD. E. Kohan, P. Fioretto, W. Tang, and J. F. List, “Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control,” Kidney International, vol. 85, pp. 962–971, 2014eng
dcterms.referencesP. Hollander, H. E. Bays, J. Rosenstock et al., “Coadministration of canagliflozin and phentermine for weight management in overweight and obese individuals without diabetes: a randomized clinical trial,” Diabetes Care, vol. 40, pp. 632–639, 2017.eng
dcterms.referencesS. A. Jabbour, J. P. Frías, C. Guja, E. Hardy, A. Ahmed, and P. Öhman, “Effects of exenatide once weekly plus dapagliflozin, exenatide once weekly, or dapagliflozin, added to metformin monotherapy, on body weight, systolic blood pressure, and triglycerides in patients with type 2 diabetes in the DURATION-8 study,” Diabetes, Obesity & Metabolism, vol. 20, pp. 1515–1519, 2018.eng
dcterms.referencesJ. Y. Huh, Y. J. Park, M. Ham, and J. B. Kim, “Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity,” Molecules and Cells, vol. 37, pp. 365–371, 2014.eng
dcterms.referencesH. Kitade, K. Sawamoto, M. Nagashimada et al., “CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status,” Diabetes, vol. 61, no. 7, pp. 1680–1690, 2012.eng
dcterms.referencesS. Nishimura, I. Manabe, M. Nagasaki et al., “CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity,” Nature Medicine, vol. 15, no. 8, pp. 914–920, 2009.eng
dcterms.referencesL. Xu, N. Nagata, M. Nagashimada et al., “SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice,” eBioMedicine, vol. 20, pp. 137–149, 2017.eng
dcterms.referencesX. Hui, P. Gu, J. Zhang et al., “Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation,” Cell Metabolism, vol. 22, no. 2, pp. 279–290, 2015.eng
dcterms.referencesF. C. Lucchini, S. Wueest, T. D. Challa et al., “ASK1 inhibits browning of white adipose tissue in obesity,” Nature Communications, vol. 11, no. 1, p. 1642, 2020.eng
dcterms.referencesP. Kotzbeck, A. Giordano, E. Mondini et al., “Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation[S],” Journal of Lipid Research, vol. 59, no. 5, pp. 784–794, 2018.eng
dcterms.referencesM. Alcalá, M. Calderon-Dominguez, E. Bustos et al., “Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice,” Scientific Reports, vol. 7, no. 1, 2017.eng
dcterms.referencesR. M. Pirzgalska, E. Seixas, J. S. Seidman et al., “Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine,” Nature Medicine, vol. 23, no. 11, pp. 1309–1318, 2017.eng
dcterms.referencesJ. R. Matthews, L. Y. Herat, A. L. Magno, S. Gorman, M. P. Schlaich, and V. B. Matthews, “SGLT2 inhibitor-induced sympathoexcitation in white adipose tissue: a novel mechanism for beiging,” Biomedicine, vol. 8, no. 11, p. 514, 2020.eng
dcterms.referencesE. W. Choi, M. Lee, J. W. Song et al., “Fas mutation reduces obesity by increasing IL-4 and IL-10 expression and promoting white adipose tissue browning,” Scientific Reports, vol. 10, no. 1, article 12001, 2020.eng
dcterms.referencesN. Ouchi and K. Walsh, “Adiponectin as an anti-inflammatory factor,” Clinica Chimica Acta, vol. 380, no. 1-2, pp. 24–30, 2007.eng
dcterms.referencesY. Arita, S. Kihara, N. Ouchi et al., “Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity,” Biochemical and Biophysical Research Communications, vol. 257, no. 1, pp. 79–83, 1999.eng
dcterms.referencesY. Chen, Y. Zheng, L. Liu et al., “Adiponectin inhibits TNF-α-activated PAI-1 expression via the CAMP-PKA-AMPK-NF-ΚB axis in human umbilical vein endothelial cells,” Cellular Physiology and Biochemistry, vol. 42, no. 6, pp. 2342–2352, 2017.eng
dcterms.referencesY. Zhang, X.-L. Wang, J. Zhao et al., “Adiponectin inhibits oxidative/nitrative stress during myocardial ischemia and reperfusion via PKA signaling,” American Journal of Physiology. Endocrinology and Metabolism, vol. 305, no. 12, pp. E1436–E1443, 2013.eng
dcterms.referencesC. Zhang, Y. Liao, Q. Li et al., “Recombinant adiponectin ameliorates liver ischemia reperfusion injury via activating the AMPK/ENOS pathway,” PLoS One, vol. 8, no. 6, article e66382, 2013.eng
dcterms.referencesX. Yang, Q. Liu, Y. Li et al., “The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway,” Adipocytes, vol. 9, no. 1, pp. 484–494, 2020.eng
dcterms.referencesS. López-Domènech, Z. Abad-Jiménez, F. Iannantuoni et al., “Moderate weight loss attenuates chronic endoplasmic reticulum stress and mitochondrial dysfunction in human obesity,” Molecular Metabolism, vol. 19, pp. 24–33, 2019eng
dcterms.referencesX. Yin, I. R. Lanza, J. M. Swain, M. G. Sarr, K. S. Nair, and M. D. Jensen, “Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size,” The Journal of Clinical Endocrinology and Metabolism, vol. 99, no. 2, pp. E209–E216, 2014.eng
dcterms.referencesS. Heinonen, J. Buzkova, M. Muniandy et al., “Impaired mitochondrial biogenesis in adipose tissue in acquired obesity,” Diabetes, vol. 64, no. 9, pp. 3135–3145, 2015.eng
dcterms.referencesD. Wei, L. Liao, H. Wang, W. Zhang, T. Wang, and Z. Xu, “Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro,” Life Sciences, vol. 247, article 117414, 2020.eng
dcterms.referencesJ. J. H. Bray, H. Foster-Davies, and J. W. Stephens, “A systematic review examining the effects of sodium-glucose cotransporter-2 inhibitors (SGLT2is) on biomarkers of inflammation and oxidative stress,” Diabetes Research and Clinical Practice, vol. 168, p. 108368, 2020.eng
dcterms.referencesM. J. Perley and D. M. Kipnis, “Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic sujbjects,” The Journal of Clinical Investigation, vol. 46, no. 12, pp. 1954–1962, 1967.eng
dcterms.referencesS. Mojsov, G. C. Weir, and J. F. Habener, “Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas,” The Journal of Clinical Investigation, vol. 79, no. 2, pp. 616–619, 1987.eng
dcterms.referencesM. A. Nauck, M. M. Heimesaat, C. Orskov, J. J. Holst, R. Ebert, and W. Creutzfeldt, “Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus,” The Journal of Clinical Investigation, vol. 91, no. 1, pp. 301–307, 1993.eng
dcterms.referencesM. A. Nauck, M. M. Heimesaat, K. Behle et al., “Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers,” The Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 3, pp. 1239–1246, 2002.eng
dcterms.referencesC. F. Deacon, M. A. Nauck, M. Toft-Nielsen, L. Pridal, B. Willms, and J. J. Holst, “Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type ii diabetic patients and in healthy subjects,” Diabetes, vol. 44, no. 9, pp. 1126–1131, 1995.eng
dcterms.referencesA. Carpio, M. Duran, M. Andrade et al., “Terapia Incretinomimética: Evidencia Clínica de La Eficacia de Los Agonistas Del GLP-1R y Sus Efectos Cardio-Protectores,” Rev Latinoam Hipertens, vol. 13, pp. 400–415, 2018eng
dcterms.referencesR. A. Chudleigh, J. Platts, and S. C. Bain, “Comparative effectiveness of long-acting GLP-1 receptor agonists in type 2 diabetes: a short review on the emerging data,” Diabetes, Metabolic Syndrome and Obesity, vol. Volume 13, pp. 433–438, 2020.eng
dcterms.references“Novo Nordisk A/S Effect of semaglutide versus placebo on the progression of renal impairment in subjects with type 2 diabetes and chronic kidney disease,” clinicaltrials.gov, 2021.eng
dcterms.referencesD. M. Williams and M. Evans, “Semaglutide: charting new horizons in GLP-1 analogue outcome studies,” Diabetes Therapy, vol. 11, pp. 2221–2235, 2020. View at: Publisher Site | Google Scholareng
dcterms.referencesS. L. Kristensen, R. Rørth, P. S. Jhund et al., “Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials,” The Lancet Diabetes and Endocrinology, vol. 7, pp. 776–785, 2019.eng
dcterms.referencesD. Giugliano, M. I. Maiorino, G. Bellastella, M. Longo, P. Chiodini, and K. Esposito, “GLP-1 receptor agonists for prevention of cardiorenal outcomes in type 2 diabetes: an updated meta-analysis including the REWIND and PIONEER 6 trials,” Diabetes, Obesity & Metabolism, vol. 21, pp. 2576–2580, 2019.eng
dcterms.referencesT. A. Zelniker, S. D. Wiviott, I. Raz et al., “Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus,” Circulation, vol. 139, no. 17, pp. 2022–2031, 2019.eng
dcterms.referencesS. C. Palmer, B. Tendal, R. A. Mustafa et al., “Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials,” BMJ, vol. 372, article m4573, 2021.eng
dcterms.referencesM. J. Davies, R. Bergenstal, B. Bode et al., “efficacy of liraglutide for weight loss among patients with type 2 diabetes,” JAMA, vol. 314, no. 7, pp. 687–699, 2015.eng
dcterms.referencesT. Baratieri, J. Dal Santo Ottoni, M. L. Botti, R. D. Maicel, and L. G. Soares, “Risco Cardiovascular Em Usuários de Programa de Atenção a Hipertensos e Diabéticos Em Um Município Do Paraná-Brasil,” Ciencia e Innovación en Salud, vol. 2, no. 1, pp. 18–26, 2014.eng
dcterms.referencesT. Baratieri, J. Dal Santo Ottoni, M. L. Botti, R. D. Maicel, and L. G. Soares, “Risco Cardiovascular Em Usuários de Programa de Atenção a Hipertensos e Diabéticos Em Um Município Do Paraná-Brasil,” Ciencia e Innovación en Salud, vol. 2, no. 1, pp. 18–26, 2014.eng
dcterms.referencesB. Wang, J. Zhong, H. Lin et al., “Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials,” Diabetes, Obesity & Metabolism, vol. 15, pp. 737–749, 2013.eng
dcterms.referencesM. C. Bunck, A. Cornér, B. Eliasson et al., “One-year treatment with exenatide vs. insulin glargine: effects on postprandial glycemia, lipid profiles, and oxidative stress,” Atherosclerosis, vol. 212, no. 1, pp. 223–229, 2010.eng
dcterms.referencesL. Wang, P. Li, Z. Tang, X. Yan, and B. Feng, “Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment,” Scientific Reports, vol. 6, p. 33251, 2016.eng
dcterms.referencesZ. Wang, S. Saha, S. Van Horn et al., “Gut microbiome differences between metformin- and liraglutide-treated T2DM subjects,” Endocrinology, Diabetes & Metabolism, vol. 1, article e00009, 2018.eng
dcterms.referencesL. R. Carraro-Lacroix, G. Malnic, and A. C. C. Girardi, “Regulation of Na+/H+ exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells,” American Journal of Physiology Renal Physiology, vol. 297, pp. F1647–F1655, 2009.eng
dcterms.referencesM. Kim, M. J. Platt, T. Shibasaki et al., “GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure,” Nature Medicine, vol. 19, pp. 567–575, 2013.eng
dcterms.referencesY. Ying, H. Zhu, Z. Liang, X. Ma, and S. Li, “GLP1 protects cardiomyocytes from palmitate-induced apoptosis via Akt/GSK3b/b-Catenin pathway,” Journal of Molecular Endocrinology, vol. 55, pp. 245–262, 2015.eng
dcterms.referencesP. Chen, X. Shi, X. Xu et al., “Liraglutide ameliorates early renal injury by the activation of renal FoxO1 in a type 2 diabetic kidney disease rat model,” Diabetes Research and Clinical Practice, vol. 137, pp. 173–182, 2018.eng
dcterms.referencesC. M. Mosterd, P. Bjornstad, and D. H. van Raalte, “Nephroprotective effects of GLP-1 receptor agonists: where do we stand?” Journal of Nephrology, vol. 33, pp. 965–975, 2020.eng
dcterms.referencesG. Savarese, J. Butler, L. H. Lund, D. L. Bhatt, and S. D. Anker, “Cardiovascular effects of non-insulin glucose-lowering agents: a comprehensive review of trial evidence and potential cardioprotective mechanisms,” Cardiovascular Research, vol. cvab271, 2021.eng
dcterms.referencesM. H. A. Muskiet, L. Tonneijck, Y. Huang et al., “Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial,” The Lancet Diabetes and Endocrinology, vol. 6, pp. 859–869, 2018.eng
dcterms.referencesY. S. Oh and H.-S. Jun, “Effects of glucagon-like peptide-1 on oxidative stress and Nrf2 signaling,” International Journal of Molecular Sciences, vol. 19, p. 26, 2017.eng
dcterms.referencesC. Wang, L. Li, S. Liu et al., “GLP-1 receptor agonist ameliorates obesity-induced chronic kidney injury via restoring renal metabolism homeostasis,” PLoS One, vol. 13, article e0193473, 2018.eng
dcterms.referencesF. Sun, S. Chai, L. Li et al., “Effects of glucagon-like peptide-1 receptor agonists on weight loss in patients with type 2 diabetes: a systematic review and network meta-analysis,” Journal Diabetes Research, vol. 2015, p. 157201, 2015.eng
dcterms.referencesP. M. O’Neil, A. L. Birkenfeld, B. McGowan et al., “Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial,” The Lancet, vol. 392, pp. 637–649, 2018.eng
dcterms.referencesX. Pi-Sunyer, A. Astrup, K. Fujioka et al., “A randomized, controlled trial of 3.0 mg of liraglutide in weight management,” The New England Journal of Medicine, vol. 373, no. 1, pp. 11–22, 2015.eng
dcterms.referencesJ. Blundell, G. Finlayson, M. Axelsen et al., “Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity,” Diabetes, Obesity & Metabolism, vol. 19, pp. 1242–1251, 2017.eng
dcterms.referencesJ. S. Tronieri, T. A. Wadden, O. Walsh et al., “Effects of liraglutide on appetite, food preoccupation, and food liking: results of a randomized controlled trial,” International Journal of Obesity, vol. 44, pp. 353–361, 2020.eng
dcterms.referencesA. J. Kastin, V. Akerstrom, and W. Pan, “Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier,” Journal of Molecular Neuroscience, vol. 18, pp. 7–14, 2002.eng
dcterms.referencesL. van Bloemendaal, R. G. IJzerman, J. S. Ten Kulve et al., “GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans,” Diabetes, vol. 63, pp. 4186–4196, 2014eng
dcterms.referencesN. Siep, A. Roefs, A. Roebroeck, R. Havermans, M. L. Bonte, and A. Jansen, “Hunger is the best spice: an FMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex,” Behavioural Brain Research, vol. 198, pp. 149–158, 2009.eng
dcterms.referencesJ. D. Brown, D. McAnally, J. E. Ayala et al., “Oleoylethanolamide modulates glucagon-like peptide-1 receptor agonist signaling and enhances exendin-4-mediated weight loss in obese mice,” American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, vol. 315, pp. R595–R608, 2018.eng
dcterms.referencesS. A. Schäfer, K. Müssig, H. Staiger et al., “A common genetic variant in WFS1 determines impaired glucagon-like peptide-1-induced insulin secretion,” Diabetologia, vol. 52, pp. 1075–1082, 2009eng
dcterms.referencesM. Jensterle, B. Pirš, K. Goričar, V. Dolžan, and A. Janež, “Genetic variability in GLP-1 receptor is associated with inter-individual differences in weight lowering potential of liraglutide in obese women with PCOS: a pilot study,” European Journal of Clinical Pharmacology, vol. 71, pp. 817–824, 2015.eng
dcterms.referencesJ. B. Buse, M. Nauck, T. Forst et al., “Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes (DURATION-6): a randomised, open-label study,” The Lancet, vol. 381, no. 9861, pp. 117–124, 2013.eng
dcterms.referencesK. M. Dungan, S. T. Povedano, T. Forst et al., “Once-weekly dulaglutide versus once-daily liraglutide in metformin-treated patients with type 2 diabetes (AWARD-6): a randomised, open-label, phase 3, non-inferiority trial,” The Lancet, vol. 384, pp. 1349–1357, 2014.eng
dcterms.referencesR. E. Pratley, M. A. Nauck, A. H. Barnett et al., “Once-weekly albiglutide versus once-daily liraglutide in patients with type 2 diabetes inadequately controlled on oral drugs (HARMONY 7): a randomised, open-label, multicentre, non-inferiority phase 3 study,” The Lancet Diabetes and Endocrinology, vol. 2, no. 4, pp. 289–297, 2014.eng
dcterms.referencesC. Brock, C. S. Hansen, J. Karmisholt et al., “Liraglutide treatment reduced interleukin-6 in adults with type 1 diabetes but did not improve established autonomic or polyneuropathy,” British Journal of Clinical Pharmacology, vol. 85, no. 11, pp. 2512–2523, 2019.eng
dcterms.referencesL. G. Savchenko, N. I. Digtiar, L. G. Selikhova et al., “Liraglutide exerts an anti-inflammatory action in obese patients with type 2 diabetes,” Romanian Journal of Internal Medicine, vol. 57, pp. 233–240, 2019.eng
dcterms.referencesH. Kanda, S. Tateya, Y. Tamori et al., “MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity,” The Journal of Clinical Investigation, vol. 116, no. 6, pp. 1494–1505, 2006.eng
dcterms.referencesH. Hasita, Y. Komohara, H. Okabe et al., “Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma,” Cancer Science, vol. 101, pp. 1913–1919, 2010.eng
dcterms.referencesA. Sica and V. Bronte, “Altered macrophage differentiation and immune dysfunction in tumor development,” The Journal of Clinical Investigation, vol. 117, pp. 1155–1166, 2007.eng
dcterms.referencesD. Shiraishi, Y. Fujiwara, Y. Komohara, H. Mizuta, and M. Takeya, “Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation,” Biochemical and Biophysical Research Communications, vol. 425, pp. 304–308, 2012.eng
dcterms.referencesL. T. Kim Chung, T. Hosaka, M. Yoshida et al., “Exendin-4, a GLP-1 receptor agonist, directly induces adiponectin expression through protein kinase A pathway and prevents inflammatory adipokine expression,” Biochemical and Biophysical Research Communications, vol. 390, pp. 613–618, 2009.eng
dcterms.referencesE. Zhu, Y. Yang, J. Zhang et al., “Liraglutide suppresses obesity and induces brown fat-like phenotype via soluble guanylyl cyclase mediated pathway in vivo and in vitro,” Oncotarget, vol. 7, pp. 81077–81089, 2016.eng
dcterms.referencesS. Krishnan, J. Kraehling, F. Eitner, A. Bénardeau, and P. Sandner, “The impact of the nitric oxide (NO)/soluble guanylyl cyclase (SGC) signaling cascade on kidney health and disease: a preclinical perspective,” International Journal of Molecular Sciences, vol. 19, p. 1712, 2018.eng
dcterms.referencesJ. Decara, P. Rivera, S. Arrabal et al., “Cooperative role of the glucagon-like peptide-1 receptor and Β3-adrenergic-mediated signalling on fat mass reduction through the downregulation of PKA/AKT/AMPK signalling in the adipose tissue and muscle of rats,” Acta Physiologica (Oxford, England), vol. 222, article e13008, 2018.eng
dcterms.referencesT. Yokoi, K. Fukuo, O. Yasuda et al., “Apoptosis signal-regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells,” Diabetes, vol. 55, pp. 1660–1665, 2006.eng
dcterms.referencesS. Blazer, E. Khankin, Y. Segev et al., “High glucose-induced replicative senescence: point of no return and effect of telomerase,” Biochemical and Biophysical Research Communications, vol. 296, pp. 93–101, 2002eng
dcterms.referencesJ. Liu, K. Huang, G.-Y. Cai et al., “Receptor for advanced glycation end-products promotes premature senescence of proximal tubular epithelial cells via activation of endoplasmic reticulum stress-dependent P21 signaling,” Cellular Signalling, vol. 26, pp. 110–121, 2014.eng
dcterms.referencesR. E. Mouton and M. E. Venable, “Ceramide induces expression of the senescence histochemical marker, beta-galactosidase, in human fibroblasts,” Mechanisms of Ageing and Development, vol. 113, pp. 169–181, 2000.eng
dcterms.referencesJ. H. Ford, “Saturated fatty acid metabolism is key link between cell division, cancer, and senescence in cellular and whole organism aging,” Age, vol. 32, pp. 231–237, 2010.eng
dcterms.referencesD. Shang, D. Sun, C. Shi et al., “Activation of epidermal growth factor receptor signaling mediates cellular senescence induced by certain pro-inflammatory cytokines,” Aging Cell, vol. 19, pp. 1–13, 2020.eng
dcterms.referencesT. Sugizaki, S. Zhu, G. Guo et al., “Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality,” npj Aging and Mechanisms of Disease, vol. 3, no. 1, p. 12, 2017.eng
dcterms.referencesJ. Campisi and F. d'Adda di Fagagna, “Cellular senescence: when bad things happen to good cells,” Nature Reviews. Molecular Cell Biology, vol. 8, no. 9, pp. 729–740, 2007.eng
dcterms.referencesG. Nelson, J. Wordsworth, C. Wang et al., “A senescent cell bystander effect: senescence-induced senescence,” Aging Cell, vol. 11, pp. 345–349, 2012.eng
dcterms.referencesR. Madonna, V. Doria, I. Minnucci, A. Pucci, D. S. Pierdomenico, and R. De Caterina, “Empagliflozin reduces the senescence of cardiac stromal cells and improves cardiac function in a murine model of diabetes,” Journal of Cellular and Molecular Medicine, vol. 24, pp. 12331–12340, 2020.eng
dcterms.referencesK. Kitada, D. Nakano, H. Ohsaki et al., “Hyperglycemia causes cellular senescence via a SGLT2- and P21-dependent pathway in proximal tubules in the early stage of diabetic nephropathy,” Journal of Diabetes and its Complications, vol. 28, no. 5, pp. 604–611, 2014.eng
dcterms.referencesH. Oeseburg, R. A. de Boer, H. Buikema, P. van der Harst, W. H. van Gilst, and H. H. W. Silljé, “Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, pp. 1407–1414, 2010.eng
dcterms.referencesP. Liao, D. Yang, D. Liu, and Y. Zheng, “GLP-1 and ghrelin attenuate high glucose/high lipid-induced apoptosis and senescence of human microvascular endothelial cells,” Cellular Physiology and Biochemistry, vol. 44, pp. 1842–1855, 2017.eng
dcterms.referencesD. Verzola, M. T. Gandolfo, G. Gaetani et al., “Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy,” American Journal of Physiology Renal Physiology, vol. 295, no. 5, pp. F1563–F1573, 2008.eng
dcterms.referencesB. M. Klinkhammer, R. Kramann, M. Mallau et al., “Mesenchymal stem cells from rats with chronic kidney disease exhibit premature senescence and loss of regenerative potential,” PLoS One, vol. 9, no. 3, article e92115, 2014.eng
dcterms.referencesA. Tasanarong, S. Kongkham, and S. Khositseth, “Dual inhibiting senescence and epithelial-to-mesenchymal transition by erythropoietin preserve tubular epithelial cell regeneration and ameliorate renal fibrosis in unilateral ureteral obstruction,” BioMed Research International, vol. 2013, Article ID 308130, 2013.eng
dcterms.referencesJ. Liu, J.-R. Yang, Y.-N. He et al., “Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin A (IgA) nephropathy,” Translational Research, vol. 159, pp. 454–463, 2012.eng
dcterms.referencesW.-J. Wang, G.-Y. Cai, and X.-M. Chen, “Cellular senescence, senescence-associated secretory phenotype, and chronic kidney disease,” Oncotarget, vol. 8, no. 38, pp. 64520–64533, 2017.eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2021_JofDR_SGLT2i-and-GLP-1RA.pdf
Tamaño:
1.29 MB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones