Description and use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Images

datacite.rightshttp://purl.org/coar/access_right/c_abf2eng
dc.contributor.authorVera, Miguel
dc.contributor.authorBravo, Antonio
dc.date.accessioned2022-11-22T15:47:38Z
dc.date.available2022-11-22T15:47:38Z
dc.date.issued2022
dc.description.abstractThe World Health Organization indicates the top cause of death is heart disease. These diseases can be detected using several imaging modalities, especially cardiac computed tomography (CT), whose images have imperfections associated with noise and certain artifacts. To minimize the impact of these imperfections on the quality of the CT images, several researchers have developed digital image processing techniques (DPIT) by which the quality is evaluated considering several metrics and databases (DB), both real and simulated. This article describes the processes that made it possible to generate and utilize six three-dimensional synthetic cardiac DBs or voxels-based numerical phantoms. An exhaustive analysis of the most relevant features of images of the left ventricle, belonging to a real CT DB of the human heart, was performed. These features are recreated in the synthetic DBs, generating a reference phantom or ground truth free of imperfections (DB1) and five phantoms, in which Poisson noise (DB2), stair-step artifact (DB3), streak artifact (DB4), both artifacts (DB5) and all imperfections (DB6) are incorporated. These DBs can be used to determine the performance of DPIT, aimed at decreasing the effect of these imperfections on the quality of cardiac images.eng
dc.format.mimetypepdfeng
dc.identifier.citationVera, M., Bravo, A., & Medina, R. (2022). Description and Use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Images. Data, 7(8), 115. https://doi.org/10.3390/data7080115eng
dc.identifier.doihttps://doi.org/10.3390/data7080115
dc.identifier.issn23065729
dc.identifier.urihttps://hdl.handle.net/20.500.12442/11453
dc.language.isoengeng
dc.publisherMDPIeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceDataeng
dc.sourceVol. 7 Issue 8 (2022)eng
dc.subjectnumerical phantomseng
dc.subjectCardiac dataseteng
dc.subjectProcessing techniqueseng
dc.subjectArtifactseng
dc.subjectPoisson noiseeng
dc.titleDescription and use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Imageseng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesKroft, L.; De Roos, A.; Geleijns, J. Artifacts in ECG–synchronized MDCT coronary angiography. Am. J. Roentgenol. 2007, 189, 581–591.eng
dcterms.referencesShim, S.; Kim, Y.; Lim, S. Improvement of image quality with β–blocker premedication on ECG–gated 16–MDCT coronary angiography. Am. J. Roentgenol. 2005, 184, 649–654.eng
dcterms.referencesNiwa, S.; Ichikawa, K.; Kawashima, H.; Takata, T.; Minami, S.; Mitsui, W. Reduction of streak artifacts caused by low photon counts utilizing an image-based forward projection in computed tomography. Comput. Biol. Med. 2021, 135, 104583.eng
dcterms.referencesFaletra, F.; Pandian, N.; Ho, S. Anatomy of the Heart by Multislice Computed Tomography; Wiley: Hoboken, NJ, USA, 2008.eng
dcterms.referencesHong, C.; Becker, C.; Huber, A.; Schoepf, U.; Ohnesorge, B.; Knez, A.; Reiser, M. ECG–gated reconstructed multi–detector row CT coronary angiography: Effect of varying trigger delay on image quality. Radiology 2001, 220, 712–717.eng
dcterms.referencesRydber, J.; Buckwalter, K.; Caldemeyer, K.; Phillips, M.; Conces, D.; Aisen, A.; Persohn, S.; Kopecky, K. Multisection CT: Scanning techniques and clinical applications. RadioGraphics 2000, 20, 1787–1806.eng
dcterms.referencesClemente, J.; Bravo, A.; Medina, R. Using morphological and clustering analysis for left ventricle detection in MSCT cardiac images. In Proceedings of the IEEE International Symposium on Signal Processing and Information Technology, Sarajevo, Bosnia and Herzegovina, 16–19 December 2008; pp. 264–269.eng
dcterms.referencesPrimak, A.; McCollough, C.; Bruesewitz, M.; Zhang, J.; Fletcher, J. Relationship between noise, dose, and pitch in cardiacmulti–detector row CT. Radiographics 2006, 26, 1785–1794.eng
dcterms.referencesChan, R.; Chenz, K. Multilevel algorithm for a poisson noise removal model with total-variation regularization. Int. J. Comput. Math. 2007, 1, 1183–1198.eng
dcterms.referencesZanella, R.; Boccacci, P.; Zanni, L.; Bertero, M. Efficient gradient projection methods for edge–preserving removal of Poisson noise. Inverse Probl. 2009, 25, 045010.eng
dcterms.referencesMaiera, A.; Wigstrm, L.; Hofmann, H.; Hornegger, J.; Zhu, L.; Strobel, N.; Fahrig, R. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT. Med. Phys. 2011, 38, 5896–5909.eng
dcterms.referencesMcGarry, C.; Grattan, L.; Ivory, A.; Leek, F.; Liney, G.; Liu, Y.; Miloro, P.; Rai, R.; Robinson, A.; Shih, A.; et al. Tissue mimicking materials for imaging and therapy phantoms: A review. Phys. Med. Biol. 2020, 65, 44.eng
dcterms.referencesRoy, C.; Marini, D.; Segars, W.; Seed, M.; Macgowan, C. Fetal XCMR: A numerical phantom for fetal cardiovascular magnetic resonance imaging. J. Cardiovasc. Magn. Reson. 2019, 21, 29.eng
dcterms.referencesBravo, A.; Clemente, J.; Vera, M.; Avila, J.; Medina, R. A hybrid boundary–region left ventricle segmentation in computed tomography. In Proceedings of the 5th VISAPP, Angers, France, 17–21 May 2010; pp. 107–114.eng
dcterms.referencesVera, M. Segmentación de Estructuras Cardiacas en Imágenes de Tomografía Computarizada Multi-Corte. Ph.D. Thesis, Universidad de Los Andes, Mérida, Venezuela, 2014.eng
dcterms.referencesLi, F.; Rajchl, M.; White, J.; Goela, A.; Peters, T. Ultrasound Guidance for Beating Heart Mitral Valve Repair Augmented by Synthetic Dynamic CT. IEEE Trans. Med. Imaging 2015, 34, 2025–2035.eng
dcterms.referencesMüller, M.; Paganelli, C.; Keall, P. A phantom study to create synthetic CT from orthogonal two-dimensional cine MRI and evaluate the effect of irregular breathing. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 4162–4165.eng
dcterms.referencesLyu, F.; Ye, M.; Ma, A.; Yip, T.; Wong, H.; Yuen, P. Learning from Synthetic CT Images via Test-Time Training for Liver Tumor Segmentation. IEEE Trans. Med. Imaging 2022.eng
dcterms.referencesNomura, Y.; Watanabe, H.; Manila, N.; Asai, S.; Kurabayashi, T. Evaluation of streak metal artifacts in cone beam computed tomography by using the Gumbel distribution: A phantom study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 131, 494–502.eng
dcterms.referencesDossing, A.; Müller, F.; Becce, F.; Stamp, L.; Bliddal, H.; Boesen., M. Dual-energy computed tomography can detect and characterize monosodium urate, calcium pyrophosphate and hydroxyapatite: A phantom study on diagnostic performance. Osteoarthr. Cartil. 2021, 29, S320–S321.eng
dcterms.referencesMedici, S.; Desorgher, L.; Carbonez, P.; Damet, J.; Bochud, F.; Pitzschke, A. Impact of the phantom geometry on the evaluation of the minimum detectable activity following a radionuclide intake: From physical to numerical phantoms. Radiat. Meas. 2020, 139, 106485.eng
dcterms.referencesLubis, L.; Basith, R.; Hariyati, I.; Ryangga, D.; Mart, T.; Bosmans, H.; Soejoko, D. Novel phantom for performance evaluation of contrast-enhanced 3D rotational angiography. Phys. Med. 2021, 90, 91–98.eng
dcterms.referencesPasyar, P.; Masjoodi, S.; Montazeriani, Z.; Makkiabadi, B. A digital viscoelastic liver phantom for investigation of elastographic measurements. Comput. Biol. Med. 2020, 127, 104078.eng
dcterms.referencesShepp, L.; Logan, B. The Fourier Reconstruction of a Head Section. IEEE Trans. Nucl. Sci. 1974, 21, 21–43.eng
dcterms.referencesKoay, C.; Sarlls, J.; Özarslan, E. Three-Dimensional Analytical Magnetic Resonance Imaging Phantom in the Fourier Domain. Magn. Reson. Med. 2007, 58, 430–436.eng
dcterms.referencesCollins, D.; Zijdenbos, A.; Kollokian, V.; Sled, J.; Kabani, N.; Holmes, C.; Evans, C. Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 1998, 17, 463–468.eng
dcterms.referencesTrawiński, Z.; Wójcik, J.; Nowicki, A.; Olszewski, R.; Balcerzak, A.; Frankowska, E.; Zegadło, A.; Rydzyński, P. Strain examinations of the left ventricle phantom by ultrasound and multislices computed tomography imaging. Biocybern. Biomed. Eng. 2015, 35, 255–263.eng
dcterms.referencesBravo, A.; Vera, M.; Huérfano, Y.; Manrique, Y. A comprehensive study of a similarity criterion in cardiac computerized tomography images enhancement. Rev. Fac. Ing. Univ. Antioq. 2020, 102, 51–61.eng
dcterms.referencesPratt, W. Digital Image Processing; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2007.eng
dcterms.referencesPetrou, M.; Bosdogianni, P. Image Processing the Fundamentals; Wiley: Chichester, UK, 2003.eng
dcterms.referencesDevroye, L. Non-Uniform Random Variate Generation; Springer: New York, NY, USA, 1986.eng
dcterms.referencesKnuth, D. The art of computer programming. In Seminumerical Algorithms, 3rd ed.; Addison-Wesley: Boston, MA, USA, 1997; Volume 2.eng
dcterms.referencesAhrens, J.; Dieter, U. Computer generation of Poisson deviates from modified normal distributions. ACM Trans. Math. Softw. 1982, 8, 163–179.eng
dcterms.referencesHaralick, R.; Shapiro, L. Computer and Robot Vision. Boston; Addison-Wesley: Boston, MA, USA, 1992.eng
dcterms.referencesWang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Processing 2004, 13, 600–612.eng
dcterms.referencesBravo, A.; Medina, R. An unsupervised clustering framework for automatic segmentation of left ventricle cavity in human heart angiograms. Comput. Med. Imaging Graph. 2008, 32, 386–408.eng
dcterms.referencesVera, M.; Medina, R.; Del Mar, A.; Arellano, J.; Huérfano, Y.; Bravo, A. An automatic technique for left ventricle segmentation from msct cardiac volumes. J. Phys. Conf. Ser. 2019, 1160, 01200.eng
dcterms.referencesVera, M.; Bravo, A.; Garreau, M.; Medina, R. Similarity enhancement for automatic segmentation of cardiac structures in computed tomography volumes. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA; 2011; pp. 8094–8097.eng
dcterms.referencesChacón, G.; Rodríguez, J.E.; Bermúdez, V.; Flórez, A.; Del Mar, A.; Pardo, A.; Lameda, C.; Madriz, D.; Bravo, A.J. A score function as quality measure for cardiac image enhancement techniques assessment. Rev. Latinoam. Hipertens. 2019, 14, 180–186.eng
dcterms.referencesMeijering, H. Image Enhancement in Digital X–ray Angiography. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2000.eng
dcterms.referencesPerona, P.; Malik, J. Scalespace and edge detection using anisotropic diffusion. IEEE Trans. Patt. Anal. Mach. Intell. 1990, 12, 629–639.eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
3.86 MB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones