The Sick Adipose Tissue: New Insights Into Defective Signaling and Crosstalk With the Myocardium

datacite.rightshttp://purl.org/coar/access_right/c_abf2eng
dc.contributor.authorBermúdez, Valmore
dc.contributor.authorDurán, Pablo
dc.contributor.authorRojas, Edward
dc.contributor.authorDíaz, María P.
dc.contributor.authorRivas, José
dc.contributor.authorNava, Manuel
dc.contributor.authorChací, Maricarmen
dc.contributor.authorCabrera de Bravo, Mayela
dc.contributor.authorCarrasquero, Rubén
dc.contributor.authorCano Ponce, Clímaco
dc.contributor.authorGórriz, José Luis
dc.contributor.authorD'Marco, Luis
dc.date.accessioned2021-10-06T15:17:08Z
dc.date.available2021-10-06T15:17:08Z
dc.date.issued2021
dc.description.abstractAdipose tissue (AT) biology is linked to cardiovascular health since obesity is associated with cardiovascular disease (CVD) and positively correlated with excessive visceral fat accumulation. AT signaling to myocardial cells through soluble factors known as adipokines, cardiokines, branched-chain amino acids and small molecules like microRNAs, undoubtedly influence myocardial cells and AT function via the endocrine-paracrine mechanisms of action. Unfortunately, abnormal total and visceral adiposity can alter this harmonious signaling network, resulting in tissue hypoxia and monocyte/macrophage adipose infiltration occurring alongside expanded intra-abdominal and epicardial fat depots seen in the human obese phenotype. These processes promote an abnormal adipocyte proteomic reprogramming, whereby these cells become a source of abnormal signals, affecting vascular and myocardial tissues, leading to meta-inflammation, atrial fibrillation, coronary artery disease, heart hypertrophy, heart failure and myocardial infarction. This review first discusses the pathophysiology and consequences of adipose tissue expansion, particularly their association with meta-inflammation and microbiota dysbiosis. We also explore the precise mechanisms involved in metabolic reprogramming in AT that represent plausible causative factors for CVD. Finally, we clarify how lifestyle changes could promote improvement in myocardiocyte function in the context of changes in AT proteomics and a better gut microbiome profile to develop effective, non-pharmacologic approaches to CVD.eng
dc.format.mimetypepdfspa
dc.identifier.citationBermúdez V, Durán P, Rojas E, Díaz MP, Rivas J, Nava M, Chacín M, Cabrera de Bravo M, Carrasquero R, Ponce CC, Górriz JL and D´Marco L (2021) The Sick Adipose Tissue: New Insights Into Defective Signaling and Crosstalk With the Myocardium. Front. Endocrinol. 12:735070. doi: 10.3389/fendo.2021.735070eng
dc.identifier.doihttps://doi.org/10.3389/fendo.2021.735070
dc.identifier.issn16642392
dc.identifier.urihttps://hdl.handle.net/20.500.12442/8657
dc.language.isoengeng
dc.publisherFrontiers Mediaeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceFrontiers in Endocrinologyeng
dc.sourceVol. 12 (2021)
dc.subjectAdipose tissueeng
dc.subjectMyocardiocyteseng
dc.subjectMicrobiotaeng
dc.subjectObesityeng
dc.subjectInflammationeng
dc.titleThe Sick Adipose Tissue: New Insights Into Defective Signaling and Crosstalk With the Myocardiumeng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesWorld Health Organization. Obesity and Overweight. Available at: https:// www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (Accessed cited 2021 May 6).eng
dcterms.referencesCawley J, Meyerhoefer C. The Medical Care Costs of Obesity: An Instrumental Variables Approach. J Health Econ (2012) 31(1):219–30. doi: 10.1016/j.jhealeco.2011.10.003eng
dcterms.references. Fruh SM. Obesity: Risk Factors, Complications, and Strategies for Sustainable Long-Term Weight Management. J Am Assoc Nurse Pract (2017) 29(S1):S3–14. doi: 10.1002/2327-6924.12510eng
dcterms.referencesWorld Health Organization. Cardiovascular Diseases (CVDs). Available at: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases- (cvds) (Accessed cited 2021 May 6).eng
dcterms.referencesOikonomou EK, Antoniades C. The Role of Adipose Tissue in Cardiovascular Health and Disease. Nat Rev Cardiol (2019) 16(2):83–99. doi: 10.1038/s41569-018-0097-6eng
dcterms.referencesAntoniades C. “Dysfunctional” Adipose Tissue in Cardiovascular Disease: A Reprogrammable Target or an Innocent Bystander? Cardiovasc Res (2017) 113(9):997–8. doi: 10.1093/cvr/cvx116eng
dcterms.referencesRodrıguez A, Becerril S, Ezquerro S, Me ́ ́ndez-Giménez L, Frühbeck G. Crosstalk Between Adipokines and Myokines in Fat Browning. Acta Physiol (Oxf) (2017) 219(2):362–81. doi: 10.1111/apha.12686eng
dcterms.referencesArner P, Kulyté A. MicroRNA Regulatory Networks in Human Adipose Tissue and Obesity. Nat Rev Endocrinol (2015) 11(5):276–88. doi: 10.1038/ nrendo.2015.25eng
dcterms.referencesAhima RS, Lazar MA. Adipokines and the Peripheral and Neural Control of Energy Balance. Mol Endocrinol (2008) 22(5):1023–31. doi: 10.1210/ me.2007-0529eng
dcterms.referencesBohan R, Tianyu X, Tiantian Z, Ruonan F, Hongtao H, Qiong W, et al. Gut Microbiota: A Potential Manipulator for Host Adipose Tissue and Energy Metabolism. J Nutr Biochem (2019) 64:206–17. doi: 10.1016/ j.jnutbio.2018.10.020eng
dcterms.references. Matsuzawa Y, Shimomura I, Nakamura T, Keno Y, Kotani K, Tokunaga K. Pathophysiology and Pathogenesis of Visceral Fat Obesity. Obes Res (1995) 3(Suppl 2):187S–94S. doi: 10.1002/j.1550-8528.1995.tb00462.xeng
dcterms.referencesVacca M, Di Eusanio M, Cariello M, Graziano G, D’Amore S, Petridis FD, et al. Integrative miRNA and Whole-Genome Analyses of Epicardial Adipose Tissue in Patients With Coronary Atherosclerosis. Cardiovasc Res (2016) 109(2):228–39. doi: 10.1093/cvr/cvv266eng
dcterms.referencesGao L, Mei S, Zhang S, Qin Q, Li H, Liao Y, et al. Cardio-Renal Exosomes in Myocardial Infarction Serum Regulate Proangiogenic Paracrine Signaling in Adipose Mesenchymal Stem Cells. Theranostics (2020) 10(3):1060–73. doi: 10.7150/thno.37678eng
dcterms.referencesTran K-V, Majka J, Sanghai S, Sardana M, Lessard D, Milstone Z, et al. Micro-RNAs Are Related to Epicardial Adipose Tissue in Participants With Atrial Fibrillation: Data From the MiRhythm Study. Front Cardiovasc Med (2019) 6:115. doi: 10.3389/fcvm.2019.00115eng
dcterms.referencesGan XT, Zhao G, Huang CX, Rowe AC, Purdham DM, Karmazyn M. Identification of Fat Mass and Obesity Associated (FTO) Protein Expression in Cardiomyocytes: Regulation by Leptin and Its Contribution to LeptinInduced Hypertrophy. PloS One (2013) 8(9):e74235. doi: 10.1371/journal. pone.0074235eng
dcterms.referencesHruby A, Hu FB. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics (2015) 33(7):673–89. doi: 10.1007/s40273-014-0243-xeng
dcterms.referencesMoreira JBN, Wohlwend M, Wisløff U. Exercise and Cardiac Health: Physiological and Molecular Insights. Nat Metab (2020) 2(9):829–39. doi: 10.1038/s42255-020-0262-1eng
dcterms.referencesChait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med (2020) 7:22. doi: 10.3389/fcvm.2020. 00022eng
dcterms.referencesCinti S. The Adipose Organ at a Glance. Dis Model Mech (2012) 5(5):588–94. doi: 10.1242/dmm.009662eng
dcterms.referencesMariman ECM, Wang P. Adipocyte Extracellular Matrix Composition, Dynamics and Role in Obesity. Cell Mol Life Sci (2010) 67(8):1277–92. doi: 10.1007/s00018-010-0263-4eng
dcterms.referencesBadimon L, Cubedo J. Adipose Tissue Depots and Inflammation: Effects on Plasticity and Resident Mesenchymal Stem Cell Function. Cardiovasc Res (2017) 113(9):1064–73. doi: 10.1093/cvr/cvx096eng
dcterms.referencesRomacho T, Elsen M, Röhrborn D, Eckel J. Adipose Tissue and Its Role in Organ Crosstalk. Acta Physiol (Oxf) (2014) 210(4):733–53. doi: 10.1111/ apha.12246eng
dcterms.referencesGaborit B, Venteclef N, Ancel P, Pelloux V, Gariboldi V, Leprince P, et al. Human Epicardial Adipose Tissue Has a Specific Transcriptomic Signature Depending on Its Anatomical Peri-Atrial, Peri-Ventricular, or PeriCoronary Location. Cardiovasc Res (2015) 108(1):62–73. doi: 10.1093/cvr/ cvv208eng
dcterms.referencesLanthier N, Leclercq IA. Adipose Tissues as Endocrine Target Organs. Best Pract Res Clin Gastroenterol (2014) 28(4):545–58. doi: 10.1016/j.bpg. 2014.07.002eng
dcterms.referencesKajimura S. Advances in the Understanding of Adipose Tissue Biology. Nat Rev Endocrinol (2017) 13(2):69–70. doi: 10.1038/nrendo.2016.211eng
dcterms.referencesIozzo P. Myocardial, Perivascular, and Epicardial Fat. Diabetes Care (2011) 34(Suppl 2):S371–9. doi: 10.2337/dc11-s250eng
dcterms.referencesFerrero KM, Koch WJ. Metabolic Crosstalk Between the Heart and Fat. Korean Circ J (2020) 50(5):379. doi: 10.4070/kcj.2019.0400eng
dcterms.referencesHeeren J, Münzberg H. Novel Aspects of Brown Adipose Tissue Biology. Endocrinol Metab Clin North Am (2013) 42(1):89–107. doi: 10.1016/ j.ecl.2012.11.004eng
dcterms.referencesGaspar RC, Pauli JR, Shulman GI, Muñoz VR. An Update on Brown Adipose Tissue Biology: A Discussion of Recent Findings. Am J PhysiolEndocrinol Metab (2021) 320(3):E488–95. doi: 10.1152/ajpendo.00310.2020eng
dcterms.referencesSaito M. Human Brown Adipose Tissue: Regulation and Anti-Obesity Potential Review. Endocr J (2014) 61(5):409–16. doi: 10.1507/ endocrj.EJ13-0527eng
dcterms.referencesLeitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, McGehee S, et al. Mapping of Human Brown Adipose Tissue in Lean and Obese Young Men. Proc Natl Acad Sci USA (2017) 114(32):8649–54. doi: 10.1073/ pnas.1705287114eng
dcterms.referencesFrühbeck G, Becerril S, Sáinz N, Garrastachu P, Garcıa-Velloso MJ. BAT: A ́ New Target for Human Obesity? Trends Pharmacol Sci (2009) 30(8):387–96. doi: 10.1016/j.tips.2009.05.003eng
dcterms.referencesGaspar RC, Muñoz VR, Azevêdo Macêdo AP, Lins Vieira R, Pauli JR. A Palette of Adipose Tissue: Multiple Functionality and Extraordinary Plasticity. Trends Anat Physiol (2021) 4:013. doi: 10.24966/TAP-7752/ 100013eng
dcterms.referencesRosenwald M, Wolfrum C. The Origin and Definition of Brite Versus White and Classical Brown Adipocytes. Adipocyte (2014) 3(1):4–9. doi: 10.4161/ adip.26232eng
dcterms.referencesWu J, Cohen P, Spiegelman BM. Adaptive Thermogenesis in Adipocytes: Is Beige the New Brown? Genes Dev (2013) 27(3):234–50. doi: 10.1101/ gad.211649.112eng
dcterms.referencesWorld Health Organization. Health Topics. Obesity (2021). Available at: https://www.who.int/health-topics/obesity#tab=tab_1.eng
dcterms.referencesRutkowski JM, Stern JH, Scherer PE. The Cell Biology of Fat Expansion. J Cell Biol (2015) 208(5):501–12. doi: 10.1083/jcb.201409063eng
dcterms.referencesGhaben AL, Scherer PE. Adipogenesis and Metabolic Health. Nat Rev Mol Cell Biol (2019) 20(4):242–58. doi: 10.1038/s41580-018-0093-zeng
dcterms.referencesKusminski CM, Holland WL, Sun K, Park J, Spurgin SB, Lin Y, et al. MitoNEET-Driven Alterations in Adipocyte Mitochondrial Activity Reveal a Crucial Adaptive Process That Preserves Insulin Sensitivity in Obesity. Nat Med (2012) 18(10):1539–49. doi: 10.1038/nm.2899eng
dcterms.referencesXue R, Wan Y, Zhang S, Zhang Q, Ye H, Li Y. Role of Bone Morphogenetic Protein 4 in the Differentiation of Brown Fat-Like Adipocytes. Am J Physiol Endocrinol Metab (2014) 306(4):E363–372. doi: 10.1152/ajpendo.00119.2013eng
dcterms.referencesRosen ED, MacDougald OA. Adipocyte Differentiation From the Inside Out. Nat Rev Mol Cell Biol (2006) 7(12):885–96. doi: 10.1038/nrm2066eng
dcterms.referencesGustafson B, Hammarstedt A, Hedjazifar S, Smith U. Restricted Adipogenesis in Hypertrophic Obesity: The Role of WISP2, WNT, and BMP4. Diabetes (2013) 62(9):2997–3004. doi: 10.2337/db13-0473eng
dcterms.referencesKarastergiou K, Mohamed-Ali V. The Autocrine and Paracrine Roles of Adipokines. Mol Cell Endocrinol (2010) 318(1–2):69–78. doi: 10.1016/ j.mce.2009.11.011eng
dcterms.referencesHalberg N, Khan T, Trujillo ME, Wernstedt-Asterholm I, Attie AD, Sherwani S, et al. Hypoxia-Inducible Factor 1alpha Induces Fibrosis and Insulin Resistance in White Adipose Tissue. Mol Cell Biol (2009) 29 (16):4467–83. doi: 10.1128/MCB.00192-09eng
dcterms.referencesCarrière A, Carmona M-C, Fernandez Y, Rigoulet M, Wenger RH, Pénicaud L, et al. Mitochondrial Reactive Oxygen Species Control the Transcription Factor CHOP-10/GADD153 and Adipocyte Differentiation: A Mechanism for Hypoxia-Dependent Effect. J Biol Chem (2004) 279(39):40462–9. doi: 10.1074/jbc.M407258200eng
dcterms.referencesTrayhurn P. Hypoxia and Adipose Tissue Function and Dysfunction in Obesity. Physiol Rev (2013) 93(1):1–21. doi: 10.1152/physrev.00017.2012eng
dcterms.referencesWang B, Wood IS, Trayhurn P. PCR Arrays Identify Metallothionein-3 as a Highly Hypoxia-Inducible Gene in Human Adipocytes. Biochem Biophys Res Commun (2008) 368(1):88–93. doi: 10.1016/j.bbrc.2008.01.036eng
dcterms.referencesMazzatti D, Lim F-L, O’Hara A, Wood IS, Trayhurn P. A Microarray Analysis of the Hypoxia-Induced Modulation of Gene Expression in Human Adipocytes. Arch Physiol Biochem (2012) 118(3):112–20. doi: 10.3109/ 13813455.2012.654611eng
dcterms.referencesEngin A. Adipose Tissue Hypoxia in Obesity and Its Impact on Preadipocytes and Macrophages: Hypoxia Hypothesis. Adv Exp Med Biol (2017) 960:305–26. doi: 10.1007/978-3-319-48382-5_13eng
dcterms.referencesCildir G, Akıncılar SC, Tergaonkar V. Chronic Adipose Tissue Inflammation: All Immune Cells on the Stage. Trends Mol Med (2013) 19 (8):487–500. doi: 10.1016/j.molmed.2013.05.001eng
dcterms.referencesGuzik TJ, Skiba DS, Touyz RM, Harrison DG. The Role of Infiltrating Immune Cells in Dysfunctional Adipose Tissue. Cardiovasc Res (2017) 113 (9):1009–23. doi: 10.1093/cvr/cvx108eng
dcterms.referencesWeisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity Is Associated With Macrophage Accumulation in Adipose Tissue. J Clin Invest (2003) 112(12):1796–808. doi: 10.1172/JCI200319246eng
dcterms.referencesAmano SU, Cohen JL, Vangala P, Tencerova M, Nicoloro SM, Yawe JC, et al. Local Proliferation of Macrophages Contributes to Obesity-Associated Adipose Tissue Inflammation. Cell Metab (2014) 19(1):162–71. doi: 10.1016/j.cmet.2013.11.017eng
dcterms.referencesFujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y, et al. Regulatory Mechanisms for Adipose Tissue M1 and M2 Macrophages in Diet-Induced Obese Mice. Diabetes (2009) 58(11):2574–82. doi: 10.2337/db08-1475eng
dcterms.referencesKratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, et al. Metabolic Dysfunction Drives a Mechanistically Distinct Pro-Inflammatory Phenotype in Adipose Tissue Macrophages. Cell Metab (2014) 20(4):614–25. doi: 10.1016/j.cmet.2014.08.010eng
dcterms.referencesPatsouris D, Li P-P, Thapar D, Chapman J, Olefsky JM, Neels JG. Ablation of CD11c-Positive Cells Normalises Insulin Sensitivity in Obese Insulin Resistant Animals. Cell Metab (2008) 8(4):301–9. doi: 10.1016/j.cmet. 2008.08.015eng
dcterms.referencesSun K, Kusminski CM, Scherer PE. Adipose Tissue Remodeling and Obesity. J Clin Invest (2011) 121(6):2094–101. doi: 10.1172/JCI45887eng
dcterms.referencesCinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, et al. Adipocyte Death Defines Macrophage Localisation and Function in Adipose Tissue of Obese Mice and Humans. J Lipid Res (2005) 46 (11):2347–55. doi: 10.1194/jlr.M500294-JLR200eng
dcterms.referencesNishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ Effector T Cells Contribute to Macrophage Recruitment and Adipose Tissue Inflammation in Obesity. Nat Med (2009) 15(8):914–20. doi: 10.1038/ nm.1964eng
dcterms.referencesWiner DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, et al. B Cells Promote Insulin Resistance Through Modulation of T Cells and Production of Pathogenic IgG Antibodies. Nat Med (2011) 17(5):610–7. doi: 10.1038/ nm.2353eng
dcterms.referencesMansuy-Aubert V, Zhou QL, Xie X, Gong Z, Huang J-Y, Khan AR, et al. Imbalance Between Neutrophil Elastase and Its Inhibitor a1-Antitrypsin in Obesity Alters Insulin Sensitivity, Inflammation, and Energy Expenditure. Cell Metab (2013) 17(4):534–48. doi: 10.1016/j.cmet.2013.03.005eng
dcterms.referencesTalukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J, McNelis J, et al. Neutrophils Mediate Insulin Resistance in Mice Fed a High-Fat Diet Through Secreted Elastase. Nat Med (2012) 18(9):1407–12. doi: 10.1038/ nm.2885eng
dcterms.referencesPasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, et al. Reduced Adipose Tissue Oxygenation in Human Obesity: Evidence for Rarefaction, Macrophage Chemotaxis, and Inflammation Without an Angiogenic Response. Diabetes (2009) 58(3):718–25. doi: 10.2337/db08- 1098eng
dcterms.referencesSun K, Wernstedt Asterholm I, Kusminski CM, Bueno AC, Wang ZV, Pollard JW, et al. Dichotomous Effects of VEGF-A on Adipose Tissue Dysfunction. Proc Natl Acad Sci USA (2012) 109(15):5874–9. doi: 10.1073/ pnas.1200447109eng
dcterms.referencesVillaret A, Galitzky J, Decaunes P, Estève D, Marques M-A, Sengenès C, et al. Adipose Tissue Endothelial Cells From Obese Human Subjects: Differences Among Depots in Angiogenic, Metabolic, and Inflammatory Gene Expression and Cellular Senescence. Diabetes (2010) 59(11):2755–63. doi: 10.2337/db10-0398eng
dcterms.referencesKikuchi R, Nakamura K, MacLauchlan S, Ngo DT-M, Shimizu I, Fuster JJ, et al. An Anti-Angiogenic Isoform of VEGF-A Contributes to Impaired Vascularization in Peripheral Artery Disease. Nat Med (2014) 20(12):1464– 71. doi: 10.1038/nm.3703eng
dcterms.referencesNishimura S, Manabe I, Nagasaki M, Seo K, Yamashita H, Hosoya Y, et al. In Vivo Imaging in Mice Reveals Local Cell Dynamics and Inflammation in Obese Adipose Tissue. J Clin Invest (2008) 118(2):710–21. doi: 10.1172/ JCI33328eng
dcterms.referencesGreenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, et al. Local Inflammation and Hypoxia Abolish the Protective Anticontractile Properties of Perivascular Fat in Obese Patients. Circulation (2009) 119 (12):1661–70. doi: 10.1161/CIRCULATIONAHA.108.821181eng
dcterms.referencesBerg G, Miksztowicz V, Morales C, Barchuk M. Epicardial Adipose Tissue in Cardiovascular Disease. Adv Exp Med Biol (2019) 1127:131–43. doi: 10.1007/ 978-3-030-11488-6_9eng
dcterms.references. Spencer M, Unal R, Zhu B, Rasouli N, McGehee RE, Peterson CA, et al. Adipose Tissue Extracellular Matrix and Vascular Abnormalities in Obesity and Insulin Resistance. J Clin Endocrinol Metab (2011) 96(12):E1990–8. doi: 10.1210/jc.2011-1567eng
dcterms.referencesSun K, Park J, Gupta OT, Holland WL, Auerbach P, Zhang N, et al. Endotrophin Triggers Adipose Tissue Fibrosis and Metabolic Dysfunction. Nat Commun (2014) 5:3485. doi: 10.1038/ncomms4485eng
dcterms.referencesKhan T, Muise ES, Iyengar P, Wang ZV, Chandalia M, Abate N, et al. Metabolic Dysregulation and Adipose Tissue Fibrosis: Role of Collagen VI. Mol Cell Biol (2009) 29(6):1575–91. doi: 10.1128/MCB.01300-08eng
dcterms.referencesGeiger K, Leiherer A, Muendlein A, Stark N, Geller-Rhomberg S, Saely CH, et al. Identification of Hypoxia-Induced Genes in Human SGBS Adipocytes by Microarray Analysis. PloS One (2011) 6(10):e26465. doi: 10.1371/ journal.pone.0026465eng
dcterms.referencesYin J, Gao Z, He Q, Zhou D, Guo Z, Ye J. Role of Hypoxia in ObesityInduced Disorders of Glucose and Lipid Metabolism in Adipose Tissue. Am J Physiol Endocrinol Metab (2009) 296(2):E333–42. doi: 10.1152/ ajpendo.90760.2008eng
dcterms.referencesHayashi M, Sakata M, Takeda T, Yamamoto T, Okamoto Y, Sawada K, et al. Induction of Glucose Transporter 1 Expression Through HypoxiaInducible Factor 1alpha Under Hypoxic Conditions in TrophoblastDerived Cells. J Endocrinol (2004) 183(1):145–54. doi: 10.1677/joe. 1.05599eng
dcterms.referencesPark HS, Kim JH, Sun BK, Song SU, Suh W, Sung J-H. Hypoxia Induces Glucose Uptake and Metabolism of Adipose−Derived Stem Cells. Mol Med Rep (2016) 14(5):4706–14. doi: 10.3892/mmr.2016.5796eng
dcterms.referencesPérez de Heredia F, Wood IS, Trayhurn P. Hypoxia Stimulates Lactate Release and Modulates Monocarboxylate Transporter (MCT1, MCT2, and MCT4) Expression in Human Adipocytes. Pflugers Arch (2010) 459(3):509– 18. doi: 10.1007/s00424-009-0750-3spa
dcterms.referencesMylonis I, Simos G, Paraskeva E. Hypoxia-Inducible Factors and the Regulation of Lipid Metabolism. Cells (2019) 8(3):214. doi: 10.3390/ cells8030214eng
dcterms.referencesBarchetta I, Cimini FA, Ciccarelli G, Baroni MG, Cavallo MG. Sick Fat: The Good and the Bad of Old and New Circulating Markers of Adipose Tissue Inflammation. J Endocrinol Invest (2019) 42(11):1257–72. doi: 10.1007/ s40618-019-01052-3eng
dcterms.referencesChakrabarti P, Kim JY, Singh M, Shin Y-K, Kim J, Kumbrink J, et al. Insulin Inhibits Lipolysis in Adipocytes via the Evolutionarily Conserved Mtorc1- Egr1-ATGL-Mediated Pathway. Mol Cell Biol (2013) 33(18):3659–66. doi: 10.1128/MCB.01584-12eng
dcterms.referencesArner P, Rydén M. Fatty Acids, Obesity and Insulin Resistance. Obes Facts (2015) 8(2):147–55. doi: 10.1159/000381224eng
dcterms.referencesBöni-Schnetzler M, Boller S, Debray S, Bouzakri K, Meier DT, Prazak R, et al. Free Fatty Acids Induce a Pro-Inflammatory Response in Islets via the Abundantly Expressed Interleukin-1 Receptor I. Endocrinology (2009) 150 (12):5218–29. doi: 10.1210/en.2009-0543eng
dcterms.referencesKarastergiou K, Fried SK. Multiple Adipose Depots Increase Cardiovascular Risk via Local and Systemic Effects. Curr Atheroscler Rep (2013) 15(10):361. doi: 10.1007/s11883-013-0361-5eng
dcterms.referencesVillarroya F, Cereijo R, Gavaldà-Navarro A, Villarroya J, Giralt M. Inflammation of Brown/Beige Adipose Tissues in Obesity and Metabolic Disease. J Intern Med (2018) 284(5):492–504. doi: 10.1111/joim.12803eng
dcterms.referencesFerré P, Burnol AF, Leturque A, Terretaz J, Penicaud L, Jeanrenaud B, et al. Glucose Utilisation In Vivo and Insulin-Sensitivity of Rat Brown Adipose Tissue in Various Physiological and Pathological Conditions. Biochem J (1986) 233(1):249–52. doi: 10.1042/bj2330249eng
dcterms.referencesOrava J, Nuutila P, Noponen T, Parkkola R, Viljanen T, Enerbäck S, et al. Blunted Metabolic Responses to Cold and Insulin Stimulation in Brown Adipose Tissue of Obese Humans. Obes (Silver Spring) (2013) 21(11):2279– 87. doi: 10.1002/oby.20456eng
dcterms.references. Estève D, Boulet N, Volat F, Zakaroff-Girard A, Ledoux S, Coupaye M, et al. Human White and Brite Adipogenesis Is Supported by MSCA1 and Is Impaired by Immune Cells. Stem Cells (2015) 33(4):1277–91. doi: 10.1002/ stem.1916eng
dcterms.referencesHills RD, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients (2019) 11(7):1613. doi: 10.3390/nu11071613eng
dcterms.referencesRampelli S, Guenther K, Turroni S, Wolters M, Veidebaum T, Kourides Y, et al. Pre-Obese Children’s Dysbiotic Gut Microbiome and Unhealthy Diets may Predict the Development of Obesity. Commun Biol (2018) 1(1):222. doi: 10.1155/2016/1629236eng
dcterms.referencesBackhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The Gut Microbiota as an Environmental Factor That Regulates Fat Storage. Proc Natl Acad Sci (2004) 101(44):15718–23. doi: 10.1073/pnas.0407076101eng
dcterms.referencesBäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms Underlying the Resistance to Diet-Induced Obesity in Germ-Free Mice. Proc Natl Acad Sci USA (2007) 104(3):979–84. doi: 10.1073/pnas. 0605374104eng
dcterms.referencesRidaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut Microbiota From Twins Discordant for Obesity Modulate Metabolism in Mice. Science (2013) 341(6150):1241214. doi: 10.1126/science.1241214eng
dcterms.referencesGhosh SS, Wang J, Yannie PJ, Ghosh S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J Endocr Soc (2020) 4(2):bvz039. doi: 10.1210/jendso/bvz039eng
dcterms.referencesRohr MW, Narasimhulu CA, Rudeski-Rohr TA, Parthasarathy S. Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Adv Nutr (2020) 11(1):77–91. doi: 10.1093/advances/nmz061eng
dcterms.referencesGuo S, Al-Sadi R, Said HM, Ma TY. Lipopolysaccharide Causes an Increase in Intestinal Tight Junction Permeability In Vitro and In Vivo by Inducing Enterocyte Membrane Expression and Localisation of TLR-4 and CD14. Am J Pathol (2013) 182(2):375–87. doi: 10.1016/j.ajpath.2012.10.014eng
dcterms.referencesCani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes (2007) 56(7):1761–72. doi: 10.2337/db06-1491eng
dcterms.referencesSong MJ, Kim KH, Yoon JM, Kim JB. Activation of Toll-Like Receptor 4 Is Associated With Insulin Resistance in Adipocytes. Biochem Biophys Res Commun (2006) 346(3):739–45. doi: 10.1016/j.bbrc.2006.05.170eng
dcterms.referencesCaesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk Between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation Through TLR Signaling. Cell Metab (2015) 22(4):658–68. doi: 10.1016/j.cmet.2015.07.026eng
dcterms.referencesCao W, Huang H, Xia T, Liu C, Muhammad S, Sun C. Homeobox A5 Promotes White Adipose Tissue Browning Through Inhibition of the Tenascin C/Toll-Like Receptor 4/Nuclear Factor Kappa B Inflammatory Signaling in Mice. Front Immunol (2018) 9:647. doi: 10.3389/fimmu.2018.00647eng
dcterms.referencesOkla M, Wang W, Kang I, Pashaj A, Carr T, Chung S. Activation of Toll-Like Receptor 4 (TLR4) Attenuates Adaptive Thermogenesis via Endoplasmic Reticulum Stress. J Biol Chem (2015) 290(44):26476–90. doi: 10.1074/ jbc.M115.677724eng
dcterms.referencesMuccioli GG, Naslain D, Bäckhed F, Reigstad CS, Lambert DM, Delzenne NM, et al. The Endocannabinoid System Links Gut Microbiota to Adipogenesis. Mol Syst Biol (2010) 6:392. doi: 10.1038/msb.2010.46eng
dcterms.referencesMyhrstad MCW, Tunsjø H, Charnock C, Telle-Hansen VH. Dietary Fiber, Gut Microbiota, and Metabolic Regulation-Current Status in Human Randomized Trials. Nutrients (2020) 12(3):859. doi: 10.3390/nu12030859eng
dcterms.referencesBlachier F, Mariotti F, Huneau JF, Tomé D. Effects of Amino Acid-Derived Luminal Metabolites on the Colonic Epithelium and Physiopathological Consequences. Amino Acids (2007) 33(4):547–62. doi: 10.1007/s00726-006- 0477-9eng
dcterms.referencesKim CH. Microbiota or Short-Chain Fatty Acids: Which Regulates Diabetes? Cell Mol Immunol (2018) 15(2):88–91. doi: 10.1038/cmi.2017.57eng
dcterms.referencesPostler TS, Ghosh S. Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metab (2017) 26(1):110–30. doi: 10.1016/j.cmet.2017.05.008eng
dcterms.referencesRatajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O, Laszczyńska M. Immunomodulatory Potential of Gut Microbiome-Derived Short-Chain Fatty Acids (SCFAs). Acta Biochim Pol (2019) 66(1):1–12. doi: 10.18388/ abp.2018_2648eng
dcterms.referencesOn behalf of the Obesity Programs of nutrition, Education, Research and Assessment (OPERA) group, Muscogiuri G, Cantone E, Cassarano S, Tuccinardi D, Barrea L, et al. Gut Microbiota: A New Path to Treat Obesity. Int J Obes Supp (2019) 9(1):10–9. doi: 10.1038/s41367-019-0011-7eng
dcterms.referencesTurnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An Obesity-Associated Gut Microbiome With Increased Capacity for Energy Harvest. Nature (2006) 444(7122):1027–31. doi: 10.1038/nature05414eng
dcterms.referencesSamuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, et al. Effects of the Gut Microbiota on Host Adiposity Are Modulated by the Short-Chain Fatty-Acid Binding G Protein-Coupled Receptor, Gpr41. Proc Natl Acad Sci USA (2008) 105(43):16767–72. doi: 10.1073/pnas.0808567105eng
dcterms.referencesMusso G, Gambino R, Cassader M. Interactions Between Gut Microbiota and Host Metabolism Predisposing to Obesity and Diabetes. Annu Rev Med (2011) 62:361–80. doi: 10.1146/annurev-med-012510-175505eng
dcterms.referencesGrasset E, Puel A, Charpentier J, Collet X, Christensen JE, Tercé F, et al. A Specific Gut Microbiota Dysbiosis of Type 2 Diabetic Mice Induces GLP-1 Resistance Through an Enteric NO-Dependent and Gut-Brain Axis Mechanism. Cell Metab (2017) 26(1):278. doi: 10.1016/j.cmet.2017.04.013eng
dcterms.referencesSchugar RC, Shih DM, Warrier M, Helsley RN, Burrows A, Ferguson D, et al. The TMAO-Producing Enzyme Flavin-Containing Monooxygenase 3 Regulates Obesity and the Beiging of White Adipose Tissue. Cell Rep (2017) 19(12):2451–61. doi: 10.1016/j.celrep.2017.05.077eng
dcterms.referencesCavallari JF, Fullerton MD, Duggan BM, Foley KP, Denou E, Smith BK, et al. Muramyl Dipeptide-Based Postbiotics Mitigate Obesity-Induced Insulin Resistance via IRF4. Cell Metab (2017) 25(5):1063–74.e3. doi: 10.1016/ j.cmet.2017.03.021eng
dcterms.referencesVirtue AT, McCright SJ, Wright JM, Jimenez MT, Mowel WK, Kotzin JJ, et al. The Gut Microbiota Regulates White Adipose Tissue Inflammation and Obesity via a Family of microRNAs. Sci Transl Med (2019) 11(496): eaav1892. doi: 10.1126/scitranslmed.aav1892eng
dcterms.referencesPatterson E, Ryan PM, Cryan JF, Dinan TG, Ross RP, Fitzgerald GF, et al. Gut Microbiota, Obesity and Diabetes. Postgrad Med J (2016) 92(1087):286– 300. doi: 10.1136/postgradmedj-2015-133285eng
dcterms.referencesMartınez-Sa ́ ́nchez N. There and Back Again: Leptin Actions in White Adipose Tissue. Int J Mol Sci (2020) 21(17):6039. doi: 10.3390/ijms21176039eng
dcterms.referencesIzquierdo AG, Crujeiras AB, Casanueva FF, Carreira MC. Leptin, Obesity, and Leptin Resistance: Where Are We 25 Years Later? Nutrients (2019) 11 (11):2704. doi: 10.3390/nu11112704eng
dcterms.referencesFuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ Res (2016) 118(11):1786–807. doi: 10.1161/CIRCRESAHA.115.306885eng
dcterms.referencesTeixeira TM, da Costa DC, Resende AC, Soulage CO, Bezerra FF, Daleprane JB. Activation of Nrf2-Antioxidant Signaling by 1,25- Dihydroxycholecalciferol Prevents Leptin-Induced Oxidative Stress and Inflammation in Human Endothelial Cells. J Nutr (2017) 147(4):506–13. doi: 10.3945/jn.116.239475eng
dcterms.referencesYamagishi SI, Edelstein D, Du XL, Kaneda Y, Guzmán M, Brownlee M. Leptin Induces Mitochondrial Superoxide Production and Monocyte Chemoattractant Protein-1 Expression in Aortic Endothelial Cells by Increasing Fatty Acid Oxidation via Protein Kinase a. J Biol Chem (2001) 276(27):25096–100. doi: 10.1074/jbc.M007383200eng
dcterms.referencesHongo S, Watanabe T, Arita S, Kanome T, Kageyama H, Shioda S, et al. Leptin Modulates ACAT1 Expression and Cholesterol Efflux From Human Macrophages. Am J Physiol Endocrinol Metab (2009) 297(2):E474–82. doi: 10.1152/ajpendo.90369.2008eng
dcterms.referencesSingh S, Lohakare AC. Association of Leptin and Carotid Intima-Media Thickness in Overweight and Obese Individuals: A Cross-Sectional Study. J Assoc Physicians India (2020) 68(8):19–23. doi: 10.1155/2018/4285038eng
dcterms.referencesRahmani A, Toloueitabar Y, Mohsenzadeh Y, Hemmati R, Sayehmiri K, Asadollahi K. Association Between Plasma Leptin/Adiponectin Ratios With the Extent and Severity of Coronary Artery Disease. BMC Cardiovasc Disord (2020) 20(1):474. doi: 10.1186/s12872-020-01723-7eng
dcterms.referencesGan XT, Zhao G, Huang CX, Rowe AC, Purdham DM, Karmazyn M. Identification of Fat Mass and Obesity Associated (FTO) Protein Expression in Cardiomyocytes: Regulation by Leptin and Its Contribution to LeptinInduced Hypertrophy. PloS One (2013) 8(9):e74235. doi: 10.1371/ journal.pone.0074235eng
dcterms.referencesXu F-P, Chen M-S, Wang Y-Z, Yi Q, Lin S-B, Chen AF, et al. Leptin Induces Hypertrophy via Endothelin-1-Reactive Oxygen Species Pathway in Cultured Neonatal Rat Cardiomyocytes. Circulation (2004) 110(10):1269– 75. doi: 10.1161/01.CIR.0000140766.52771.6Deng
dcterms.referencesZeidan A, Hunter JC, Javadov S, Karmazyn M. mTOR Mediates RhoADependent Leptin-Induced Cardiomyocyte Hypertrophy. Mol Cell Biochem (2011) 352(1):99–108. doi: 10.1007/s11010-011-0744-2eng
dcterms.referencesHou N, Luo M-S, Liu S-M, Zhang H-N, Xiao Q, Sun P, et al. Leptin Induces Hypertrophy Through Activating the Peroxisome Proliferator-Activated Receptor a Pathway in Cultured Neonatal Rat Cardiomyocytes. Clin Exp Pharmacol Physiol (2010) 37(11):1087–95. doi: 10.1111/j.1440-1681.2010. 05442.xeng
dcterms.referencesPerego L, Pizzocri P, Corradi D, Maisano F, Paganelli M, Fiorina P, et al. Circulating Leptin Correlates With Left Ventricular Mass in Morbid (Grade III) Obesity Before and After Weight Loss Induced by Bariatric Surgery: A Potential Role for Leptin in Mediating Human Left Ventricular Hypertrophy. J Clin Endocrinol Metab (2005) 90(7):4087–93. doi: 10.1210/ jc.2004-1963eng
dcterms.referencesBarouch Lili A, Berkowitz Dan E, Harrison Robert W, O’Donnell Christopher P, Hare Joshua M. Disruption of Leptin Signaling Contributes to Cardiac Hypertrophy Independently of Body Weight in Mice. Circulation (2003) 108(6):754–9. doi: 10.1161/01.CIR.0000083716.82622.FDeng
dcterms.referencesMartin SS, Blaha MJ, Muse ED, Qasim AN, Reilly MP, Blumenthal RS, et al. Leptin and Incident Cardiovascular Disease: The Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis (2015) 239(1):67–72. doi: 10.1016/ j.atherosclerosis.2014.12.033eng
dcterms.referencesHall ME, Maready MW, Hall JE, Stec DE. Rescue of Cardiac Leptin Receptors in Db/Db Mice Prevents Myocardial Triglyceride Accumulation. Am J Physiol Endocrinol Metab (2014) 307(3):E316–25. doi: 10.1152/ ajpendo.00005.2014eng
dcterms.referencesLieb W, Xanthakis V, Sullivan LM, Aragam J, Pencina MJ, Larson MG, et al. Longitudinal Tracking of Left Ventricular Mass Over the Adult Life Course: Clinical Correlates of Short- and Long-Term Change in the Framingham Offspring Study. Circulation (2009) 119(24):3085–92. doi: 10.1161/ CIRCULATIONAHA.108.824243eng
dcterms.referencesMohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, et al. Subcutaneous Adipose Tissue Releases Interleukin-6, But Not Tumor Necrosis Factor-Alpha, In Vivo. J Clin Endocrinol Metab (1997) 82 (12):4196–200. doi: 10.1210/jcem.82.12.4450eng
dcterms.referencesYamauchi-Takihara K, Kishimoto T. Cytokines and Their Receptors in Cardiovascular Diseases–Role of Gp130 Signaling Pathway in Cardiac Myocyte Growth and Maintenance. Int J Exp Pathol (2000) 81(1):1–16. doi: 10.1046/j.1365-2613.2000.00139.xeng
dcterms.referencesYu X-W, Chen Q, Kennedy RH, Liu SJ. Inhibition of Sarcoplasmic Reticular Function by Chronic Interleukin-6 Exposure via iNOS in Adult Ventricular Myocytes. J Physiol (2005) 566(Pt 2):327–40. doi: 10.1113/jphysiol.2005.086686eng
dcterms.referencesFontes JA, Rose NR, Č iháková D. The Varying Faces of IL-6: From Cardiac Protection to Cardiac Failure. Cytokine (2015) 74(1):62–8. doi: 10.1016/ j.cyto.2014.12.024eng
dcterms.referencesFuchs M, Hilfiker A, Kaminski K, Hilfiker-Kleiner D, Guener Z, Klein G, et al. Role of Interleukin-6 for LV Remodeling and Survival After Experimental Myocardial Infarction. FASEB J (2003) 17(14):2118–20. doi: 10.1096/fj.03-0331fjeeng
dcterms.references. Yan AT, Yan RT, Cushman M, Redheuil A, Tracy RP, Arnett DK, et al. Relationship of Interleukin-6 With Regional and Global Left-Ventricular Function in Asymptomatic Individuals Without Clinical Cardiovascular Disease: Insights From the Multi-Ethnic Study of Atherosclerosis. Eur Heart J (2010) 31(7):875–82. doi: 10.1093/eurheartj/ehp454eng
dcterms.referencesMarkousis-Mavrogenis G, Tromp J, Ouwerkerk W, Devalaraja M, Anker SD, Cleland JG, et al. The Clinical Significance of Interleukin-6 in Heart Failure: Results From the BIOSTAT-CHF Study. Eur J Heart Failure (2019) 21 (8):965–73. doi: 10.1002/ejhf.1482eng
dcterms.referencesHui X, Lam KSL, Vanhoutte PM, Xu A. Adiponectin and Cardiovascular Health: An Update. Br J Pharmacol (2012) 165(3):574–90. doi: 10.1111/ j.1476-5381.2011.01395.xeng
dcterms.referencesDong F, Ren J. Adiponectin Improves Cardiomyocyte Contractile Function in Db/Db Diabetic Obese Mice. Obes (Silver Spring) (2009) 17(2):262–8. doi: 10.1038/oby.2008.545eng
dcterms.referencesAmin RH, Mathews ST, Alli A, Leff T. Endogenously Produced Adiponectin Protects Cardiomyocytes From Hypertrophy by a Pparg-Dependent Autocrine Mechanism. Am J Physiol-Heart Circ Physiol (2010) 299(3): H690–8. doi: 10.1152/ajpheart.01032.2009eng
dcterms.referencesTao L, Gao E, Jiao X, Yuan Y, Li S, Christopher Theodore A, et al. Adiponectin Cardioprotection After Myocardial Ischemia/Reperfusion Involves the Reduction of Oxidative/Nitrative Stress. Circulation (2007) 115(11):1408–16. doi: 10.1161/CIRCULATIONAHA.106.666941eng
dcterms.referencesIkeda Y, Ohashi K, Shibata R, Pimentel DR, Kihara S, Ouchi N, et al. Cyclooxygenase-2 Induction by Adiponectin Is Regulated by a Sphingosine Kinase-1 Dependent Mechanism in Cardiac Myocytes. FEBS Lett (2008) 582 (7):1147–50. doi: 10.1016/j.febslet.2008.03.002eng
dcterms.referencesCao Y, Tao L, Yuan Y, Jiao X, Lau WB, Wang Y, et al. Endothelial Dysfunction in Adiponectin Deficiency and Its Mechanisms Involved. J Mol Cell Cardiol (2009) 46(3):413–9. doi: 10.1016/j.yjmcc.2008.10.014eng
dcterms.referencesPischon T. Plasma Adiponectin Levels and Risk of Myocardial Infarction in Men. JAMA (2004) 291(14):1730. doi: 10.1001/jama.291.14.1730eng
dcterms.referencesKozakova M, Muscelli E, Flyvbjerg A, Frystyk J, Morizzo C, Palombo C, et al. Adiponectin and Left Ventricular Structure and Function in Healthy Adults. J Clin Endocrinol Metab (2008) 93(7):2811–8. doi: 10.1210/jc.2007-2580eng
dcterms.referencesSook Lee E, Park S, Kim E, Sook Yoon Y, Ahn H-Y, Park C-Y, et al. Association Between Adiponectin Levels and Coronary Heart Disease and Mortality: A Systematic Review and Meta-Analysis. Int J Epidemiol (2013) 42 (4):1029–39. doi: 10.1093/ije/dyt087eng
dcterms.references. Van Berendoncks AM, Garnier A, Beckers P, Hoymans VY, Possemiers N, Fortin D, et al. Functional Adiponectin Resistance at the Level of the Skeletal Muscle in Mild to Moderate Chronic Heart Failure. Circ Heart Fail (2010) 3 (2):185–94. doi: 10.1161/CIRCHEARTFAILURE.109.885525eng
dcterms.referencesMenon V, Li L, Wang X, Greene T, Balakrishnan V, Madero M, et al. Adiponectin and Mortality in Patients With Chronic Kidney Disease. J Am Soc Nephrol (2006) 17(9):2599–606. doi: 10.1681/ASN.2006040331eng
dcterms.referencesSun H, Wang Y. Branched Chain Amino Acid Metabolic Reprogramming in Heart Failure. Biochim Biophys Acta (BBA) Mol Basis Dis (2016) 1862 (12):2270–5. doi: 10.1016/j.bbadis.2016.09.009eng
dcterms.referencesWang W, Zhang F, Xia Y, Zhao S, Yan W, Wang H, et al. Defective Branched Chain Amino Acid Catabolism Contributes to Cardiac Dysfunction and Remodeling Following Myocardial Infarction. Am J Physiol-Heart Circ Physiol (2016) 311(5):H1160–9. doi: 10.1152/ajpheart.00114.2016eng
dcterms.references. Li T, Zhang Z, Kolwicz SC, Abell L, Roe ND, Kim M, et al. Defective Branched-Chain Amino Acid Catabolism Disrupts Glucose Metabolism and Sensitises the Heart to Ischemia-Reperfusion Injury. Cell Metab (2017) 25 (2):374–85. doi: 10.1016/j.cmet.2016.11.005eng
dcterms.referencesPisarenko OI. Mechanisms of Myocardial Protection by Amino Acids: Facts and Hypotheses. Clin Exp Pharmacol Physiol (1996) 23(8):627–33. doi: 10.1111/j.1440-1681.1996.tb01748.xeng
dcterms.referencesHalama A, Horsch M, Kastenmüller G, Möller G, Kumar P, Prehn C, et al. Metabolic Switch During Adipogenesis: From Branched Chain Amino Acid Catabolism to Lipid Synthesis. Arch Biochem Biophysics (2016) 589:93–107. doi: 10.1016/j.abb.2015.09.013eng
dcterms.referencesHerman MA, She P, Peroni OD, Lynch CJ, Kahn BB. Adipose Tissue Branched Chain Amino Acid (BCAA) Metabolism Modulates Circulating BCAA Levels*. J Biol Chem (2010) 285(15):11348–56. doi: 10.1074/ jbc.M109.075184eng
dcterms.referencesHuang Y, Zhou M, Sun H, Wang Y. Branched-Chain Amino Acid Metabolism in Heart Disease: An Epiphenomenon or a Real Culprit? Cardiovasc Res (2011) 90(2):220–3. doi: 10.1093/cvr/cvr070eng
dcterms.referencesTobias DK, Lawler PR, Harada PH, Demler OV, Ridker PM, Manson JE, et al. Circulating Branched-Chain Amino Acids and Incident Cardiovascular Disease in a Prospective Cohort of US Women. Circ Genom Precis Med (2018) 11(4):e002157. doi: 10.1161/CIRCGEN.118.002157eng
dcterms.referencesPeterson MB, Mead RJ, Welty JD. Free Amino Acids in Congestive Heart Failure. J Mol Cell Cardiol (1973) 5(2):139–47. doi: 10.1016/0022-2828(73) 90047-3eng
dcterms.referencesKato T, Niizuma S, Inuzuka Y, Kawashima T, Okuda J, Tamaki Y, et al. Analysis of Metabolic Remodeling in Compensated Left Ventricular Hypertrophy and Heart Failure. Circ Heart Fail (2010) 3(3):420–30. doi: 10.1161/CIRCHEARTFAILURE.109.888479eng
dcterms.referencesAquilani R, La Rovere M, Corbellini D, Pasini E, Verri M, Barbieri A, et al. Plasma Amino Acid Abnormalities in Chronic Heart Failure. Mechanisms, Potential Risks and Targets in Human Myocardium Metabolism. Nutrients (2017) 9(11):1251. doi: 10.3390/nu9111251eng
dcterms.referencesGreen CR, Wallace M, Divakaruni AS, Phillips SA, Murphy AN, Ciaraldi TP, et al. Branched-Chain Amino Acid Catabolism Fuels Adipocyte Differentiation and Lipogenesis. Nat Chem Biol (2016) 12(1):15–21. doi: 10.1038/nchembio.1961eng
dcterms.referencesThoonen R, Hindle AG, Scherrer-Crosbie M. Brown Adipose Tissue: The Heat Is on the Heart. Am J Physiol-Heart Circ Physiol (2016) 310(11):H1592– 605. doi: 10.1152/ajpheart.00698.2015eng
dcterms.referencesGruden G, Landi A, Bruno G. Natriuretic Peptides, Heart, and Adipose Tissue: New Findings and Future Developments for Diabetes Research. Dia Care (2014) 37(11):2899–908. doi: 10.2337/dc14-0669eng
dcterms.referencesSaito Y, Nakao K, Itoh H, Yamada T, Mukoyama M, Arai H, et al. Brain Natriuretic Peptide Is a Novel Cardiac Hormone. Biochem Biophys Res Commun (1989) 158(2):360–8. doi: 10.1016/S0006-291X(89)80056-7eng
dcterms.referencesPlanavila A, Fernández-Solà J, Villarroya F. Cardiokines as Modulators of Stress-Induced Cardiac Disorders. In: Advances in Protein Chemistry and Structural Biology. Elsevier (2017). Available at: https://linkinghub.elsevier. com/retrieve/pii/S1876162317300020 (Accessed cited 2021 Mar 18).eng
dcterms.referencesShimano M, Ouchi N, Walsh K. Cardiokines: Recent Progress in Elucidating the Cardiac Secretome. Circulation (2012) 126(21):e327–e32. doi: 10.1161/ CIRCGEN.118.002157eng
dcterms.referencesHosoda K, Nakao K, Mukoyama M, Saito Y, Jougasaki M, Shirakami G, et al. Expression of Brain Natriuretic Peptide Gene in Human Heart. Production in the Ventricle. Hypertension (1991) 17(6_pt_2):1152–5. doi: 10.1161/ 01.hyp.17.6.1152eng
dcterms.referencesJahng JWS, Song E, Sweeney G. Crosstalk Between the Heart and Peripheral Organs in Heart Failure. Exp Mol Med (2016) 48(3):e217–7. doi: 10.1038/ emm.2016.20eng
dcterms.referencesSarzani P, Dessì-Fulgheri P, Paci VM, Espinosa E, Rappelli A. Expression of Natriuretic Peptide Receptors in Human Adipose and Other Tissues. J Endocrinol Invest (1996) 19(9):581–5. doi: 10.1007/BF03349021eng
dcterms.referencesBordicchia M, Liu D, Amri E-Z, Ailhaud G, Dessì-Fulgheri P, Zhang C, et al. Cardiac Natriuretic Peptides Act via P38 MAPK to Induce the Brown Fat Thermogenic Program in Mouse and Human Adipocytes. J Clin Invest (2012) 122(3):1022–36. doi: 10.1172/JCI59701eng
dcterms.referencesNakamura M, Sadoshima J. Heart Over Mind: Metabolic Control of White Adipose Tissue and Liver. EMBO Mol Med (2014) 6(12):1521–4. doi: 10.15252/emmm.201404749eng
dcterms.referencesDewey CM, Spitler KM, Ponce JM, Hall DD, Grueter CE. Cardiac-Secreted Factors as Peripheral Metabolic Regulators and Potential Disease Biomarkers. JAHA (2016) 5(6):e003101. doi: 10.1161/JAHA.115.003101eng
dcterms.referencesSengenes C, Stich V, Berlan M, Hejnova J, Lafontan M, Pariskova Z, et al. Increased Lipolysis in Adipose Tissue and Lipid Mobilisation to Natriuretic Peptides During Low-Calorie Diet in Obese Women. Int J Obes (2002) 26 (1):24–32. doi: 10.1038/sj.ijo.0801845eng
dcterms.referencesWang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Wilson PWF, et al. Impact of Obesity on Plasma Natriuretic Peptide Levels. Circulation (2004) 109(5):594–600. doi: 10.1161/01.CIR.0000112582.16683.EAeng
dcterms.referencesPlante E, Menaouar A, Danalache BA, Broderick TL, Jankowski M, Gutkowska J. Treatment With Brain Natriuretic Peptide Prevents the Development of Cardiac Dysfunction in Obese Diabetic Db/Db Mice. Diabetologia (2014) 57(6):1257–67. doi: 10.1007/s00125-014-3201-4eng
dcterms.referencesSilva M. The Role of BNP on Adipose Tissue Adaptations. Eur J Heart Fail (2017) 19:5–601. doi: 10.1002/ejhf.833eng
dcterms.referencesKovacova Z, Tharp WG, Liu D, Wei W, Xie H, Collins S, et al. Adipose Tissue Natriuretic Peptide Receptor Expression Is Related to Insulin Sensitivity in Obesity and Diabetes: Natriuretic Peptide Receptors in Metabolic Disease. Obesity (2016) 24(4):820–8. doi: 10.1002/oby.21418eng
dcterms.referencesHuang Y, Yan Y, Xv W, Qian G, Li C, Zou H, et al. A New Insight Into the Roles of MiRNAs in Metabolic Syndrome. BioMed Res Int (2018) 2018:1–15. doi: 10.1155/2018/7372636eng
dcterms.referencesAleksandrova K, Mozaffarian D, Pischon T. Addressing the Perfect Storm: Biomarkers in Obesity and Pathophysiology of Cardiometabolic Risk. Clin Chem (2018) 64(1):142–53. doi: 10.1373/clinchem.2017.275172eng
dcterms.referencesBang C, Antoniades C, Antonopoulos AS, Eriksson U, Franssen C, Hamdani N, et al. Intercellular Communication Lessons in Heart Failure: Communication in Heart Failure. Eur J Heart Fail (2015) 17(11):1091– 103. doi: 10.1002/ejhf.399eng
dcterms.referencesMazurek T, Opolski G. Pericoronary Adipose Tissue: A Novel Therapeutic Target in Obesity-Related Coronary Atherosclerosis. J Am Coll Nutr (2015) 34(3):244–54. doi: 10.1080/07315724.2014.933685eng
dcterms.referencesSong Y, Song F, Wu C, Hong Y-X, Li G. The Roles of Epicardial Adipose Tissue in Heart Failure. Heart Fail Rev (2020). doi: 10.1007/s10741-020- 09997-xeng
dcterms.references. Lambert C, Arderiu G, Bejar MT, Crespo J, Baldellou M, Juan-Babot O, et al. Stem Cells From Human Cardiac Adipose Tissue Depots Show Different Gene Expression and Functional Capacities. Stem Cell Res Ther (2019) 10 (1):361. doi: 10.1186/s13287-019-1460-1eng
dcterms.referencesVienberg S, Geiger J, Madsen S, Dalgaard LT. MicroRNAs in Metabolism. Acta Physiol (2017) 219(2):346–61. doi: 10.1111/apha.12681eng
dcterms.references. Huang-Doran I, Zhang C-Y, Vidal-Puig A. Extracellular Vesicles: Novel Mediators of Cell Communication In Metabolic Disease. Trends Endocrinol Metab (2017) 28(1):3–18. doi: 10.1016/j.tem.2016.10.003eng
dcterms.references. Zhang Y-F, Xu H-M, Yu F, Wang M, Li M-Y, Xu T, et al. Crosstalk Between MicroRNAs and Peroxisome Proliferator-Activated Receptors and Their Emerging Regulatory Roles in Cardiovascular Pathophysiology. PPAR Res (2018) 2018:1–11. doi: 10.1155/2018/8530371eng
dcterms.referencesOcłoń E, Latacz A, Zubel–Łojek J, Pierzchała–Koziec K. HyperglycemiaInduced Changes in miRNA Expression Patterns in Epicardial Adipose Tissue of Piglets. J Endocrinol (2016) 229(3):259–66. doi: 10.1530/JOE-15- 0495eng
dcterms.references. Liu Y, Fu W, Lu M, Huai S, Song Y, Wei Y. Role of miRNAs in Epicardial Adipose Tissue in CAD Patients With T2DM. BioMed Res Int (2016) 2016:1–7. doi: 10.1155/2016/2816056eng
dcterms.referencesPan J, Alimujiang M, Chen Q, Shi H, Luo X. Exosomes Derived From miR146a-Modified Adipose-Derived Stem Cells Attenuate Acute Myocardial Infarction–Induced Myocardial Damage via Downregulation of Early Growth Response Factor 1. J Cell Biochem (2019) 120(3):4433–43. doi: 10.1002/jcb.27731eng
dcterms.referencesLuo Q, Guo D, Liu G, Chen G, Hang M, Jin M. Exosomes From MiR-126- Overexpressing Adscs Are Therapeutic in Relieving Acute Myocardial Ischaemic Injury. Cell Physiol Biochem (2017) 44(6):2105–16. doi: 10.1159/ 000485949eng
dcterms.referencesZhai Y, Yang J, Zhang J, Yang J, Li Q, Zheng T. miRNA-3614 Derived From Epicardial Adipose Tissue: A Novel Target for Ischemic Heart Diseases. Int J Cardiol (2021) 326:157. doi: 10.1016/j.ijcard.2020.10.076eng
dcterms.referencesZou T, Zhu M, Ma Y-C, Xiao F, Yu X, Xu L, et al. MicroRNA-410-5p Exacerbates High-Fat Diet-Induced Cardiac Remodeling in Mice in an Endocrine Fashion. Sci Rep (2018) 8(1):8780. doi: 10.1038/s41598-018- 26646-4eng
dcterms.referencesBork-Jensen J, Thuesen A, Bang-Bertelsen C, Grunnet L, Pociot F, BeckNielsen H, et al. Genetic Versus Non-Genetic Regulation of miR-103, miR143 and miR-483-3p Expression in Adipose Tissue and Their Metabolic Implications—A Twin Study. Genes (2014) 5(3):508–17. doi: 10.3390/ genes5030508eng
dcterms.referencesScheja L, Heeren J. The Endocrine Function of Adipose Tissues in Health and Cardiometabolic Disease. Nat Rev Endocrinol (2019) 15(9):507–24. doi: 10.1038/s41574-019-0230-6eng
dcterms.referencesAkoumianakis I, Antoniades C. The Interplay Between Adipose Tissue and the Cardiovascular System: Is Fat Always Bad? Cardiovasc Res (2017) 113 (9):999–1008. doi: 10.1093/cvr/cvx111eng
dcterms.referencesMormile R. The Obesity Paradox in Heart Failure: A miR-26b Affair? Int J Colorectal Dis (2017) 32(4):595–6. doi: 10.1007/s00384-017-2762-3eng
dcterms.referencesMarı-Alexandre J, Barcelo ́ ́-Molina M, Sanz-Sánchez J, Molina P, Sancho J, Abellán Y, et al. Thickness and an Altered miRNA Expression in the Epicardial Adipose Tissue Is Associated With Coronary Heart Disease in Sudden Death Victims. Rev Española Cardiol (English Ed) (2019) 72(1):30–9. doi: 10.1016/j.rec.2017.12.007eng
dcterms.referencesAraujo HN, Victório JA, Valgas da Silva CP, Sponton ACS, Vettorazzi JF, de Moraes C, et al. Anti-Contractile Effects of Perivascular Adipose Tissue in Thoracic Aorta From Rats Fed a High-Fat Diet: Role of Aerobic Exercise Training. Clin Exp Pharmacol Physiol (2018) 45(3):293–302. doi: 10.1111/ 1440-1681.12882eng
dcterms.referencesKang S, Kim KB, Shin KO. Exercise Training Improves Leptin Sensitivity in Peripheral Tissue of Obese Rats. Biochem Biophys Res Commun (2013) 435 (3):454–9. doi: 10.1016/j.bbrc.2013.05.007eng
dcterms.referencesSu M, Bai Y-P, Song W-W, Wang M, Shen R-R, Du K-J, et al. Effect of Exercise on Adiponectin in Aged Obese Rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi (2018) 34(4):345–9. doi: 10.12047/j.cjap.5660.2018.079eng
dcterms.referencesKazemi F, Zahediasl S. Effects of Exercise Training on Adipose Tissue Apelin Expression in Streptozotocin-Nicotinamide Induced Diabetic Rats. Gene (2018) 662:97–102. doi: 10.1016/j.gene.2018.04.003eng
dcterms.referencesMeziat C, Boulghobra D, Strock E, Battault S, Bornard I, Walther G, et al. Exercise Training Restores eNOS Activation in the Perivascular Adipose Tissue of Obese Rats: Impact on Vascular Function. Nitric Oxide (2019) 86:63–7. doi: 10.1016/j.niox.2019.02.009eng
dcterms.referencesKhoo J, Dhamodaran S, Chen D-D, Yap S-Y, Chen RY-T, Tian RH-H. Exercise-Induced Weight Loss Is More Effective Than Dieting for Improving Adipokine Profile, Insulin Resistance, and Inflammation in Obese Men. Int J Sport Nutr Exerc Metab (2015) 25(6):566–75. doi: 10.1123/ijsnem.2015-0025eng
dcterms.referencesAbd El-Kader SM, Al-Jiffri OH, Neamatallah ZA, AlKhateeb AM, AlFawaz SS. Weight Reduction Ameliorates Inflammatory Cytokines, Adipocytokines and Endothelial Dysfunction Biomarkers Among Saudi Patients With Type 2 Diabetes. Afr Health Sci (2020) 20(3):1329–36. doi: 10.4314/ahs.v20i3.39eng
dcterms.referencesElloumi M, Ben Ounis O, Makni E, Van Praagh E, Tabka Z, Lac G. Effect of Individualised Weight-Loss Programmes on Adiponectin, Leptin and Resistin Levels in Obese Adolescent Boys. Acta Paediatr (2009) 98 (9):1487–93. doi: 10.1111/j.1651-2227.2009.01365.xeng
dcterms.referencesMaillard F, Pereira B, Boisseau N. Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis. Sports Med (2018) 48(2):269–88. doi: 10.1007/s40279-017-0807-yeng
dcterms.referencesWewege M, van den Berg R, Ward RE, Keech A. The Effects of HighIntensity Interval Training vs. Moderate-Intensity Continuous Training on Body Composition in Overweight and Obese Adults: A Systematic Review and Meta-Analysis. Obes Rev (2017) 18(6):635–46. doi: 10.1111/obr.12532eng
dcterms.referencesPárrizas M, Brugnara L, Esteban Y, González-Franquesa A, Canivell S, Murillo S, et al. Circulating miR-192 and miR-193b Are Markers of Prediabetes and Are Modulated by an Exercise Intervention. J Clin Endocrinol Metab (2015) 100(3):E407–415. doi: 10.1210/jc.2014-2574eng
dcterms.referencesRusso A, Bartolini D, Mensà E, Torquato P, Albertini MC, Olivieri F, et al. Physical Activity Modulates the Overexpression of the Inflammatory miR146a-5p in Obese Patients. IUBMB Life (2018) 70(10):1012–22. doi: 10.1002/ iub.1926eng
dcterms.referencesAmor S, Martın-Carro B, Rubio C, Carrascosa JM, Hu W, Huang Y, et al. ́ Study of Insulin Vascular Sensitivity in Aortic Rings and Endothelial Cells From Aged Rats Subjected to Caloric Restriction: Role of Perivascular Adipose Tissue. Exp Gerontol (2018) 109:126–36. doi: 10.1016/j.exger. 2017.10.017eng
dcterms.referencesBussey CE, Withers SB, Aldous RG, Edwards G, Heagerty AM. ObesityRelated Perivascular Adipose Tissue Damage Is Reversed by Sustained Weight Loss in the Rat. Arterioscler Thromb Vasc Biol (2016) 36(7):1377– 85. doi: 10.1161/ATVBAHA.116.307210eng
dcterms.referencesKim K-H, Kim YH, Son JE, Lee JH, Kim S, Choe MS, et al. Intermittent Fasting Promotes Adipose Thermogenesis and Metabolic Homeostasis via VEGF-Mediated Alternative Activation of Macrophage. Cell Res (2017) 27 (11):1309–26. doi: 10.1038/cr.2017.126eng
dcterms.referencesKlempel MC, Kroeger CM, Bhutani S, Trepanowski JF, Varady KA. Intermittent Fasting Combined With Calorie Restriction Is Effective for Weight Loss and Cardio-Protection in Obese Women. Nutr J (2012) 11:98. doi: 10.1186/1475-2891-11-98eng
dcterms.referencesKroeger CM, Klempel MC, Bhutani S, Trepanowski JF, Tangney CC, Varady KA. Improvement in Coronary Heart Disease Risk Factors During an Intermittent Fasting/Calorie Restriction Regimen: Relationship to Adipokine Modulations. Nutr Metab (Lond) (2012) 9(1):98. doi: 10.1186/ 1743-7075-9-98eng
dcterms.referencesTrepanowski JF, Kroeger CM, Barnosky A, Klempel M, Bhutani S, Hoddy KK, et al. Effects of Alternate-Day Fasting or Daily Calorie Restriction on Body Composition, Fat Distribution, and Circulating Adipokines: Secondary Analysis of a Randomised Controlled Trial. Clin Nutr (2018) 37(6 Pt A):1871–8. doi: 10.1016/j.clnu.2017.11.018eng
dcterms.referencesHsieh C-H, Rau C-S, Wu S-C, Yang JC-S, Wu Y-C, Lu T-H, et al. WeightReduction Through a Low-Fat Diet Causes Differential Expression of Circulating microRNAs in Obese C57BL/6 Mice. BMC Genomics (2015) 16(1):699. doi: 10.1186/s12864-015-1896-3eng
dcterms.referencesManning P, Munasinghe PE, Bellae Papannarao J, Gray AR, Sutherland W, Katare R. Acute Weight Loss Restores Dysregulated Circulating MicroRNAs in Individuals Who Are Obese. J Clin Endocrinol Metab (2019) 104(4):1239– 48. doi: 10.1210/jc.2018-00684eng
dcterms.referencesTabet F, Cuesta Torres LF, Ong KL, Shrestha S, Choteau SA, Barter PJ, et al. High-Density Lipoprotein-Associated miR-223 Is Altered After DietInduced Weight Loss in Overweight and Obese Males. PloS One (2016) 11 (3):e0151061. doi: 10.1371/journal.pone.0151061eng
dcterms.referencesBagarolli RA, Tobar N, Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, et al. Probiotics Modulate Gut Microbiota and Improve Insulin Sensitivity in DIO Mice. J Nutr Biochem (2017) 50:16–25. doi: 10.1016/j.jnutbio. 2017.08.006eng
dcterms.referencesBehrouz V, Jazayeri S, Aryaeian N, Zahedi MJ, Hosseini F. Effects of Probiotic and Prebiotic Supplementation on Leptin, Adiponectin, and Glycemic Parameters in Non-Alcoholic Fatty Liver Disease: A Randomised Clinical Trial. Middle East J Dig Dis (2017) 9(3):150–7. doi: 10.15171/ mejdd.2017.66eng
dcterms.referencesAl-Muzafar HM, Amin KA. Probiotic Mixture Improves Fatty Liver Disease by Virtue of Its Action on Lipid Profiles, Leptin, and Inflammatory Biomarkers. BMC Complement Altern Med (2017) 17(1):43. doi: 10.1186/ s12906-016-1540-zeng
dcterms.referencesBernini LJ, Simão ANC, de Souza CHB, Alfieri DF, Segura LG, Costa GN, et al. Effect of Bifidobacterium Lactis HN019 on Inflammatory Markers and Oxidative Stress in Subjects With and Without the Metabolic Syndrome. Br J Nutr (2018) 120(6):645–52. doi: 10.1017/S0007114518001861eng
dcterms.referencesSabico S, Al-Mashharawi A, Al-Daghri NM, Wani K, Amer OE, Hussain DS, et al. Effects of a 6-Month Multi-Strain Probiotics Supplementation in Endotoxemic, Inflammatory and Cardiometabolic Status of T2DM Patients: A Randomised, Double-Blind, Placebo-Controlled Trial. Clin Nutr (2019) 38(4):1561–9. doi: 10.1016/j.clnu.2018.08.009eng
dcterms.referencesKarimi E, Moini A, Yaseri M, Shirzad N, Sepidarkish M, Hossein-Boroujerdi M, et al. Effects of Synbiotic Supplementation on Metabolic Parameters and Apelin in Women With Polycystic Ovary Syndrome: A Randomised DoubleBlind Placebo-Controlled Trial. Br J Nutr (2018) 119(4):398–406. doi: 10.1017/S0007114517003920eng
dcterms.referencesGan XT, Ettinger G, Huang CX, Burton JP, Haist JV, Rajapurohitam V, et al. Probiotic Administration Attenuates Myocardial Hypertrophy and Heart Failure After Myocardial Infarction in the Rat. Circ Heart Fail (2014) 7 (3):491–9. doi: 10.1161/CIRCHEARTFAILURE.113.000978eng
dcterms.references. Huang F, Del-Rıo-Navarro BE, Leija-Martinez J, Torres-Alcantara S, Ruiz- ́ Bedolla E, Hernández-Cadena L, et al. Effect of Omega-3 Fatty Acids Supplementation Combined With Lifestyle Intervention on Adipokines and Biomarkers of Endothelial Dysfunction in Obese Adolescents With Hypertriglyceridemia. J Nutr Biochem (2019) 64:162–9. doi: 10.1016/ j.jnutbio.2018.10.012eng
dcterms.referencesMostowik M, Gajos G, Zalewski J, Nessler J, Undas A. Omega-3 Polyunsaturated Fatty Acids Increase Plasma Adiponectin to Leptin Ratio in Stable Coronary Artery Disease. Cardiovasc Drugs Ther (2013) 27(4):289– 95. doi: 10.1007/s10557-013-6457-xeng
dcterms.referencesJafari Salim S, Alizadeh S, Djalali M, Nematipour E, Hassan Javanbakht M. Effect of Omega-3 Polyunsaturated Fatty Acids Supplementation on Body Composition and Circulating Levels of Follistatin-Like 1 in Males With Coronary Artery Disease: A Randomised Double-Blind Clinical Trial. Am J Mens Health (2017) 11(6):1758–64. doi: 10.1177/1557988317720581eng
dcterms.referencesWang C, Xiong B, Huang J. The Role of Omega-3 Polyunsaturated Fatty Acids in Heart Failure: A Meta-Analysis of Randomised Controlled Trials. Nutrients (2016) 9(1):18. doi: 10.3390/nu9010018eng
dcterms.referencesRedondo Useros N, Gheorghe A, Perez de Heredia F, Dıaz LE, Baccan GC, de ́ la Fuente M, et al. 2-OHOA Supplementation Reduced Adiposity and Improved Cardiometabolic Risk to a Greater Extent Than N-3 PUFA in Obese Mice. Obes Res Clin Pract (2019) 13(6):579–85. doi: 10.1016/ j.orcp.2019.10.009eng
dcterms.referencesLuvizotto R de AM, Nascimento AF, Imaizumi E, Pierine DT, Conde SJ, Correa CR, et al. Lycopene Supplementation Modulates Plasma Concentrations and Epididymal Adipose Tissue mRNA of Leptin, Resistin and IL-6 in Diet-Induced Obese Rats. Br J Nutr (2013) 110(10):1803–9. doi: 10.1017/S0007114513001256eng
dcterms.referencesClark CCT, Ghaedi E, Arab A, Pourmasoumi M, Hadi A. The Effect of Curcumin Supplementation on Circulating Adiponectin: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Diabetes Metab Syndr (2019) 13(5):2819–25. doi: 10.1016/j.dsx.2019.07.045eng
dcterms.references. Shamsi-Goushki A, Mortazavi Z, Mirshekar MA, Mohammadi M, MoradiKor N, Jafari-Maskouni S, et al. Comparative Effects of Curcumin Versus Nano-Curcumin on Insulin Resistance, Serum Levels of Apelin and Lipid Profile in Type 2 Diabetic Rats. Diabetes Metab Syndr Obes (2020) 13:2337– 46. doi: 10.2147/DMSO.S247351eng
dcterms.referencesMohammadi-Sartang M, Mazloom Z, Sohrabi Z, Sherafatmanesh S, BaratiBoldaji R. Resveratrol Supplementation and Plasma Adipokines Concentrations? A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Pharmacol Res (2017) 117:394–405. doi: 10.1016/ j.phrs.2017.01.012eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2021_FinE_The-Sick-Adipose-Tissue.pdf
Tamaño:
919.93 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones