Semi-automatic detection of hepatic tumor in computed tomography images

dc.contributor.authorSáenz, F
dc.contributor.authorVera, M
dc.contributor.authorLópez, J
dc.contributor.authorHuérfano, Y
dc.contributor.authorValbuena, O
dc.contributor.authorVera, M I
dc.contributor.authorGelvez-Almeida, E
dc.contributor.authorSalazar-Torres, J
dc.date.accessioned2020-04-14T03:19:32Z
dc.date.available2020-04-14T03:19:32Z
dc.date.issued2019
dc.description.abstractIn this work, the main purpose is develop a computational segmentation strategy for liver tumor semiautomatic detection. This strategy considers three-dimensional computed tomography images and it consists of techniques application that, on the one hand, diminish the noise and detect the edges of the objects present in those images and, on the other hand, generate the liver tumor morphology. For this, the sequence of techniques composed of gaussian smoothing, gradient magnitude, median filter, region growing and binary morphological dilation are used. The value obtained, for the metric called Dice score, show a good correlation between manual segmentation, performed by a hepatologist, and the tumor segmentation obtained using the proposed technique. This type of segmentation is the extreme utility for the characterization of hepatic tumors and the planning of the clinical behavior to be followed in the treatment of this human liver disease.eng
dc.format.mimetypepdfeng
dc.identifier.issn17426596
dc.identifier.urihttps://hdl.handle.net/20.500.12442/5098
dc.language.isoengeng
dc.publisherIOP Publishingeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceJournal of Physics: Conference Serieseng
dc.source1408 (2019)eng
dc.source.urihttps://iopscience.iop.org/article/10.1088/1742-6596/1408/1/012001eng
dc.titleSemi-automatic detection of hepatic tumor in computed tomography imageseng
dc.typearticleeng
dc.type.driverarticleeng
dcterms.referencesLatarjet M and Ruiz A 2004 Anatomía humana (Barcelona: Médica Panamericana)spa
dcterms.referencesTarasik A, Jaroszewicz J, Januszkiewicz M 2017 Surgical treatment of liver tumors – own experience and literature review Clin Exp Hepatol 3(1)eng
dcterms.referencesWu W, Wu S, Zhou Z, Zhang R, Zhang Y 2017 3D Liver tumor segmentation in ct images using improved fuzzy c-means and graph cuts BioMed Research International 2017 5207685eng
dcterms.referencesChlebus G, Schenk A, Moltz J, Van Ginneken B, Hahn H, Meine H 2018 Automatic liver tumor segmentation in ct with fully convolutional neural networks and object-based postprocessing Scientific Reports 8(1) 15497eng
dcterms.referencesMeijering H 2000 Image enhancement in digital X ray angiography (Netherlands: Utrecht University)eng
dcterms.referencesPratt W 2007 Digital image processing (New York: John Wiley & Sons Inc)eng
dcterms.referencesHuérfano Y, Vera M, Mar A, Bravo A 2019 Integrating a gradient–based difference operator with machine learning techniques in right heart segmentation. J. Phys. Conf. Ser. 1160 012003eng
dcterms.referencesGonzález R, Woods R 2001 Digital image processing (New Jersey: Prentice Hall)eng
dcterms.referencesPetrou M, Bosdogianni P 2003 Image processing the fundamentals (UK: Wiley)eng
dcterms.referencesSaénz F, Vera M, Huérfano Y, Molina V, Martinez L, Vera MI, Salazar W, Gelvez E, Salazar J, Valbuena O, Robles H, Bautista M, Arango J 2018 Brain hematoma computational segmentation. J. Phys. Conf. Ser. 1126 012071eng
dcterms.referencesVera M 2014 Segmentación de estructuras cardiacas en imágenes de tomografía computarizada multicorte (Venezuela: Universidad de Los Andes)spa
dcterms.referencesDice L 1945 Measures of the amount of ecologic association between species Ecology 26(3) 29eng
oaire.versioninfo:eu-repo/semantics/publishedVersionspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
746.08 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones