Enhanced RDX Detection Studies on Various Types of Substrates via Tunable Quantum Cascade Laser Spectrometer Coupled with Grazing Angle Probe
dc.contributor.author | Ruiz-Caballero, J L | |
dc.contributor.author | Blanco-Riveiro, L A | |
dc.contributor.author | Ramirez-Marrero, I A | |
dc.contributor.author | Perez- Almodovar, L A | |
dc.contributor.author | Colon-Mercado, A M | |
dc.contributor.author | Castro-Suarez, J R | |
dc.contributor.author | Pacheco- Londoño, L C | |
dc.contributor.author | Hernandez-Rivera, S P | |
dc.date.accessioned | 2019-06-26T21:06:32Z | |
dc.date.available | 2019-06-26T21:06:32Z | |
dc.date.issued | 2019 | |
dc.description.abstract | Owing to scientific advances in the field of materials sciences and engineering, researchers have developed new energy sources used for spectroscopic applications and measurements of properties resulting from the interaction of matter and electromagnetic radiation in the mid-infrared (MIR) region. MIR lasers, such as quantum cascade lasers (QCLs), used for spectroscopy have quickly found numerous applications in a wide cadre of IR techniques. This provides the opportunity to study properties of highly energetic materials (HEM), among many other applications. MIR laser spectroscopy based detection experiments of HEMs were carried out using a QCL optically coupled to compact grazing angle probe mount (QCL-GAP) enabling reflection-absorption infrared spectroscopy (RAIRS) measurements of thin films of HEMs. A saturated solution of RDX in acetone was prepared, and aliquots of subsequent dilutions of the stock solutions were transferred to test surfaces for QCL-GAP backreflectance measurements. RDX reflectance signals were monitored as function as the decreasing surface concentration until the signal/noise was ~ 3. Stainless steel (SS) plates were used as reflective substrates, and anodized aluminum (AN-Al), cardboard, and Teflon were used as nonreflective (matte) substrates. Using generated calibration curves a low limit of detection (LOD) of 1.7 ng/cm2 for RDX/SS and 95 μg/cm2 for RDX/AN-Al were found. Based on the area of laser spot (0.3 cm2) we conclude the minimum masses detected were 490 pg (RDX/SS) and 28 μg (RDX/AN-Al) | eng |
dc.identifier.issn | 1757899X | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/3378 | |
dc.language.iso | eng | eng |
dc.publisher | IOP Publishing | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | IOP Conference Series: Materials Science and Engineering | eng |
dc.source | Vol. 519 (2019) | spa |
dc.source.uri | DOI:10.1088/1757-899X/519/1/012007 | eng |
dc.title | Enhanced RDX Detection Studies on Various Types of Substrates via Tunable Quantum Cascade Laser Spectrometer Coupled with Grazing Angle Probe | eng |
dc.type | article | eng |
dcterms.references | Ruiz-Caballero J L, Aparicio-Bolaño J A, Figueroa-Navedo A M, Pacheco-Londoño L C, Hernandez-Rivera S P. Optical properties of β-RDX thin films deposited on gold and stainless steel substrates calculated from reflection-absorption infrared spectra 2017 Appl. Spectrosc. 71(8) 1990-2000. | eng |
dcterms.references | Figueroa-Navedo A M, Ruiz-Caballero J L, Pacheco-Londoño L C, Hernandez-Rivera S P. Characterization of α- and β-RDX polymorphs in crystalline deposits on stainless steel substrates 2016 Cryst. Growth. Des. 16(7) 3631-3638. | eng |
dcterms.references | Ruiz-Caballero J L. 2017 Preparation and study of thin RDX films standards on various substrates deposited by spin coating technology Ph.D. thesis, The University of Puerto Rico in Mayagüez Campus, Mayagüez, PR, USA. | eng |
dcterms.references | Panigrahi S, Waugh S, Rout S K, Hassan A K, Ray A K 2004 Study of spin coated organic thin film under spectrophotometer Ind. J. Phys. 78(8) 823-826. | eng |
dcterms.references | Primera-Pedrozo O M, Soto-Feliciano Y, Pacheco-Londoño L C, Hernández-Rivera S P 2009 Detection of high explosives using reflection absorption infrared spectroscopy with fiber coupled grazing angle probe/FTIR Sensing and imaging. An International Journal 10(1) 1-13. | eng |
dcterms.references | Yonkoski R K, Soane D S 1998 Model for spin coating in microelectronic applications J. Appl. Phys. 72(2) 725-740 | eng |
dcterms.references | Liu C H, Yu X. 2011 Silver nanowire-based transparent, flexible, and conductive thin film Nanoscale Res. Lett. 6 75-82 | eng |
dcterms.references | Oxley J C, Smith J L, Kirschenbaum L J, Marimganti S, Vadlamannati S 2008 Detection of explosives in hair using ion mobility spectrometry J. Forensic. Sci. 53(3) 690-693 | eng |
dcterms.references | Castro-Suarez J R, Hidalgo-Santiago M, Hernandez-Rivera S P. 2015 Detection of highly energetic materials on non-reflective substrates using quantum cascade laser spectroscopy App. Spectrosc. 69(5) 1023–1035 | eng |
dcterms.references | Sisco E, Forbes T P 2013 Rapid detection of sugar alcohol precursors and corresponding nitrate ester explosives using direct analysis in real time mass spectrometry Analyst. 140 2785-2796. | eng |
dcterms.references | Ewinga A V, Kazarian S G 2017 Infrared spectroscopy and spectroscopic imaging in forensic science Analyst. 142(2) 257-272 | eng |
dcterms.references | Pacheco-Londoño L C, Ortiz-Rivera W, Primera-Pedrozo O M, Hernandez-Rivera S P 2009 Vibrational spectroscopy standoff detection of explosives Anal. Bioanal. Chem. 395(2) 323- 335 | eng |
dcterms.references | Van Neste C W, Senesac L R, Thundat T 2009 Standoff spectroscopy of surface adsorbed chemicals Anal. Chem. 81(5) 1952-1956 | eng |
dcterms.references | Toal S J, Trogler W C 2006 Polymer sensors for nitroaromatic explosives detection J. Mater. Chem. 16 2871-2883 | eng |
dcterms.references | Chen N, Ding P, Shi Y, Jin T, Su Y, Wang H, He Y 2017 Portable and Reliable Surface-Enhanced Raman Scattering Silicon Chip for Signal-On Detection of Trace Trinitrotoluene Explosive in Real Systems Anal. Chem. 89(9) 5072–5078 | eng |
dcterms.references | Moore D S 2004 Instrumentation for trace detection of high explosives Rev. Sci. Instrum. 75(8) 2499-2512 | eng |
dcterms.references | Tripathi A, Emmons E D, Wilcox P G, Guicheteau J A, Emge D K, Christesen S D, Fountain III A W 2011 Semi-automated detection of trace explosives in fingerprints on strongly interfering surfaces with Raman chemical imaging Appl. Spectrosc. 65(6) 611-619 | eng |
dcterms.references | Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson AL, Cho A Y 1994 Quantum Cascade Laser Science 264(5158) 553-556 | eng |
dcterms.references | Hvozdara L, Pennington N, Kraft M, Karlowatz M, Mizaikoff B 2002 Quantum cascade lasers for mid-infrared spectroscopy Vib. Spectrosc. 30(1) 53-58 | eng |
dcterms.references | Breshike C J, Kendziora C A, Furstenberg R, Nguyen V, McGill R A 2017 Stabilizing infrared quantum cascade laser beams for standoff detection applications Proc. SPIE 10111 101110B- 1 | eng |
dcterms.references | Breshike C J, Kendziora C A, Furstenberg R, Nguyen V, McGill R A 2017 Methodology for using active infrared spectroscopy in standoff detection of trace explosives Proc. SPIE 10183 1018302-1 | eng |
dcterms.references | Pacheco-Londoño L C, Aparicio-Bolaño J A, Galán-Freyle N J, Román-Ospino A D, Ruiz- Caballero J L, Hernández-Rivera S P 2018 Classical least squares-assisted mid-infrared (MIR) laser spectroscopy detection of high explosives on fabrics App. Spectrosc. doi: 10.1177/0003702818780414 | eng |
dcterms.references | Castro-Suarez J R, Pacheco-Londoño L C, Vélez-Reyes M, Diem M, Tague T J, Hernandez- Rivera S P 2013 FT-IR standoff detection of thermally excited emissions of trinitrotoluene (TNT) deposited on aluminum substrates Appl. Spectrosc. 67(2) 181-186. | eng |
dcterms.references | Wrable-Rose M, Primera-Pedrozo O M, Pacheco-Londoño L C, Hernandez-Rivera S P 2010 Preparation of TNT, RDX and Ammonium Nitrate Standards on Gold-on-Silicon Surfaces by Thermal Inkjet Technology Sens. Imaging. 11(4) 147-169 | eng |
dcterms.references | Bachmann W E, Sheehan J C 1949 A new method of preparing the high explosive RDX J. Am. Chem. Soc. 71(5) 1842–1845 | eng |
dcterms.references | Infante-Castillo R, Pacheco-Londoño L C, Hernandez-Rivera S P 2010 Vibrational spectra and structure of RDX and its 13C- and 15N-labeled derivatives: A theoretical and experimental study Spectrochim. Acta, Part A. 76(2) 137-141 | eng |
dcterms.references | Infante-Castillo R, Pacheco-Londoño L C, Hernandez-Rivera S P 2010 Monitoring the α →β solid-solid phase transition of RDX with Raman spectroscopy: A theoretical and experimental study J. Mol. Struct. 970(1) 51-58. | eng |
dcterms.references | Karpowicz R J, Sergio S T, Brill T B 1983 β-polymorph of hexahydro-1,3,5-trinitro-triazine. a Fourier transform infrared spectroscopy study of an energetic material Ind. Eng. Chem. Prod. Res. Dev. 22(2) 363-365 | eng |
dcterms.references | Shrivastava A, Gupta V B 2011 Methods for the determination of limit of detection and limit of quantitation of the analytical methods Chron. Young Sci. 2 21-25 | eng |
dcterms.references | Barreto-Cabán M A, Pacheco-Londoño L C, Ramirez M L, Hernández-Rivera S P 2006 Novel method for the preparation of explosive nanoparticles Proc. SPIE. 6201(9) 620129-62013 | eng |
dcterms.references | Lu Y C, Chou K S 2010 Tailoring of silver wires and their performance as transparent conductive coatings Nanotechnology 21(21) 215707-215713 | eng |