Nuclear factor erythroid 2 – related factor 2 and its relationship with cellular response in nickel exposure: a systems biology analysis

dc.contributor.authorJiménez-Vidal, Luisa
dc.contributor.authorEspitia-Pérez, Pedro
dc.contributor.authorTorres-Ávila, José
dc.contributor.authorRicardo-Caldera, Dina
dc.contributor.authorSalcedo-Arteaga, Shirley
dc.contributor.authorGaleano-Páez, Claudia
dc.contributor.authorPastor-Sierra, Karina
dc.contributor.authorEspitia-Pérez, Lyda
dc.description.abstractBackground: Nickel and nickel-containing compounds (NCC) are known human carcinogens. However, the precise molecular mechanisms of nickel-induced malignant transformation remain unknown. Proposed mechanisms suggest that nickel and NCC may participate in the dual activation/inactivation of enzymatic pathways involved in cell defenses against oxidative damage, where Nuclear factor-erythroid 2 related factor 2 (Nrf2) plays a central role. Methods: For assessing the potential role of proteins involved in the Nrf2-mediated response to nickel and NCC exposure, we designed an interactome network using the STITCH search engine version 5.0 and the STRING software 10.0. The major NCC-protein interactome (NCPI) generated was analyzed using the MCODE plugin, version 1.5.1 for the detection of interaction modules or subnetworks. Main centralities of the NCPI were determined with the CentiScape 2.2 plugin of Cytoscape 3.4.0 and main biological processes associated with each cluster were assessed using the BiNGO plugin of Cytoscape 3.4.0. Results: Water-soluble NiSO4 and insoluble Ni3S2 were the most connected to proteins involved in the NCPI network. Nfr2 was detected as one of the most relevant proteins in the network, participating in several multifunctional protein complexes in clusters 1, 2, 3 and 5. Ontological analysis of cluster 3 revealed several processes related to unfolded protein response (UPR) and response to endoplasmic reticulum (ER) stress. Conclusions: Cellular response to NCC exposure was very comparable, particularly concerning oxidative stress response, inflammation, cell cycle/proliferation, and apoptosis. In this cellular response, Nfr2 was highly centralized and participated in several multifunctional protein complexes, including several related to ER-stress. These results add evidence on the possible Ni2+ induced – ER stress mainly associated with insoluble NCC. In this scenario, we also show how protein degradation mediated by ubiquitination seems to play key roles in cellular responses to Ni.eng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.sourceBMC Pharmacology and Toxicologyeng
dc.sourceVol. 20 (Suppl 1), (2019)eng
dc.titleNuclear factor erythroid 2 – related factor 2 and its relationship with cellular response in nickel exposure: a systems biology analysiseng
dcterms.referencesIARC. IARC Monographs on the Valuation of the Carcinogenic Risks of Chemicals to Humans: Chromium, Nickel and Welding, vol. 49. Lyon: IARC; 1990. p. 447–525.eng
dcterms.referencesValko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.eng
dcterms.referencesEfremenko AY, Campbell JL, Dodd DE, Oller AR, Clewell HJ 3rd. Time- and concentration-dependent genomic responses of the rat airway to inhaled nickel sulfate. Environ Mol Mutagen. 2017;58:607–18.eng
dcterms.referencesKasprzak KS, Sunderman FW, Salnikow K. Nickel carcinogenesis. Mutat Res. 2003;533:67–97.eng
dcterms.referencesGoodman JE, Prueitt RL, Dodge DG, Thakali S. Carcinogenicity assessment of water-soluble nickel compounds. Crit Rev Toxicol. 2009;39:365–417.eng
dcterms.referencesSalnikow K, Kasprzak KS. Nickel-Dependent Gene Expression. In: Nickel and Its Surprising Impact in Nature. Chichester: John Wiley & Sons, Ltd; 2007. p. 581–618.eng
dcterms.referencesSalnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol. 2008;21:28–44.eng
dcterms.referencesCosta M, Davidson TL, Chen H, Ke Q, Zhang P, Yan Y, Huang C, Kluz T. Nickel carcinogenesis: epigenetics and hypoxia signaling. Mutat Res. 2005; 592:79–88.eng
dcterms.referencesDas K, Das S, Dhundasi S. Nickel, its adverse health effects & oxidative stress. Indian J Med Res. 2008;128:412.eng
dcterms.referencesKim HL, Seo YR. Molecular and genomic approach for understanding the gene-environment interaction between Nrf2 deficiency and carcinogenic nickel-induced DNA damage. Oncol Rep. 2012;28:1959–67.eng
dcterms.referencesLewis JB, Messer RL, McCloud VV, Lockwood PE, Hsu SD, Wataha JC. Ni(II) activates the Nrf2 signaling pathway in human monocytic cells. Biomaterials. 2006;27:5348–56.eng
dcterms.referencesZhao X, Wen L, Dong M, Lu X. Sulforaphane activates the cerebral vascular Nrf2-ARE pathway and suppresses inflammation to attenuate cerebral vasospasm in rat with subarachnoid hemorrhage. Brain Res. 1653;2016:1–7.eng
dcterms.referencesMenegon S, Columbano A, Giordano S. The dual roles of NRF2 in Cancer. Trends Mol Med. 2016;22:578–93.eng
dcterms.referencesCho H-Y, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal. 2006;8:76–87.eng
dcterms.referencesSon YO, Pratheeshkumar P, Divya SP, Zhang Z, Shi X. Nuclear factor erythroid 2-related factor 2 enhances carcinogenesis by suppressing apoptosis and promoting autophagy in nickel-transformed cells. J Biol Chem. 2017;292:8315–30.eng
dcterms.referencesYu X, Robinson JF, Sidhu JS, Hong S, Faustman EM. A system-based comparison of gene expression reveals alterations in oxidative stress, disruption of ubiquitin-proteasome system and altered cell cycle regulation after exposure to cadmium and Methylmercury in mouse embryonic fibroblast. Toxicol Sci. 2010;114:356–77.eng
dcterms.referencesJensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, et al. STRING 8--a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009;37:D412–6.eng
dcterms.referencesSnel B, Lehmann G, Bork P, Huynen MA. STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 2000;28:3442–4.eng
dcterms.referencesFeltes BC, JdF P, Notari DL, Bonatto D. Toxicological Effects of the Different Substances in Tobacco Smoke on Human Embryonic Development by a Systems Chemo-Biology Approach. PLOS ONE. 2013;8:e61743.eng
dcterms.referencesCempel M, Nikel G. Nickel: a review of its sources and environmental toxicology. Pol J Environ Stud. 2006;15.eng
dcterms.referencesGroup IW: Nickel and nickel compounds. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No 100C. Edited by humans. IWGotEoCRt. Lyon (FR): International Agency for Research on Cancer; 2012.eng
dcterms.referencesSchaumlöffel D. Nickel species: analysis and toxic effects. J Trace Elem Med Biol. 2012;26:1–6.eng
dcterms.referencesStark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006;34: D535–9.eng
dcterms.referencesShannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.eng
dcterms.referencesBader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4:2.eng
dcterms.referencesCline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007;2:2366.eng
dcterms.referencesRosado JO, Henriques JAP, Bonatto D. A systems pharmacology analysis of major chemotherapy combination regimens used in gastric cancer treatment: predicting potential new protein targets and drugs. Curr Cancer Drug Targets. 2011;11:849–69.eng
dcterms.referencesScardoni G, Petterlini M, Laudanna C. Analyzing biological network parameters with CentiScaPe. Bioinformatics (Oxford, England). 2009;25: 2857–9.eng
dcterms.referencesBarthelemy M. Betweenness centrality in large complex networks. The European physical journal B. 2004;38:163–8.eng
dcterms.referencesRubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52:1059–69.eng
dcterms.referencesKahl VFS, da Silva J, da Silva FR. Influence of exposure to pesticides on telomere length in tobacco farmers: a biology system approach. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2016; 791:19–26.eng
dcterms.referencesAshburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25:25–9.eng
dcterms.referencesMaere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics (Oxford, England). 2005;21:3448–9.eng
dcterms.referencesBenjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995:289–300.eng
dcterms.referencesEvans RM, Davies PJ, Costa M. Video time-lapse microscopy of phagocytosis and intracellular fate of crystalline nickel sulfide particles in cultured mammalian cells. Cancer Res. 1982;42:2729–35.eng
dcterms.referencesKasprzak K, Sunderman JF. Mechanisms of dissolution of nickel subsulfide in rat serum. Res Commun Chem Pathol Pharmacol. 1977;16:95–108.eng
dcterms.referencesGoodman JE, Prueitt RL, Thakali S, Oller AR. The nickel ion bioavailability model of the carcinogenic potential of nickel-containing substances in the lung. Crit Rev Toxicol. 2011;41:142–74.eng
dcterms.referencesCosta M, Mollenhauer HH. Carcinogenic activity of particulate nickel compounds is proportional to their cellular uptake. Science. 1980;209: 515–7.eng
dcterms.referencesCangul H, Broday L, Salnikow K, Sutherland J, Peng W, Zhang Q, Poltaratsky V, Yee H, Zoroddu MA, Costa M. Molecular mechanisms of nickel carcinogenesis. Toxicol Lett. 2002;127:69–75.eng
dcterms.referencesGrisham M, Jourd'Heuil D, Wink D. chronic inflammation and reactive oxygen and nitrogen metabolism–implications in DNA damage and mutagenesis. Aliment Pharmacol Ther. 2000;14:3–9.eng
dcterms.referencesHuang X, Klein CB, Costa M. Crystalline Ni3S2 specifically enhances the formation of oxidants in the nuclei of CHO cells as detected by dichlorofluorescein. Carcinogenesis. 1994;15:545–8.eng
dcterms.referencesCosta M, Salnikow K, Sutherland JE, Broday L, Peng W, Zhang Q, Kluz T: The role of oxidative stress in nickel and chromate genotoxicity. In Oxygen/ Nitrogen Radicals: Cell Injury and Disease. Springer; 2002: 265–275.eng
dcterms.referencesCavallo D, Ursini CL, Setini A, Chianese C, Piegari P, Perniconi B, Iavicoli S. Evaluation of oxidative damage and inhibition of DNA repair in an in vitro study of nickel exposure. Toxicol in Vitro. 2003;17:603–7.eng
dcterms.referencesSaini S, Nair N, Saini MR. Prenatal exposure to nickel on pregnant Swiss albino mice and fetal development. Toxicol Environ Chem. 2014;96:650–9.eng
dcterms.referencesSaini S, Nair N, Saini MR. Embryotoxic and teratogenic effects of nickel in Swiss albino mice during organogenetic period. Biomed Res Int. 2013;2013: 701439.eng
dcterms.referencesKim K, Wang CH, Ok YS, Lee SE. Heart developmental toxicity by carbon black waste generated from oil refinery on zebrafish embryos (Danio rerio): combined toxicity on heart function by nickel and vanadium. J Hazard Mater. 2019;363:127–37.eng
dcterms.referencesMussotter F, Tomm JM, El Ali Z, Pallardy M, Kerdine-Römer S, Götz M, von Bergen M, Haase A, Luch A. Proteomics analysis of dendritic cell activation by contact allergens reveals possible biomarkers regulated by Nrf2. Toxicol Appl Pharmacol. 2016;313:170–9.eng
dcterms.referencesLin C-YCT-H. NICKEL TOXICITY TO HUMAN TERM PLACENTA: IN VITRO STUDY ON LIPID PEROXIDATION. J Toxic Environ Health A. 1998;54:37–47.eng
dcterms.referencesLiu C-M, Zheng G-H, Ming Q-L, Chao C, Sun J-M. Sesamin protects mouse liver against nickel-induced oxidative DNA damage and apoptosis by the PI3K-Akt pathway. J Agric Food Chem. 2013;61:1146–54.eng
dcterms.referencesKweider N, Huppertz B, Rath W, Lambertz J, Caspers R, ElMoursi M, Pecks U, Kadyrov M, Fragoulis A, Pufe T. The effects of Nrf2 deletion on placental morphology and exchange capacity in the mouse. J Matern Fetal Neonatal Med. 2017;30:2068–73.eng
dcterms.referencesSarkar B. Heavy metals in the environment: Taylor & Francis; 2002.eng
dcterms.referencesSutherland JE, Peng W, Zhang Q, Costa M. The histone deacetylase inhibitor trichostatin a reduces nickel-induced gene silencing in yeast and mammalian cells. Mutat Res. 2001;479:225–33.eng
dcterms.referencesHattori N, Ushijima T. Compendium of aberrant DNA methylation and histone modifications in cancer. Biochem Biophys Res Commun. 2014;455: 3–9.eng
dcterms.referencesKe Q, Ellen TP, Costa M. Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity. Toxicol Appl Pharmacol. 2008;228:190–9.eng
dcterms.referencesKe Q, Davidson T, Chen H, Kluz T, Costa M. Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis. 2006;27:1481–8.eng
dcterms.referencesMa L, Bai Y, Pu H, Gou F, Dai M, Wang H, He J, Zheng T, Cheng N. Histone methylation in nickel-smelting industrial workers. PLoS One. 2015;10: e0140339.eng
dcterms.referencesKang J, Zhang Y, Chen J, Chen H, Lin C, Wang Q, Ou Y. Nickel-induced histone hypoacetylation: the role of reactive oxygen species. Toxicol Sci. 2003;74:279–86.eng
dcterms.referencesMercado N, Thimmulappa R, Thomas CMR, Fenwick PS, Chana KK, Donnelly LE, Biswal S, Ito K, Barnes PJ. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem Biophys Res Commun. 2011;406:292–8.eng
dcterms.referencesWang B, Zhu X, Kim Y, Li J, Huang S, Saleem S, Li R-c, Xu Y, Dore S, Cao W. Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Radic Biol Med. 2012;52: 928–36.eng
dcterms.referencesVomund S, Schäfer A, Parnham MJ, Brüne B, von Knethen A. Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci. 2017;18:2772.eng
dcterms.referencesKhobta A, Epe B. Interactions between DNA damage, repair, and transcription. Mutat Res. 2012;736:5–14.eng
dcterms.referencesHouse NCM, Koch MR, Freudenreich CH. Chromatin modifications and DNA repair: beyond double-strand breaks. Front Genet. 2014;5:296.eng
dcterms.referencesLinder T. Direct Ni2+ antigen formation on cultured human dendritic cells. Immunology. 1999;96:578–85.eng
dcterms.referencesMedici S, Peana M, Nurchi VM, Zoroddu MA. The involvement of amino acid side chains in shielding the nickel coordination site: an NMR study. Molecules. 2013;18:12396–414.eng
dcterms.referencesThierse H-J, Gamerdinger K, Junkes C, Guerreiro N, Weltzien HU. T cell receptor (TCR) interaction with haptens: metal ions as non-classical haptens. Toxicology. 2005;209:101–7.eng
dcterms.referencesGoebeler M, Meinardus-Hager G, Roth J, Goerdt S, Sorg C. Nickel chloride and cobalt chloride, two common contact sensitizers, directly induce expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule (ELAM-1) by endothelial cells. J Investig Dermatol. 1993;100:759–65.eng
dcterms.referencesChana M, Lewis JB, Davis R, Elam Y, Hobbs D, Lockwood PE, Wataha JC, Messer RL. Biological effects of Ni(II) on monocytes and macrophages in normal and hyperglycemic environments. J Biomed Mater Res A. 2018; 106(9):2433–9.eng
dcterms.referencesCruz MT, Goncalo M, Figueiredo A, Carvalho AP, Duarte CB, Lopes MC. Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line. Exp Dermatol. 2004;13:18–26.eng
dcterms.referencesHuang Y, Davidson G, Li J, Yan Y, Chen F, Costa M, Chen LC, Huang C. Activation of nuclear factor-kappaB and not activator protein-1 in cellular response to nickel compounds. Environ Health Perspect. 2002;110:835.eng
dcterms.referencesLewis JB, Wataha JC, McCloud V, Lockwood PE, Messer RL, Tseng WY. Au(III), Pd(II), Ni(II), and hg(II) alter NF kappa B signaling in THP1 monocytic cells. J Biomed Mater Res A. 2005;74:474–81.eng
dcterms.referencesLewis JB, Messer RL, Pitts L, Hsu SD, Hansen JM, Wataha JC: Ni (II) ions dysregulate cytokine secretion from human monocytes. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2009, 88:358–365.eng
dcterms.referencesPan H, Wang H, Wang X, Zhu L, Mao L. The absence of Nrf2 enhances NFkappaB- dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediat Inflamm. 2012;2012:217580.eng
dcterms.referencesJin W, Wang H, Yan W, Xu L, Wang X, Zhao X, Yang X, Chen G, Ji Y. Disruption of Nrf2 enhances upregulation of nuclear factor-kappaB activity, proinflammatory cytokines, and intercellular adhesion molecule-1 in the brain after traumatic brain injury. Mediat Inflamm. 2008;2008:725174.eng
dcterms.referencesYu M, Li H, Liu Q, Liu F, Tang L, Li C, Yuan Y, Zhan Y, Xu W, Li W, et al. Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. Cell Signal. 2011;23:883–92.eng
dcterms.referencesOller AR, Costa M, Oberdörster G. Carcinogenicity assessment of selected nickel compounds. Toxicol Appl Pharmacol. 1997;143:152–66.eng
dcterms.referencesGrabbe S, Schwarz T. Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunol Today. 1998;19:37–44.eng
dcterms.referencesEfremenko A, Campbell J, Dodd D, Oller A, Clewell H. Time-and concentration-dependent genomic responses of the rat airway to inhaled nickel subsulfide. Toxicol Appl Pharmacol. 2014;279:441–54.eng
dcterms.referencesCao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014;21: 396–413.eng
dcterms.referencesXu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Investig. 2005;115:2656–64.eng
dcterms.referencesSimard J-C, Vallieres F, De Liz R, Lavastre V, Girard D. Silver nanoparticles induce degradation of the endoplasmic reticulum stress sensor activating transcription factor-6 leading to activation of the NLRP-3 inflammasome. J Biol Chem. 2015;290(9):5926–39.eng
dcterms.referencesLu T-H, Tseng T-J, Su C-C, Tang F-C, Yen C-C, Liu Y-Y, Yang C-Y, Wu C-C, Chen K-L, Hung D-Z. Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondriadependent and GRP 78/CHOP-regulated pathways. Toxicol Lett. 2014;224: 130–40.eng
dcterms.referencesXu B, Shan M, Wang F, Deng Y, Liu W, Feng S, Yang T-Y, Xu Z-F. Endoplasmic reticulum stress signaling involvement in manganese-induced nerve cell damage in organotypic brain slice cultures. Toxicol Lett. 2013;222: 239–46.eng
dcterms.referencesLe QG, Ishiwata-Kimata Y, Kohno K, Kimata Y. Cadmium impairs protein folding in the endoplasmic reticulum and induces the unfolded protein response. FEMS Yeast Res. 2016;16.eng
dcterms.referencesHiramatsu N, Kasai A, Du S, Takeda M, Hayakawa K, Okamura M, Yao J, Kitamura M. Rapid, transient induction of ER stress in the liver and kidney after acute exposure to heavy metal: evidence from transgenic sensor mice. FEBS Lett. 2007;581:2055–9.eng
dcterms.referencesGuo H, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B, Chen K, Deng J. Nickel chloride (NiCl2) induces endoplasmic reticulum (ER) stress by activating UPR pathways in the kidney of broiler chickens. Oncotarget. 2016; 7:17508.eng
dcterms.referencesTamás MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P. Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules. 2014;4:252–67.eng
dcterms.referencesKe Q, Davidson T, Kluz T, Oller A, Costa M. Fluorescent tracking of nickel ions in human cultured cells. Toxicol Appl Pharmacol. 2007;219:18–23.eng
dcterms.referencesKawanishi S, Oikawa S, Inoue S, Nishino K. Distinct mechanisms of oxidative DNA damage induced by carcinogenic nickel subsulfide and nickel oxides. Environ Health Perspect. 2002;110:789.eng
dcterms.referencesZhang K, Kaufman RJ. The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology. 2006;66:S102–9.eng
dcterms.referencesChang C-W, Chen Y-S, Tsay Y-G, Han C-L, Chen Y-J, Yang C-C, Hung K-F, Lin C-H, Huang T-Y, Kao S-Y. ROS-independent ER stress-mediated NRF2 activation promotes Warburg effect to maintain stemness-associated properties of cancer-initiating cells. Cell Death Dis. 2018;9:194.eng
dcterms.referencesMota SI, Costa RO, Ferreira IL, Santana I, Caldeira GL, Padovano C, Fonseca AC, Baldeiras I, Cunha C, Letra L, et al. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer's disease. Biochim Biophys Acta. 1852;2015:1428–41.eng
dcterms.referencesAngel P, Karin M. The role of Jun, Fos and the AP-1 complex in cellproliferation and transformation. Biochim Biophys Acta. 1991;1072:129–57.eng
dcterms.referencesHai T, Curran T. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci. 1991;88: 3720–4.eng
dcterms.referencesBarchowsky A, O'Hara KA. Metal-induced cell signaling and gene activation in lung diseases. Free Radic Biol Med. 2003;34:1130–5.eng
dcterms.referencesSalnikow K, Davidson T, Zhang Q, Chen LC, Su W, Costa M. The involvement of hypoxia-inducible transcription Factor-1-dependent pathway in nickel carcinogenesis. Cancer Res. 2003;63:3524–30.eng
dcterms.referencesDing J, Zhang X, Li J, Song L, Ouyang W, Zhang D, Xue C, Costa M, Meléndez JA, Huang C. Nickel compounds render anti-apoptotic effect to human bronchial epithelial Beas-2B cells by induction of cyclooxygenase-2 through an IKKβ/p65-dependent and IKKα-and p50-independent pathway. J Biol Chem. 2006;281:39022–32eng
dcterms.referencesSigel A, Sigel H, Sigel RKO: Nickel and Its Surprising Impact in Nature. Wiley; 2007.eng
dcterms.referencesAiba S, Manome H, Nakagawa S, Mollah ZU, Mizuashi M, Ohtani T, Yoshino Y, Tagami H. p38 mitogen-activated protein kinase and extracellular signalregulated kinases play distinct roles in the activation of dendritic cells by two representative haptens, NiCl2 and 2,4-dinitrochlorobenzene. J Invest Dermatol. 2003;120:390–9.eng
dcterms.referencesGrösch S, Kaina B. Transcriptional activation of apurinic/apyrimidinic endonuclease (ape, Ref-1) by oxidative stress requires CREB. Biochem Biophys Res Commun. 1999;261:859–63.eng
dcterms.referencesMayr B, Montminy M. Transcriptional regulation by the phosphorylationdependent factor CREB. Nat Rev Mol Cell Biol. 2001;2:599.eng
dcterms.referencesKikuchi D, Tanimoto K, Nakayama K. CREB is activated by ER stress and modulates the unfolded protein response by regulating the expression of IRE1α and PERK. Biochem Biophys Res Commun. 2016;469:243–50.eng
dcterms.referencesGe Y, Bruno M, Haykal-Coates N, Wallace K, Andrews D, Swank A, Winnik W, Ross JA. Proteomic assessment of biochemical pathways that are critical to nickel-induced toxicity responses in human epithelial cells. PLoS One. 2016; 11:e0162522.eng
dcterms.referencesWang J, Maldonado MA. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol. 2006;3:255–61.eng
dcterms.referencesReinstein E. Immunologic aspects of protein degradation by the ubiquitinproteasome system. Isr Med Assoc J. 2004;6:420–4.eng
dcterms.referencesMenéndez-Benito V, Verhoef LGGC, Masucci MG, Dantuma NP. Endoplasmic reticulum stress compromises the ubiquitin–proteasome system. Hum Mol Genet. 2005;14:2787–99.eng
dcterms.referencesHart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL, Qiu B, Zhang H, Cerniglia G, Bi M, et al. ER stress–mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Invest. 2012;122: 4621–34.eng
dcterms.referencesGao P, Tchernyshyov I, Chang T-C, Lee Y-S, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, JTJN M. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762.eng
dcterms.referencesMeyer N, Penn LZJNRC: Reflecting on 25 years with MYC. 2008, 8:976.eng
dcterms.referencesIritani BM, Eisenman RNJPotNAoS: c-Myc enhances protein synthesis and cell size during B lymphocyte development. 1999, 96:13180–13185.eng
dcterms.referencesChan JC, Hannan KM, Riddell K, Ng PY, Peck A, Lee RS, Hung S, Astle MV, Bywater M, Wall MJSS: AKT promotes rRNA synthesis and cooperates with c- MYC to stimulate ribosome biogenesis in cancer. Sci Signal 2011, 4:ra56-ra56.eng
dcterms.referencesZhu X, Huang L, Gong J, Shi C, Wang Z, Ye B, Xuan A, He X, Long D, Zhu X, et al. NF-κB pathway link with ER stress-induced autophagy and apoptosis in cervical tumor cells. Cell Death Discovery. 2017;3:17059.eng
dcterms.referencesLiu G-H, Qu J, Shen X. NF-κB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2008;1783: 713–27.eng


Bloque original
Mostrando 1 - 1 de 1
2.01 MB
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
381 B
Item-specific license agreed upon to submission