The Importance of Tubular Function in Chronic Kidney Disease
dc.contributor.author | Risso, Maria A | |
dc.contributor.author | Sallustio, Sofía | |
dc.contributor.author | Sueiro, Valentin | |
dc.contributor.author | Bertoni, Victoria | |
dc.contributor.author | Gonzalez Torres, Henry | |
dc.contributor.author | Musso, Carlos G | |
dc.date.accessioned | 2019-12-13T16:32:03Z | |
dc.date.available | 2019-12-13T16:32:03Z | |
dc.date.issued | 2019 | |
dc.description.abstract | Glomerular filtration rate (GFR) and proteinuria-albuminuria are the renal functional parameters currently used to evaluate chronic kidney disease (CKD) severity. However, tubular secretion is another important renal functional parameter to be taken into account since proximal tubule (PT) secretion, in particular, is a crucial renal mechanism for endogenous organic cations, anions and drug elimination. The residual diuresis is a relevant survival predictor in patients on dialysis, since their urine is produced by the glomerular and tubular functions. It has been hypothesized that drugs which up-regulate some renal tubular transporters could contribute to uremic toxin excretion, and nephroprevention. However, if tubular transporters' down-regulation observed in CKD patients and experimental models is a PT adaptation to avoid intracellular accumulation and damage from uremic toxins, consequently the increase of toxin removal by inducing tubular transporters' up-regulation could be deleterious to the kidney. Therefore, a deeper understanding of this phenomenon is currently needed. In conclusion, tubular function has an important role for endogenous organic cations, anions and drug excretion in CKD patients, and a deeper understanding of its multiple mechanisms could provide new therapeutic alternatives in this population. | eng |
dc.identifier.issn | 11787058 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/4461 | |
dc.language.iso | eng | eng |
dc.publisher | Dove Press | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | International Journal of Nephrology and Renovascular Disease | eng |
dc.source | Vol. 12 (2019) | |
dc.source.uri | https://doi.org/10.2147/IJNRD.S216673 | |
dc.subject | Tubular function | eng |
dc.subject | Chronic kidney disease | eng |
dc.subject | Drugs | eng |
dc.title | The Importance of Tubular Function in Chronic Kidney Disease | eng |
dc.type | article | eng |
dcterms.references | Suchy-Dicey AM, Laha T, Hoofnagle A, et al. Tubular secretion in CKD. J Am Soc Nephrol. 2016;27(7):2148–2155. doi:10.1681/ASN. 2014121193 | eng |
dcterms.references | Musso CG, Gavrilovici C, Covic A. Tubular secretion in chronic kidney disease staging: a new proposal. Int Urol Nephrol. 2017;49 (11):2087–2089. doi:10.1007/s11255-017-1673-0 | eng |
dcterms.references | Masereeuw R, Mutsaers HA, Toyohara T, et al. The kidney and uremic toxin removal: glomerulus or tubule? Semin Nephrol. 2014;34 (2):191–208. doi:10.1016/j.semnephrol.2014.02.010 | eng |
dcterms.references | Jansen J, De Napoli IE, Fedecostante M, et al. Human proximal tubule epithelial cells cultured on hollow fibers: living membranes that actively transport organic cations. Sci Rep. 2015;5:16702. doi:10. 1038/srep16702 | eng |
dcterms.references | Nigam SK, Bush KT, Martovetsky G, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015;95(1):83–123. doi:10.1152/physrev.00025.2013 | eng |
dcterms.references | Vallon V, Eraly SA, Rao SR, et al. A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. Am J Physiol Renal Physiol. 2012;302(10):F1293–9. doi:10.1152/ajprenal.00013. 2012 | eng |
dcterms.references | Suzuki T, Toyohara T, Akiyama Y, et al. Transcriptional regulation of organic anion transporting polypeptide SLCO4C1 as a new therapeutic modality to prevent chronic kidney disease. J Pharm Sci. 2011;100(9):3696–3707. doi:10.1002/jps.22641 | eng |
dcterms.references | Shen H, Liu T, Morse BL, et al. Characterization of organic anion transporter 2 (SLC22A7): a highly efficient transporter for creatinine and species-dependent renal tubular expression. Drug Metab Dispos. 2015;43(7):984–993. doi:10.1124/dmd.114.062364 | eng |
dcterms.references | Xu L, Shi Y, Zhuang S, Liu N. Recent advances on uric acid transporters. Oncotarget. 2017;8(59):100852–100862. doi:10.18632/ oncotarget.20135 | eng |
dcterms.references | Dousdampanis P, Trigka K, Musso CG, Fourtounas C. Hyperuricemia and chronic kidney disease: an enigma yet to be solved. Ren Fail. 2014;36(9):1351–1359. doi:10.3109/0886022X.2014.947516 | eng |
dcterms.references | Musso CG, Alvarez Gregori J, Jauregui JR, Macías Núñez JF. Creatinine, urea, uric acid, water and electrolytes renal handling in the healthy oldest old. World J Nephrol. 2012;1(5):123–126. doi:10.5527/wjn.v1.i5.123 | eng |
dcterms.references | Musso CG, Juarez R, Vilas M, Navarro M, Rivera H, Jauregui R. Renal calcium, phosphorus, magnesium and uric acid handling: comparison between stage III chronic kidney disease patients and healthy oldest old. Int Urol Nephrol. 2012;44(5):1559–1562. doi:10.1007/ s11255-012-0230-0 | eng |
dcterms.references | Eraly SA, Vallon V, Rieg T, et al. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol Genomics. 2008;33(2):180–192. doi:10.1152/physiolgenomics.00207.2007 | eng |
dcterms.references | Jing J, Ekici A, Sitter T, et al. Genetics of serum urate concentrations and gout in a highrisk population, patients with chronic kidney disease. Sci Rep. 2018;8:13184. doi:10.1038/s41598-018-31282-z | eng |
dcterms.references | Mandal AK, Mount DB. The molecular physiology of uric acid homeostasis. Annu Rev Physiol. 2015;77:323–345. doi:10.1146/ annurev-physiol-021113-170343 | eng |
dcterms.references | Emami Riedmaier A, Nies AT, Schaeffeler E, Schwab M. Organic anion transporters and their implications in pharmacotherapy. Pharmacol Rev. 2012;64(3):421–449. doi:10.1124/pr.111.004614 | eng |
dcterms.references | Toyohara T, Suzuki T, Morimoto R, et al. SLCO4C1 transporter eliminates uremic toxins and attenuates hypertension and renal inflammation. J Am Soc Nephrol. 2009;20(12):2546–2555. doi:10.1681/ASN.2009070696 | eng |
dcterms.references | Nigam SK, Wu W, Bush KT, Hoenig MP, Blantz RC, Bhatnagar V. Handling of drugs, metabolites,and uremic toxins by kidney proximal tubule drug transporters. Clin J Am Soc Nephrol. 2015;10 (11):2039–2049. doi:10.2215/CJN.02440314 | eng |
dcterms.references | Bhatnagar V, Richard EL, Wu W, et al. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: potential role of remote sensing and signaling. Clin Kidney J. 2016;9 (3):444–453. doi:10.1093/ckj/sfw010 | eng |
dcterms.references | Nigam SK. syndrome of chronic kidney disease: altered remote sensing and signalling. Nat Rev Nephrol. 2019;15(5):301–316. doi:10.1038/s41581-019-0111-1 | eng |
dcterms.references | Wu W, Bush K, Nigam S. Key role for the Organic Anion Transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Sci Rep. 2017;7:4939. doi:10.1038/s41598-017- 04949-2 | eng |
dcterms.references | Wanchai K, Yasom S, Tunapong W, et al. Probiotic Lactobacillus paracasei HII01 protects rats against obese-insulin resistance induced kidney injury and impaired renal organic anion transporter 3 function. Clin Sci (Lond). 2018;132(14):1545–1563. doi:10.1042/CS20180148 | eng |
dcterms.references | Ranganathan N, Ranganathan P, Friedman EA, et al. Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv Ther. 2010;27 (9):634–647. doi:10.1007/s12325-010-0059-9 | eng |
dcterms.references | Blanco VE, Hernandorena CV, Scibona P, Belloso W, Musso CG. Acute kidney injury pharmacokinetic changes and its impact on drug prescription. Healthcare (Basel). 2019;7(1):E10. doi:10.3390/ healthcare7010010 | eng |
dcterms.references | Saito H. Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury: pharmacological and toxicological implications. Pharmacol Ther. 2010;125(1):79–91. doi:10.1016/j. pharmthera.2009.09.008 | eng |
dcterms.references | Watanabe H, Sakaguchi Y, Sugimoto R, et al. Human organic anion transporters function as a high-capacity transporter for p-cresyl sulfate, a uremic toxin. Clin Exp Nephrol. 2014;18(5):814–820. doi:10. 1007/s10157-013-0902-9 | eng |
dcterms.references | De Broe ME, Porter GA, Bennett WM, Deray G. Clinical Nephrotoxins. Renal Injury from Drugs and Chemicals. New York: Springer; 2008. | eng |
dcterms.references | Takada T, Yamamoto T, Matsuo H, et al. Identification of ABCG2 as an exporter of uremic toxin indoxyl sulfate in Mice and as a crucial factor influencing CKD progression. Sci Rep. 2018;8:11147. doi:10. 1038/s41598-018-29208-w | eng |
dcterms.references | Wikoff WR, Nagle MA, Kouznetsova VL, Tsigelny IF, Nigam SK. Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (Oat1). J Proteome Res. 2011;10(6):2842–2851. doi:10.1021/pr20 0093w | eng |
dcterms.references | Lowenstein J, Grantham JJ. The rebirth of interest in renal tubular function. Am J Physiol Renal Physiol. 2016;310(11):F1351–5. doi:10.1152/ajprenal.00055.2016 | eng |
dcterms.references | Steubl D, Block M, Herbst V, et al. Plasma uromodulin correlates with kidney function and identifies early stages in chronic kidney disease patients. Medicine (Baltimore). 2016;95(10):e3011. doi:10.10 97/MD.0000000000003011 | eng |