Estrategias para el control de biopelículas de Salmonella spp formadas en acero inoxidable
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
dc.contributor.advisor | Pérez Lavalle, Liliana | |
dc.contributor.advisor | Soto Valera, Zamira | |
dc.contributor.author | Anaya De La Cruz, Donna | |
dc.contributor.author | Araque España, Yanelis | |
dc.contributor.author | De La Rosa Rada, Enelvis | |
dc.contributor.author | Rodríguez Alvarado, Melanie | |
dc.date.accessioned | 2023-01-16T22:43:11Z | |
dc.date.available | 2023-01-16T22:43:11Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Salmonella spp. es una de las principales bacterias involucradas en enfermedades transmitidas por alimentos. De acuerdo con el National Outbreak Reporting System (NORS) en Estados Unidos fueron reportados entre 2018-2020, 57,649 brotes de los cuales 244 brotes eran causados por Salmonella spp., ocasionando 5.532 enfermedades, 1.037 hospitalizaciones y 6 fallecidos (CDC, 2022). Esta bacteria es capaz de formar biopelículas; la cual es una comunidad de microorganismos con células unidas irreversiblemente a un sustrato, e incrustadas en una matriz de sustancias poliméricas extracelulares (EPS) (Donlan & Costerton, 2002). Las biopelículas brindan protección frente a agentes desinfectantes y diferentes tipos de estrés encontrados en ambientes de procesamiento de alimentos (H. Steenackers et al., 2011). Diferentes estudios han demostrado la capacidad de Salmonella spp. de formar biopelículas en acero inoxidable, el cual es una de las superficies abióticas más utilizadas en la industria alimentaria por su gran resistencia (Lee et al. 2020). En esta línea, se ha evidenciado que biopelículas de Salmonella spp. formadas en acero inoxidable son difíciles de eliminar con desinfectantes comúnmente utilizados en la industria alimentaria (H. Steenackers et al., 2011). | spa |
dc.description.abstract | Salmonella spp. it is one of the main bacteria involved in foodborne illnesses. According to the National Outbreak Reporting System (NORS) in the United States, between 2018-2020, 57,649 outbreaks were reported, of which 244 outbreaks were caused by Salmonella spp., causing 5,532 illnesses, 1,037 hospitalizations, and 6 deaths (CDC, 2022). This bacterium is capable of forming biofilms; which is a community of microorganisms with cells irreversibly attached to a substrate, and embedded in a matrix of extracellular polymeric substances (EPS) (Donlan & Costerton, 2002). Biofilms provide protection against sanitizing agents and different types of stress found in food processing environments (H. Steenackers et al., 2011). Different studies have shown the ability of Salmonella spp. to form biofilms on stainless steel, which is one of the most used abiotic surfaces in the food industry due to its great resistance (Lee et al. 2020). Along these lines, it has been shown that Salmonella spp. formed in stainless steel are difficult to remove with disinfectants commonly used in the food industry (H. Steenackers et al., 2011). | spa |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/11718 | spa |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Acero inoxidable | spa |
dc.subject | Salmonella spp | spa |
dc.subject | Biopelícula | spa |
dc.subject | Control | spa |
dc.subject | Desinfección | spa |
dc.subject | Erradicación | spa |
dc.subject | Eliminación | spa |
dc.subject | Stainless steel | eng |
dc.subject | Salmonella spp | eng |
dc.subject | Biofilm | eng |
dc.subject | Control | eng |
dc.subject | Disinfection | eng |
dc.subject | Eradication | eng |
dc.subject | Elimination | eng |
dc.title | Estrategias para el control de biopelículas de Salmonella spp formadas en acero inoxidable | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.spa | Trabajo de grado - pregrado | spa |
dcterms.references | Artés, F., Gómez, P., Aguayo, E., Escalona, V., & Artés-Hernández, F. (2009). Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biology and Technology, 51(3), 287–296 | eng |
dcterms.references | Brasão, S.C., Melo, R.T.d., Prado, R.R., Monteiro, G.P., Santos, F.A.L.d., Braz, R.F., Rossi, D.A. (2021). Characterization and control of biofilms of Salmonella Minnesota of poultry origin. Food Biosci. 2021, 39, 100811 | eng |
dcterms.references | Byun, K.H., Sang, H.H., Yoon, J.W., Park, S.H & Ha, S.D. (2021). “Efficacy of Chlorine-Based Disinfectants (Sodium Hypochlorite and Chlorine Dioxide) on Salmonella Enteritidis Planktonic Cells, Biofilms on Food Contact Surfaces and Chicken Skin.” Food Control 123 (September 2020): 1–8. https://doi.org/10.1016/j.foodcont.2020.107838 | eng |
dcterms.references | Byun, K.-H., Na, K. W., Ashrafudoulla, M., Choi, M. W., Han, S. H., Kang, I., Park, S. H., & Ha, S.-D. (2022). Combination treatment of peroxyacetic acid or lactic acid with UV-C to control Salmonella Enteritidis biofilms on food contact surface and chicken skin. Food Microbiology, 102, 103906. | eng |
dcterms.references | Centers for Disease Control and Prevention. (2022) Centers for Disease Control and Prevention National outbreak reporting system (NORS) https://wwwn.cdc.gov/norsdashboard/ (2022). | eng |
dcterms.references | Corcoran, M., Morris, D., de Lappe, N., O’Connor, J., Lalor, P., Dockery, P., & Cormican, M. (2014). Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials. Applied and Environmental Microbiology, 80(4), 1507–1514. https://doi.org/10.1128/AEM.03109-13 | eng |
dcterms.references | Dhakal, Janak, Chander S. Sharma, Ramakrishna Nannapaneni, Christopher D. McDaniel, Taejo Kim, & Aaron Kiess. (2019). “Effect of Chlorine-Induced Sublethal Oxidative Stress on the Biofilm-Forming Ability of Salmonella at Different Temperatures, Nutrient Conditions, and Substrates.” Journal of Food Protection 82 (1): 78–92. https://doi.org/10.4315/0362-028X.JFP-18-119. | eng |
dcterms.references | Donlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167–193. https://doi.org/10.1128/CMR.15.2.167-193.2002 | eng |
dcterms.references | EFSA & ECDC. (2019). The European Union One Health 2018 Zoonoses Report. EFSA journal 2019; 17(12):5926. https://doi.org/10.2903/j.efsa.2019.5926 | eng |
dcterms.references | El-Tarabily, Khaled A., Mohamed T. El-Saadony, Mahmoud Alagawany, Muhammad Arif, Gaber E. Batiha, Asmaa F. Khafaga, Hamada A.M. Elwan, Shaaban S. Elnesr, and Mohamed E. Abd El-Hack. (2021). “Using Essential Oils to Overcome Bacterial Biofilm Formation and Their Antimicrobial Resistance.” Saudi Journal of Biological Sciences 28 (9): 5145–56. https://doi.org/10.1016/j.sjbs.2021.05.033. | eng |
dcterms.references | Endersen, L & Coffey, A. (2020). The use of bacteriophages for food safety. Curr Opin Food Sci 36:1–8. https://doi.org/10.1016/j.cofs.2020.10.006 | eng |
dcterms.references | Falleh, H., Jemaa, M.B., Saada, M., & Ksouri, R. (2020). “Essential Oils: A Promising Eco-Friendly Food Preservative.” Food Chemistry 330 (June): 127268. https://doi.org/10.1016/j.foodchem.2020.127268 | eng |
dcterms.references | Fan, Q., He, Q., Zhang, T., Song, W., Sheng, Q., Yuan, Y., & Yue, T. (2022). “Antibiofilm Potential of Lactobionic Acid against Salmonella Typhimurium.” LWT 162 (June). https://doi.org/10.1016/j.lwt.2022.113461. | eng |
dcterms.references | Gabriel, A.A., Ballesteros, M.P., Mendel, D.R., Tumlos, R.B & Ramos, H.J. (2018). “Elimination of Salmonella enterica on Common Stainless Steel Food Contact Surfaces Using UV-C and Atmospheric Pressure Plasma Jet.” Food Control 86 (April): 90–100. https://doi.org/10.1016/j.foodcont.2017.11.011. | eng |
dcterms.references | Hu, H., Cai, L., Dong, Y., Wang, H., Xu, X., & Zhou, G. (2019). “Modeling the Degradation of Acidic Electrolyzed Water and Its Ability to Disinfect a Dual-Species Biofilm.” LWT 104 (May): 159–64. https://doi.org/10.1016/j.lwt.2019.01.029. | eng |
dcterms.references | Islam, M.S., Zhou, Y., Liang, L., Nime, I., Liu, K., Yan, T., Wang, X,, Li, J. (2019). Application of a Phage Cocktail for Control of Salmonella in Foods and Reducing Biofilms. Viruses. 2019 Sep 10;11(9):841. doi: 10.3390/v11090841. PMID: 31510005; PMCID: PMC6784009. | eng |
dcterms.references | Da Young, J & Ha, Jae-Won. (2021). “Synergistic Interaction of Tap Water-Based Neutral Electrolyzed Water Combined with UVA Irradiation to Enhance Microbial Inactivation on Stainless Steel.” Food Research International 150 (December). https://doi.org/10.1016/j.foodres.2021.110773 | eng |
dcterms.references | Joseph, B., Otta, S. K., Karunasagar, I., & Karunasagar, I. (2001). Biofilm formation by salmonella spp. on food contact surfaces and their sensitivity to sanitizers. International journal of food microbiology, 64(3), 367–372. https://doi.org/10.1016/s0168-1605(00)00466-9 | eng |
dcterms.references | Katsigiannis, A.S., Bayliss, D.L & Walsh, J.M. (2021). “Cold Plasma Decontamination of Stainless Steel Food Processing Surfaces Assessed Using an Industrial Disinfection Protocol.” Food Control 121 (March). https://doi.org/10.1016/j.foodcont.2020.107543. | eng |
dcterms.references | Kim, Min Jeong, and Joo Sung Kim. (2022). “Enhanced Inactivation of Salmonella Enterica Enteritidis Biofilms on the Stainless Steel Surface by Proteinase K in the Combination with Chlorine.” Food Control 132 (February). https://doi.org/10.1016/j.foodcont.2021.108519. | eng |
dcterms.references | Kim, N.N., Kim, W.J., & Kang, S. (2019). Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium. Food Control. DOI:10.1016/J.FOODCONT.2018.11.004 | eng |
dcterms.references | Lee, K-Hoon., Lee, J.Y., Roy, P.K., Md Furkanur Rahaman Mizan., Md Iqbal Hossai., Si Hong Park, & Sang do Ha. (2020). “Viability of Salmonella Typhimurium Biofilms on Major Food-Contact Surfaces and Eggshell Treated during 35 Days with and without Water Storage at Room Temperature.” Poultry Science 99 (9): 4558–65. https://doi.org/10.1016/j.psj.2020.05.055. | eng |
dcterms.references | Ma, Z., Tang, X., Stanford, K., Chen, X., McAllister, T. A., & Niu, Y. D. (2021). Single- and Dual-Species Biofilm Formation by Shiga Toxin-Producing Escherichia coli and Salmonella, and Their Susceptibility to an Engineered Peptide WK2. Microorganisms, 9(12), 2510. https://doi.org/10.3390/microorganisms9122510 | eng |
dcterms.references | Merino, L., Trejo, F. M., De Antoni, G., & Golowczyc, M. A. (2019). Lactobacillus strains inhibit biofilm formation of Salmonella sp. isolates from poultry. Food research international (Ottawa, Ont.), 123, 258–265. https://doi.org/10.1016/j.foodres.2019.04.067 | eng |
dcterms.references | Ministerio de Protección Social, Instituto Nacional de Salud &Unidad de Evaluación de Riesgos para la Inocuidad de los Alimentos. (2011). Perfil de riesgo Salmonella spp. (no tifoideas) en pollo entero y en piezas. Obtenido de perfil-salmonella-spp.pdf (minsalud.gov.co) | spa |
dcterms.references | Milho, C., Silva, M. D., Melo, L., Santos, S., Azeredo, J., & Sillankorva, S. (2018). Control of Salmonella Enteritidis on food contact surfaces with bacteriophage PVP-SE2. Biofouling, 34(7), 753–768. https://doi.org/10.1080/08927014.2018.1501475 | eng |
dcterms.references | Mohan, A & Purohit, A. Anti-Salmonella Activity of Pyruvic and Succinic Acid in Combination with Oregano Essential Oil. Food Control 110(3):106960. DOI:10.1016/j.foodcont.2019.106960 | eng |
dcterms.references | Montville, T. J., Chen, Y. (1998). Mechanistic action of pediocin and nisin: recent progress and unresolved questions. Applied microbiology and Biotechnology, 50(5), 511-519 | eng |
dcterms.references | Moretro, T., Vestby, L.K., Nesse, L.L., Storheim, S.E., Kotlarz, K. & Langsrud, S. (2009) Evaluation of efficacy of disinfectants against Salmonella from the feed industry. J Appl Microbiol 106, 1005–1012. | eng |
dcterms.references | Pang, Xinyi, & Hyun Gyun Yuk. (2018). “Effect of Pseudomonas Aeruginosa on the Sanitizer Sensitivity of Salmonella Enteritidis Biofilm Cells in Chicken Juice.” Food Control 86 (April): 59–65. https://doi.org/10.1016/j.foodcont.2017.11.012. | eng |
dcterms.references | Pérez-Lavalle, L., Carrasco, E., & Valero, A. (2020). “Strategies for Microbial Decontamination of Fresh Blueberries and Derived Products.” Foods. MDPI. https://doi.org/10.3390/foods9111558 | eng |
dcterms.references | Postcosecha, Tecnología, SC México García-Robles, Jesús Manuel, and Laura Janeth. (2017).“Revista Iberoamericana de Tecnología Postcosecha Asociación Iberoamericana De” 18: 9–22. http://www.scielo.org.co/pdf/sun/v30n1/v30n1a09.pdf | eng |
dcterms.references | Ramatla T, Tawana M, Onyiche TE, Lekota KE, Thekisoe O. Prevalence of Antibiotic Resistance in Salmonella Serotypes Concurrently Isolated from the Environment, Animals, and Humans in South Africa: A Systematic Review and Meta-Analysis. Antibiotics (Basel). 2021 Nov 23;10(12):1435. doi: 10.3390/antibiotics10121435. PMID: 34943647; PMCID: PMC8698067. | eng |
dcterms.references | Ripolles-Avila, C.; Ríos-Castillo, A.G.; Fontecha-Umaña, F.; Rodríguez-Jerez, J.J. Removal of Salmonella enterica serovar Typhimurium and Cronobacter sakazakii biofilms from food contact surfaces through enzymatic catalysis. J. Food Saf. 2019, 40, e12755 | eng |
dcterms.references | Hernández Santiago, R. (2019). Aislamiento y caracterización parcial de bacteriófagos de salmonella spp con potencial aplicación en el biocontrol sobre superficies http://www.scielo.org.co/pdf/sun/v30n1/v30n1a09.pdf | spa |
dcterms.references | Sadekuzzaman, M., M. F. R. Mizan, H. S. Kim, S. Yang, and S. D. Ha. (2018). Activity of thyme and tea tree essential oils against selected foodborne pathogens in biofilms on abiotic surfaces. LWT 89:134–9. doi: 10.1016/j.lwt.2017.10.042. | eng |
dcterms.references | Sakarikou, Christina, Dimitra Kostoglou, Manuel Simões, and Efstathios Giaouris. (2020). “Exploitation of Plant Extracts and Phytochemicals against Resistant Salmonella Spp. in Biofilms..Food Research International 128 (November 2019): 108806. https://doi.org/10.1016/j.foodres.2019.108806. | eng |
dcterms.references | Silva-Espinoza, Brenda A., Julián J. Palomares-Navarro, Melvin R. Tapia-Rodríguez, Manuel R. Cruz-Valenzuela, Gustavo A. González-Aguilar, Erika Silva-Campa, Martín Pedroza-Montero, Monica Almeida-Lopes, Raquel Miranda, and Jesus F. Ayala-Zavala. (2020). “Combination of Ultraviolet Light-C and Clove Essential Oil to Inactivate Salmonella Typhimurium Biofilms on Stainless Steel.” Journal of Food Safety 40 (3). https://doi.org/10.1111/jfs.12788. | eng |
dcterms.references | Skowron, Krzysztof, Ewa Wałecka-Zacharska, Katarzyna Grudlewska, Joanna Kwiecińska-Piróg, Natalia Wiktorczyk, Maria Kowalska, Zbigniew Paluszak, et al. (2020). “Effect of Selected Environmental Factors on the Microbicidal Effectiveness of Radiant Catalytic Ionization.” Frontiers in Microbiology 10. https://doi.org/10.3389/fmicb.2019.03057 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | spa |
sb.programa | Microbiología | spa |
sb.sede | Sede Barranquilla | spa |