Estrategias para el control de biopelículas de Salmonella spp formadas en acero inoxidable

datacite.rightshttp://purl.org/coar/access_right/c_16ecspa
dc.contributor.advisorPérez Lavalle, Liliana
dc.contributor.advisorSoto Valera, Zamira
dc.contributor.authorAnaya De La Cruz, Donna
dc.contributor.authorAraque España, Yanelis
dc.contributor.authorDe La Rosa Rada, Enelvis
dc.contributor.authorRodríguez Alvarado, Melanie
dc.date.accessioned2023-01-16T22:43:11Z
dc.date.available2023-01-16T22:43:11Z
dc.date.issued2022
dc.description.abstractSalmonella spp. es una de las principales bacterias involucradas en enfermedades transmitidas por alimentos. De acuerdo con el National Outbreak Reporting System (NORS) en Estados Unidos fueron reportados entre 2018-2020, 57,649 brotes de los cuales 244 brotes eran causados por Salmonella spp., ocasionando 5.532 enfermedades, 1.037 hospitalizaciones y 6 fallecidos (CDC, 2022). Esta bacteria es capaz de formar biopelículas; la cual es una comunidad de microorganismos con células unidas irreversiblemente a un sustrato, e incrustadas en una matriz de sustancias poliméricas extracelulares (EPS) (Donlan & Costerton, 2002). Las biopelículas brindan protección frente a agentes desinfectantes y diferentes tipos de estrés encontrados en ambientes de procesamiento de alimentos (H. Steenackers et al., 2011). Diferentes estudios han demostrado la capacidad de Salmonella spp. de formar biopelículas en acero inoxidable, el cual es una de las superficies abióticas más utilizadas en la industria alimentaria por su gran resistencia (Lee et al. 2020). En esta línea, se ha evidenciado que biopelículas de Salmonella spp. formadas en acero inoxidable son difíciles de eliminar con desinfectantes comúnmente utilizados en la industria alimentaria (H. Steenackers et al., 2011).spa
dc.description.abstractSalmonella spp. it is one of the main bacteria involved in foodborne illnesses. According to the National Outbreak Reporting System (NORS) in the United States, between 2018-2020, 57,649 outbreaks were reported, of which 244 outbreaks were caused by Salmonella spp., causing 5,532 illnesses, 1,037 hospitalizations, and 6 deaths (CDC, 2022). This bacterium is capable of forming biofilms; which is a community of microorganisms with cells irreversibly attached to a substrate, and embedded in a matrix of extracellular polymeric substances (EPS) (Donlan & Costerton, 2002). Biofilms provide protection against sanitizing agents and different types of stress found in food processing environments (H. Steenackers et al., 2011). Different studies have shown the ability of Salmonella spp. to form biofilms on stainless steel, which is one of the most used abiotic surfaces in the food industry due to its great resistance (Lee et al. 2020). Along these lines, it has been shown that Salmonella spp. formed in stainless steel are difficult to remove with disinfectants commonly used in the food industry (H. Steenackers et al., 2011).spa
dc.format.mimetypepdfspa
dc.identifier.urihttps://hdl.handle.net/20.500.12442/11718spa
dc.language.isospaspa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias Básicas y Biomédicasspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAcero inoxidablespa
dc.subjectSalmonella sppspa
dc.subjectBiopelículaspa
dc.subjectControlspa
dc.subjectDesinfecciónspa
dc.subjectErradicaciónspa
dc.subjectEliminaciónspa
dc.subjectStainless steeleng
dc.subjectSalmonella sppeng
dc.subjectBiofilmeng
dc.subjectControleng
dc.subjectDisinfectioneng
dc.subjectEradicationeng
dc.subjectEliminationeng
dc.titleEstrategias para el control de biopelículas de Salmonella spp formadas en acero inoxidablespa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.spaTrabajo de grado - pregradospa
dcterms.referencesArtés, F., Gómez, P., Aguayo, E., Escalona, V., & Artés-Hernández, F. (2009). Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biology and Technology, 51(3), 287–296eng
dcterms.referencesBrasão, S.C., Melo, R.T.d., Prado, R.R., Monteiro, G.P., Santos, F.A.L.d., Braz, R.F., Rossi, D.A. (2021). Characterization and control of biofilms of Salmonella Minnesota of poultry origin. Food Biosci. 2021, 39, 100811eng
dcterms.referencesByun, K.H., Sang, H.H., Yoon, J.W., Park, S.H & Ha, S.D. (2021). “Efficacy of Chlorine-Based Disinfectants (Sodium Hypochlorite and Chlorine Dioxide) on Salmonella Enteritidis Planktonic Cells, Biofilms on Food Contact Surfaces and Chicken Skin.” Food Control 123 (September 2020): 1–8. https://doi.org/10.1016/j.foodcont.2020.107838eng
dcterms.referencesByun, K.-H., Na, K. W., Ashrafudoulla, M., Choi, M. W., Han, S. H., Kang, I., Park, S. H., & Ha, S.-D. (2022). Combination treatment of peroxyacetic acid or lactic acid with UV-C to control Salmonella Enteritidis biofilms on food contact surface and chicken skin. Food Microbiology, 102, 103906.eng
dcterms.referencesCenters for Disease Control and Prevention. (2022) Centers for Disease Control and Prevention National outbreak reporting system (NORS) https://wwwn.cdc.gov/norsdashboard/ (2022).eng
dcterms.referencesCorcoran, M., Morris, D., de Lappe, N., O’Connor, J., Lalor, P., Dockery, P., & Cormican, M. (2014). Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials. Applied and Environmental Microbiology, 80(4), 1507–1514. https://doi.org/10.1128/AEM.03109-13eng
dcterms.referencesDhakal, Janak, Chander S. Sharma, Ramakrishna Nannapaneni, Christopher D. McDaniel, Taejo Kim, & Aaron Kiess. (2019). “Effect of Chlorine-Induced Sublethal Oxidative Stress on the Biofilm-Forming Ability of Salmonella at Different Temperatures, Nutrient Conditions, and Substrates.” Journal of Food Protection 82 (1): 78–92. https://doi.org/10.4315/0362-028X.JFP-18-119.eng
dcterms.referencesDonlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167–193. https://doi.org/10.1128/CMR.15.2.167-193.2002eng
dcterms.referencesEFSA & ECDC. (2019). The European Union One Health 2018 Zoonoses Report. EFSA journal 2019; 17(12):5926. https://doi.org/10.2903/j.efsa.2019.5926eng
dcterms.referencesEl-Tarabily, Khaled A., Mohamed T. El-Saadony, Mahmoud Alagawany, Muhammad Arif, Gaber E. Batiha, Asmaa F. Khafaga, Hamada A.M. Elwan, Shaaban S. Elnesr, and Mohamed E. Abd El-Hack. (2021). “Using Essential Oils to Overcome Bacterial Biofilm Formation and Their Antimicrobial Resistance.” Saudi Journal of Biological Sciences 28 (9): 5145–56. https://doi.org/10.1016/j.sjbs.2021.05.033.eng
dcterms.referencesEndersen, L & Coffey, A. (2020). The use of bacteriophages for food safety. Curr Opin Food Sci 36:1–8. https://doi.org/10.1016/j.cofs.2020.10.006eng
dcterms.referencesFalleh, H., Jemaa, M.B., Saada, M., & Ksouri, R. (2020). “Essential Oils: A Promising Eco-Friendly Food Preservative.” Food Chemistry 330 (June): 127268. https://doi.org/10.1016/j.foodchem.2020.127268eng
dcterms.referencesFan, Q., He, Q., Zhang, T., Song, W., Sheng, Q., Yuan, Y., & Yue, T. (2022). “Antibiofilm Potential of Lactobionic Acid against Salmonella Typhimurium.” LWT 162 (June). https://doi.org/10.1016/j.lwt.2022.113461.eng
dcterms.referencesGabriel, A.A., Ballesteros, M.P., Mendel, D.R., Tumlos, R.B & Ramos, H.J. (2018). “Elimination of Salmonella enterica on Common Stainless Steel Food Contact Surfaces Using UV-C and Atmospheric Pressure Plasma Jet.” Food Control 86 (April): 90–100. https://doi.org/10.1016/j.foodcont.2017.11.011.eng
dcterms.referencesHu, H., Cai, L., Dong, Y., Wang, H., Xu, X., & Zhou, G. (2019). “Modeling the Degradation of Acidic Electrolyzed Water and Its Ability to Disinfect a Dual-Species Biofilm.” LWT 104 (May): 159–64. https://doi.org/10.1016/j.lwt.2019.01.029.eng
dcterms.referencesIslam, M.S., Zhou, Y., Liang, L., Nime, I., Liu, K., Yan, T., Wang, X,, Li, J. (2019). Application of a Phage Cocktail for Control of Salmonella in Foods and Reducing Biofilms. Viruses. 2019 Sep 10;11(9):841. doi: 10.3390/v11090841. PMID: 31510005; PMCID: PMC6784009.eng
dcterms.referencesDa Young, J & Ha, Jae-Won. (2021). “Synergistic Interaction of Tap Water-Based Neutral Electrolyzed Water Combined with UVA Irradiation to Enhance Microbial Inactivation on Stainless Steel.” Food Research International 150 (December). https://doi.org/10.1016/j.foodres.2021.110773eng
dcterms.referencesJoseph, B., Otta, S. K., Karunasagar, I., & Karunasagar, I. (2001). Biofilm formation by salmonella spp. on food contact surfaces and their sensitivity to sanitizers. International journal of food microbiology, 64(3), 367–372. https://doi.org/10.1016/s0168-1605(00)00466-9eng
dcterms.referencesKatsigiannis, A.S., Bayliss, D.L & Walsh, J.M. (2021). “Cold Plasma Decontamination of Stainless Steel Food Processing Surfaces Assessed Using an Industrial Disinfection Protocol.” Food Control 121 (March). https://doi.org/10.1016/j.foodcont.2020.107543.eng
dcterms.referencesKim, Min Jeong, and Joo Sung Kim. (2022). “Enhanced Inactivation of Salmonella Enterica Enteritidis Biofilms on the Stainless Steel Surface by Proteinase K in the Combination with Chlorine.” Food Control 132 (February). https://doi.org/10.1016/j.foodcont.2021.108519.eng
dcterms.referencesKim, N.N., Kim, W.J., & Kang, S. (2019). Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium. Food Control. DOI:10.1016/J.FOODCONT.2018.11.004eng
dcterms.referencesLee, K-Hoon., Lee, J.Y., Roy, P.K., Md Furkanur Rahaman Mizan., Md Iqbal Hossai., Si Hong Park, & Sang do Ha. (2020). “Viability of Salmonella Typhimurium Biofilms on Major Food-Contact Surfaces and Eggshell Treated during 35 Days with and without Water Storage at Room Temperature.” Poultry Science 99 (9): 4558–65. https://doi.org/10.1016/j.psj.2020.05.055.eng
dcterms.referencesMa, Z., Tang, X., Stanford, K., Chen, X., McAllister, T. A., & Niu, Y. D. (2021). Single- and Dual-Species Biofilm Formation by Shiga Toxin-Producing Escherichia coli and Salmonella, and Their Susceptibility to an Engineered Peptide WK2. Microorganisms, 9(12), 2510. https://doi.org/10.3390/microorganisms9122510eng
dcterms.referencesMerino, L., Trejo, F. M., De Antoni, G., & Golowczyc, M. A. (2019). Lactobacillus strains inhibit biofilm formation of Salmonella sp. isolates from poultry. Food research international (Ottawa, Ont.), 123, 258–265. https://doi.org/10.1016/j.foodres.2019.04.067eng
dcterms.referencesMinisterio de Protección Social, Instituto Nacional de Salud &Unidad de Evaluación de Riesgos para la Inocuidad de los Alimentos. (2011). Perfil de riesgo Salmonella spp. (no tifoideas) en pollo entero y en piezas. Obtenido de perfil-salmonella-spp.pdf (minsalud.gov.co)spa
dcterms.referencesMilho, C., Silva, M. D., Melo, L., Santos, S., Azeredo, J., & Sillankorva, S. (2018). Control of Salmonella Enteritidis on food contact surfaces with bacteriophage PVP-SE2. Biofouling, 34(7), 753–768. https://doi.org/10.1080/08927014.2018.1501475eng
dcterms.referencesMohan, A & Purohit, A. Anti-Salmonella Activity of Pyruvic and Succinic Acid in Combination with Oregano Essential Oil. Food Control 110(3):106960. DOI:10.1016/j.foodcont.2019.106960eng
dcterms.referencesMontville, T. J., Chen, Y. (1998). Mechanistic action of pediocin and nisin: recent progress and unresolved questions. Applied microbiology and Biotechnology, 50(5), 511-519eng
dcterms.referencesMoretro, T., Vestby, L.K., Nesse, L.L., Storheim, S.E., Kotlarz, K. & Langsrud, S. (2009) Evaluation of efficacy of disinfectants against Salmonella from the feed industry. J Appl Microbiol 106, 1005–1012.eng
dcterms.referencesPang, Xinyi, & Hyun Gyun Yuk. (2018). “Effect of Pseudomonas Aeruginosa on the Sanitizer Sensitivity of Salmonella Enteritidis Biofilm Cells in Chicken Juice.” Food Control 86 (April): 59–65. https://doi.org/10.1016/j.foodcont.2017.11.012.eng
dcterms.referencesPérez-Lavalle, L., Carrasco, E., & Valero, A. (2020). “Strategies for Microbial Decontamination of Fresh Blueberries and Derived Products.” Foods. MDPI. https://doi.org/10.3390/foods9111558eng
dcterms.referencesPostcosecha, Tecnología, SC México García-Robles, Jesús Manuel, and Laura Janeth. (2017).“Revista Iberoamericana de Tecnología Postcosecha Asociación Iberoamericana De” 18: 9–22. http://www.scielo.org.co/pdf/sun/v30n1/v30n1a09.pdfeng
dcterms.referencesRamatla T, Tawana M, Onyiche TE, Lekota KE, Thekisoe O. Prevalence of Antibiotic Resistance in Salmonella Serotypes Concurrently Isolated from the Environment, Animals, and Humans in South Africa: A Systematic Review and Meta-Analysis. Antibiotics (Basel). 2021 Nov 23;10(12):1435. doi: 10.3390/antibiotics10121435. PMID: 34943647; PMCID: PMC8698067.eng
dcterms.referencesRipolles-Avila, C.; Ríos-Castillo, A.G.; Fontecha-Umaña, F.; Rodríguez-Jerez, J.J. Removal of Salmonella enterica serovar Typhimurium and Cronobacter sakazakii biofilms from food contact surfaces through enzymatic catalysis. J. Food Saf. 2019, 40, e12755eng
dcterms.referencesHernández Santiago, R. (2019). Aislamiento y caracterización parcial de bacteriófagos de salmonella spp con potencial aplicación en el biocontrol sobre superficies http://www.scielo.org.co/pdf/sun/v30n1/v30n1a09.pdfspa
dcterms.referencesSadekuzzaman, M., M. F. R. Mizan, H. S. Kim, S. Yang, and S. D. Ha. (2018). Activity of thyme and tea tree essential oils against selected foodborne pathogens in biofilms on abiotic surfaces. LWT 89:134–9. doi: 10.1016/j.lwt.2017.10.042.eng
dcterms.referencesSakarikou, Christina, Dimitra Kostoglou, Manuel Simões, and Efstathios Giaouris. (2020). “Exploitation of Plant Extracts and Phytochemicals against Resistant Salmonella Spp. in Biofilms..Food Research International 128 (November 2019): 108806. https://doi.org/10.1016/j.foodres.2019.108806.eng
dcterms.referencesSilva-Espinoza, Brenda A., Julián J. Palomares-Navarro, Melvin R. Tapia-Rodríguez, Manuel R. Cruz-Valenzuela, Gustavo A. González-Aguilar, Erika Silva-Campa, Martín Pedroza-Montero, Monica Almeida-Lopes, Raquel Miranda, and Jesus F. Ayala-Zavala. (2020). “Combination of Ultraviolet Light-C and Clove Essential Oil to Inactivate Salmonella Typhimurium Biofilms on Stainless Steel.” Journal of Food Safety 40 (3). https://doi.org/10.1111/jfs.12788.eng
dcterms.referencesSkowron, Krzysztof, Ewa Wałecka-Zacharska, Katarzyna Grudlewska, Joanna Kwiecińska-Piróg, Natalia Wiktorczyk, Maria Kowalska, Zbigniew Paluszak, et al. (2020). “Effect of Selected Environmental Factors on the Microbicidal Effectiveness of Radiant Catalytic Ionization.” Frontiers in Microbiology 10. https://doi.org/10.3389/fmicb.2019.03057eng
oaire.versioninfo:eu-repo/semantics/acceptedVersionspa
sb.programaMicrobiologíaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PDF_Resumen.pdf
Tamaño:
300.57 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
501.27 KB
Formato:
Adobe Portable Document Format

Colecciones