Osmolaridad e Injuria Renal Aguda en la Unidad de Cuidado Intensivo
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
dc.contributor.advisor | Guido Musso, Carlos | |
dc.contributor.advisor | González-Torres, Henry J. | |
dc.contributor.author | Rua Osorio, Zenen David | spa |
dc.contributor.author | Gómez Giraldo, Luisa María | spa |
dc.date.accessioned | 2020-11-05T18:14:51Z | |
dc.date.available | 2020-11-05T18:14:51Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Antecedentes: La osmolaridad de una solución está dada por la cantidad de partículas de soluto por litro de agua. Los principales osmoles del líquido extracelular son las sales de sodio, la glucosa y la urea; a partir de los cuales se obtienen los determinantes para el cálculo de la osmolaridad plasmática. Objetivo: Evaluar el comportamiento de la Osmolaridad en pacientes que desarrollan Injuria Renal Aguda (AKI) en la Unidad de Cuidad Intensivo. Metodología: Se realizó un estudio analítico longitudinal del comportamiento de la Osmolaridad en los pacientes que desarrollan AKI. Para ello se registraron los valores del Sexo, Creatinina y Urea en Sangre, los demás metabolitos fueron medidos en Orina (Sodio, Potasio, Cloro, Nitrógeno, Glucosa y Osmolaridad). Se realizó estadística descriptiva a las variables, la comparación entre los pacientes que hicieron AKI y los que No se realizó mediante un test de Students y la relación de la Creatinina y la Osmolaridad se realizó con un modelo de regresión simple. Resultados: Se evaluaron 116, con un promedio de edad de 51±19años, El 18% de los pacientes hicieron AKI. La relación entre la CrSr y la Osmolaridad (R²: 0,294; p-valor: 0.0423; Modelo ajustado: Cuadrado de X) evidenció que realizando un ajuste a la distribución de los datos permite hacer comparaciones de los otros niveles de otras varían. Conclusión: Al haber una asociación significativa entre la Creatinina Sérica con la Osmolaridad esta se posiciona como un marcador pronostico renal, ya que la creatinina no solo es indicador de función renal sino de otros fenómenos lo cuales podría hacer que esta se elevara por causas no renales, mientras que la Osmolaridad Urinaria depende exclusivamente de la capacidad del riñón para concentrar la orina. | spa |
dc.description.abstract | Background: The osmolarity of a solution is given by the amount of solute particles per liter of water. The main osmoles of the extracellular fluid are sodium salts, glucose and urea; from which the determinants for the calculation of plasma osmolarity are obtained. Objective: To evaluate the behavior of Osmolarity in patients who develop Acute Renal Injury (AKI) in the Intensive Care Unit. Methodology: A longitudinal analytical study of the behavior of Osmolarity was carried out in patients who develop AKI. For this, the values of Sex, Creatinine and Urea in Blood were recorded, the other metabolites were measured in Urine (Sodium, Potassium, Chlorine, Nitrogen, Glucose and Osmolarity). Descriptive statistics were performed on the variables, the comparison between the patients who did AKI and those who did not was made by means of a Students' test and the relationship between Creatinine and Osmolarity was carried out with a simple regression model. Results: 116 were evaluated, with an average age of 51 ± 19 years. 18% of the patients did AKI. The relationship between CrSr and Osmolarity (R²: 0.294; p-value: 0.0423; Adjusted model: Square of X) showed that making an adjustment to the distribution of the data allows making comparisons of the other levels of others vary. Conclusion: As there is a significant association between Serum Creatinine and Osmolarity, this is positioned as a renal prognostic marker, since creatinine is not only an indicator of renal function but of other phenomena, which could cause it to rise due to non-renal causes. , while Urinary Osmolarity depends exclusively on the kidney's ability to concentrate urine | eng |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/6762 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias de la Salud | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Osmolaridad urinaria | spa |
dc.subject | Injuria renal aguda | spa |
dc.subject | Unidad de Cuidado Intensivo | spa |
dc.subject | Urinary osmolarity | eng |
dc.subject | Acute kidney injury | eng |
dc.subject | Intensive Care Unit | eng |
dc.title | Osmolaridad e Injuria Renal Aguda en la Unidad de Cuidado Intensivo | spa |
dc.type.driver | info:eu-repo/semantics/other | spa |
dc.type.spa | Otros | spa |
dcterms.references | Musso CG, Terrasa S, Ciocchini M, et al. Looking for a better definition and diagnostic strategy for acute kidney injury: a new proposal. Arch Argent Pediatr 2019;117:4–5. doi:10.5546/aap.2019.eng.4 | eng |
dcterms.references | Kellum J a, Lameire N, Aspelin P, et al. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl 2012;2:1–138. doi:10.1038/kisup.2012.7 | eng |
dcterms.references | Blanco V, Hernandorena C, Scibona P, et al. Acute Kidney Injury Pharmacokinetic Changes and Its Impact on Drug Prescription. Healthcare 2019;7:10. doi:10.3390/healthcare7010010 | eng |
dcterms.references | Hertzberg D, Rydén L, Pickering JW, et al. Acute kidney injury—an overview of diagnostic methods and clinical management. Clin Kidney J 2017;10:323– 31. doi:10.1093/ckj/sfx003 | eng |
dcterms.references | Levey AS, James MT. Acute Kidney Injury. Published Online First: 2017. doi:10.7326/AITC201711070 | eng |
dcterms.references | Ostermann M, Joannidis M. Acute kidney injury 2016: Diagnosis and diagnostic workup. Crit Care 2016;20:1–13. doi:10.1186/s13054-016-1478-z | eng |
dcterms.references | Matías P, Tatiana R, Iván G-H. El Músculo Estriado Esquelético Y Su Relación Con El Riñón. Serv Nefrol Hosp Británico Buenos Aires, 2012;1:1–14. | spa |
dcterms.references | Beker BM, Corleto MG, Fieiras C, et al. Novel acute kidney injury biomarkers: their characteristics, utility and concerns. Int Urol Nephrol 2018;50:705–13. doi:10.1007/s11255-017-1781-x | eng |
dcterms.references | Musso CG, Juarez R, Terrasa S, et al. Osmotic diuresis in chronic kidney disease: its significance and clinical utility. Int Urol Nephrol 2019;i:1–4. doi:10.1007/s11255-019-02202-5 | eng |
dcterms.references | Cao W, Jin L, Zhou Z, et al. Overexpression of Intrarenal Renin-Angiotensin System in Human Acute Tubular Necrosis. Kidney Blood Press Res 2016;41:746–56. doi:10.1159/000450564 | eng |
dcterms.references | Gill N, Natty J V., Fatica RA. Renal failure secondary to acute tubular necrosis: Epidemiology, diagnosis, and management. Chest 2005;128:2847–63. doi:10.1378/chest.128.4.2847 | eng |
dcterms.references | Ostermann M, Liu K. Pathophysiology of AKI. Best Pract Res Clin Anaesthesiol 2017;31:305–14. doi:10.1016/j.bpa.2017.09.001 | eng |
dcterms.references | Hernan Borja Rebolledo PD. Insuficiencia Renal Aguda. Colomb Med 2018;14:627–36 | spa |
dcterms.references | Nieto-Ríos J. Nefrotección para disminuir riesgo de lesión renal aguda inducida por contraste. XVI Curso Actual en Med Interna 2016;:248–57. | spa |
dcterms.references | Cruz FS, Cabrera W, Barreto S, et al. Kidney disease in Paraguay. Kidney Int Suppl 2005;68:120–5. doi:10.1111/j.1523-1755.2005.09720.x | eng |
dcterms.references | Lin K, Hu Y, Kong G. Predicting In-hospital Mortality of Patients with Acute Kidney Injury in the ICU Using Random Forest Model. Int J Med Inform Published Online First: 2019. doi:10.1016/j.ijmedinf.2019.02.002 | eng |
dcterms.references | Carbonell N, Blasco M, Sanjuán R, et al. Fracaso renal agudo en la unidad de cuidados intensivos. Estudio observacional prospectivo. TT - [Acute renal failure in critically ill patients. A prospective epidemiological study]. Nefrologia 2004;24:47–53. | eng |
dcterms.references | Boltansky andres, Cavada G, Benavente C, et al. Incidencia de la injuria renal aguda en unidad de paciente crítico y su mortalidad a 30 días y un año. 2015;:1114–20. | spa |
dcterms.references | Tejera D, Varela F, Acosta D, et al. Epidemiology of acute kidney injury and chronic kidney disease in the intensive care unit. Rev Bras Ter Intensiva 2017;29:444–52. doi:10.5935/0103-507X.20170061 | eng |
dcterms.references | Lewington A, Cerdá J, Mehta RL. Raising Awareness of Acute Kidney Injury: A Global Perspective of a Silent Killer. 2016;118:6072–8. doi:10.1002/cncr.27633.Percutaneous | eng |
dcterms.references | Meran S, Wonnacott A, Amphlett B, et al. How good are we at managing acute kidney injury in hospital? Clin Kidney J 2014;7:144–50. doi:10.1093/ckj/sfu010 | eng |
dcterms.references | Roldán Giraldo J, Tovar Arboleda P, Nieto-Rios J. Diagnóstico Temprano De Injuria Renal Aguda: Nuevos Biomarcadores. Rev Nefrol Argentina 2015;13:93–6. | spa |
dcterms.references | Lluncor J, Cruz-Encarnación MJ, Cieza J. Factors associated to acute renal injury in incident patients in a general hospital in Lima, Peru. Rev Med Hered 2015;26:24–30. | eng |
dcterms.references | M.T. Tenorio, C. Galeano, N. Rodríguez FL. Revista Nefrologia - Diagnóstico diferencial de la insuficiencia renal aguda. Nefroplus 2010;3:16–32. doi:10.3265/NefroPlus.pre2010.Jul.10548 | spa |
dcterms.references | Restrepo V CA, Buitrago V CA, Torres S JJ, et al. Trastornos de la Concentración Plasmática de Sodio. In: Nefrología Básica 2. 2017. 267–82. | spa |
dcterms.references | Vidal-Mayo J de J, Olivas-Martínez A, Pérez-Díaz I, et al. Calculated Versus Measured Urine Osmolarity: Accuracy of Estimated Urine Density. Rev Investig Cl�nica 2018;70. doi:10.24875/RIC.18002598 | eng |
dcterms.references | Musso CG, Gonzalez-Torres HJ, Aroca-Martinez G. Evaluation of osmolar diuresis as a strategy to increase diagnostic sensitivity in acute kidney injury. Arch Argent Pediatr 2019;117:e202–4. | eng |
dcterms.references | Tabibzadeh N, Wagner S, Metzger M, et al. Fasting Urinary Osmolality, CKD Progression, and Mortality: A Prospective Observational Study. 2019;73. doi:10.1053/j.ajkd.2018.12.024 | eng |
dcterms.references | Tenorio MT, Galeano C, Rodríguez N, et al. Diagnóstico diferencial de la insuficiencia renal aguda. 2010;3:16–32. doi:10.3265/NefroPlus.pre2010.Jul.10548 | spa |
dcterms.references | Bankir L, Bouby N. Urine Osmolarity and Risk of Dialysis Initiation in a CKD Cohort. 2015;66:14–7. doi:10.1159/000381240 | eng |
dcterms.references | Johnson RJ, Rodriguez-iturbe B, Roncal-jimenez C, et al. Hyperosmolarity drives hypertension and CKD—water and salt revisited. Nat Publ Gr 2014;10:415–20. doi:10.1038/nrneph.2014.76 | eng |
dcterms.references | Canuto LP, Collares-Buzato CB. Increased osmolality enhances the tight junction-mediated barrier function in a cultured renal epithelial cell line. Cell Biol Int 2019;43:73–82. doi:10.1002/cbin.11074 | eng |
dcterms.references | Valentin A, Jordan B, Lang T, et al. Gender-related differences in intensive care: a multiple-center cohort study of therapeutic interventions and outcome in critically ill patients. Crit Care Med 2003;31:1901–7. doi:10.1097/01.CCM.0000069347.78151.50 | eng |
dcterms.references | Larsson E, Zettersten E, Jäderling G, et al. The influence of gender on ICU admittance. Scand J Trauma Resusc Emerg Med 2015;23:108. doi:10.1186/s13049-015-0191-2 | eng |
dcterms.references | Zettersten E, Jäderling G, Larsson E, et al. The impact of patient sex on intensive care unit admission: a blinded randomized survey. Sci Rep 2019;9:14222. doi:10.1038/s41598-019-50836-3 | eng |
dcterms.references | Dodek P, Kozak J-F, Norena M, et al. More men than women are admitted to 9 intensive care units in British Columbia. J Crit Care 2009;24:630.e1-630.e8. doi:10.1016/j.jcrc.2009.02.010 | eng |
dcterms.references | Azoulay É, Kentish-Barnes N, Pochard F. Health-Related Quality of Life. Chest 2008;133:339–41. doi:10.1378/chest.07-2547 | eng |
dcterms.references | Hofhuis JGM, Spronk PE, van Stel HF, et al. The Impact of Critical Illness on Perceived Health-Related Quality of Life During ICU Treatment, Hospital Stay, and After Hospital Discharge. Chest 2008;133:377–85. doi:10.1378/chest.07- 1217 | eng |
dcterms.references | Case J, Khan S, Khalid R, et al. Epidemiology of acute kidney injury in the intensive care unit. Crit Care Res Pract 2013;2013:479730. doi:10.1155/2013/479730 | eng |
dcterms.references | Hoste EAJ, Schurgers M. Epidemiology of acute kidney injury: how big is the problem? Crit Care Med 2008;36:S146-51. doi:10.1097/CCM.0b013e318168c590 | eng |
dcterms.references | Kellum JA, Hoste EAJ. Acute kidney injury: epidemiology and assessment. Scand J Clin Lab Invest Suppl 2008;241:6–11. doi:10.1080/00365510802144813 | eng |
dcterms.references | Russell WA, Scheinker D, Sutherland SM. Baseline creatinine determination method impacts association between acute kidney injury and clinical outcomes. Pediatr Nephrol Published Online First: 23 October 2020. doi:10.1007/s00467-020-04789-9 | eng |
dcterms.references | van der Slikke EC, Star BS, de Jager VD, et al. A high urea-to-creatinine ratio predicts long-term mortality independent of acute kidney injury among patients hospitalized with an infection. Sci Rep 2020;10:15649. doi:10.1038/s41598- 020-72815-9 | eng |
dcterms.references | Komaru Y, Doi K, Matsuura R, et al. Urinary chloride concentration as a prognostic marker in critically ill patients. Nephrology (Carlton) 2020;25:384– 9. doi:10.1111/nep.13674 | eng |
dcterms.references | Yang L, Bonventre J V. Diagnosis and Clinical Evaluation of Acute Kidney Injury. In: Comprehensive Clinical Nephrology. Elsevier 2010. 821–9. doi:10.1016/B978-0-323-05876-6.00068-X | eng |
dcterms.references | Kamel KS, Ethier JH, Richardson RMA, et al. Urine Electrolytes and Osmolality: When and How to Use Them. Am J Nephrol 1990;10:89–102. doi:10.1159/000168062 | eng |
oaire.version | info:eu-repo/semantics/submittedVersion | spa |
sb.programa | Especialización en Medicina Interna | spa |
sb.sede | Sede Barranquilla | spa |