Use of computational realistic models for the cardiac ejection fraction calculation

dc.contributor.authorHuérfano, Y
dc.contributor.authorVera, M
dc.contributor.authorVera, M I
dc.contributor.authorValbuena, O
dc.contributor.authorGelvez-Almeida, E
dc.contributor.authorSalazar-Torres, J
dc.date.accessioned2020-04-14T04:02:05Z
dc.date.available2020-04-14T04:02:05Z
dc.date.issued2019
dc.description.abstractEjection fraction is one of the most useful clinical descriptors to determine the cardiac function of a subject. For this reason, obtaining the value of this descriptor is of vital importance and requires high precision. However, in the clinical routine, to generate the mentioned descriptor value, a geometric hypothesis is assumed, obtaining an approximate value for this fraction, usually by excess, and which is a dependent-operator. The aim of the present work is to propose the accurate calculation of the ejection fraction from realistic models, obtained computationally, of the cardiac chamber called right ventricle. Normally, the geometric hypothesis that makes this ventricle coincide with a pyramidal type geometric shape, is not usually, fulfilled in subjects affected by several cardiac pathologies, so as an alternative to this problem, the computational segmentation process is used to generate the morphology of the right ventricle and from it proceeds to obtain, accurately, the ejection fraction value. In this sense, an automatic strategy based on no-lineal filters, smart operator and region growing technique is propose in order to generate the right ventricle ejection fraction. The results are promising due we obtained an excellent correspondence between the manual segmentation and the automatic one generated by the realistic models.eng
dc.format.mimetypepdfeng
dc.identifier.issn17426596
dc.identifier.urihttps://hdl.handle.net/20.500.12442/5099
dc.language.isoengeng
dc.publisherIOP Publishingeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceJournal of Physics: Conference Serieseng
dc.sourceVol. 1408 (2019)eng
dc.source.urihttps://iopscience.iop.org/article/10.1088/1742-6596/1408/1/012003eng
dc.titleUse of computational realistic models for the cardiac ejection fraction calculationeng
dc.typearticleeng
dc.type.driverarticleeng
dcterms.referencesGuyton A, Hall J 2006 Medical physiology textbook (USA: W. B. Saunders)eng
dcterms.referencesFrangi A, Niessen W, Viergever M 2001 Three-dimensional modeling for functional analysis of cardiac images: A review IEEE Transactions on Medical Imaging 20(1) 2eng
dcterms.referencesArias V, Contreras J, Chacón J, Vera M, Huérfano Y, Graterol M, Wilches S, Rojas J, Garicano C, Chacín M, Bermúdez V 2015 Impresión 3D de estructuras cardiacas: Caso de innovación frugal en sector salud Latinoamericana de Hipertensión 10(4) 91spa
dcterms.referencesShapiro L, Stockman G 2001 Computer vision (New Jersey: Pearson)eng
dcterms.referencesHaykin S 1999 Neural networks: A comprehensive foundation (New Jersey: Prentice Hall)eng
dcterms.referencesScholkopf B, Smola A 2002 Learning with kernels: Support vector machines, regularization, optimization, and beyond (USA: The MIT Press)eng
dcterms.referencesSuykens J, Van Gestel T, De Brabanter J 2002 Least squares support vector machines (UK: World Scientific Publishing Co.)eng
dcterms.referencesVapnik V 1995 The nature of statistical learning theory (New York: Springer Verlag)eng
dcterms.referencesPratt W 2007 Digital image processing (New York: John Wiley & Sons Inc)eng
dcterms.referencesHuérfano Y, Vera M, Mar A, Bravo A 2019 Integrating a gradient–based difference operator with machine learning techniques in right heart segmentation J. Phys. Conf. Ser. 1160 012003eng
dcterms.referencesGonzález R and Woods R 2001 Digital image processing (New Jersey: Prentice Hall)eng
dcterms.referencesVera M, Medina R, Del Mar A, Arellano J, Huérfano Y, Bravo A 2019 An automatic technique for left ventricle segmentation from msct cardiac volumes. J. Phys. Conf. Ser. 1160 012001eng
dcterms.referencesBravo A, Vera M, Garreau M, Medina R 2011 Three–dimensional segmentation of ventricular heart chambers from multi–slice computerized tomography: An hybrid approach Proc. Digital Information and Communication Technology and Its Applications (France: Springer) 166 287eng
dcterms.referencesDice L 1945 Measures of the amount of ecologic association between species Ecology 26(3) 29eng
oaire.versioninfo:eu-repo/semantics/publishedVersionspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
895.36 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones