A comprehensive review of extreme learning machine on medical imaging
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.contributor.author | Huérfano Maldonado, Yoleidy | |
dc.contributor.author | Mora, Marco | |
dc.contributor.author | Vilches, Karina | |
dc.contributor.author | Hernández García, Ruber | |
dc.contributor.author | Gutiérrez, Rodrigo | |
dc.contributor.author | Vera, Miguel | |
dc.date.accessioned | 2025-01-17T20:06:01Z | |
dc.date.available | 2025-01-17T20:06:01Z | |
dc.date.issued | 2023 | |
dc.description.abstract | The feedforward neural network based on randomization has been of great interest in the scientific community, particularly extreme learning machines, due to its simplicity, training speed, and levels of accuracy comparable to traditional learning algorithms. Extreme learning machines (ELMs) are a type of artificial neural network (ANN) with one or more hidden layers that are trained under supervised, unsupervised, or semi-supervised learning approaches. These networks are widely used in various research areas, such as medical image processing (MI). This research work presents an exhaustive review of extreme learning machines (ELM) and medical image processing (MI), due to the high impact that these networks have had on the scientific community and the importance of MI for physicians who use them to diagnose different injuries and diseases. First, the theoretical construct of ELMs is developed based on the types of supervised, unsupervised, and semi-supervised learning. Then, the importance of MI for the diagnosis of a disease or classification of the most commonly used imaging modalities is analyzed for articles concerning radiography, computed tomography (CT), magnetic resonance (MR), ultrasound (US), and mammography (MG). Next, the reference data sets linked to various human body organs, such as the brain, lungs, skin, eyes, breasts, and cervix are described. Then, a review, analysis, and classification of the development of the last 6 years (2017–2022) of ELMs, based on learning types and MI, is performed. With the information obtained above, a construction of summary tables of the articles, classified according to the type of learning, is performed, highlighting the organ, reference, year, methodology, database, modality, and results. Finally, the discussion, conclusions and challenges related to this topic are presented. The findings indicate that the review articles reported in the literature have not addressed the relationship between ELMs and medical imaging in depth and have excluded key aspects, which are developed in this article. These aspects include a comprehensive analysis of the most popular imaging modalities, a detailed description of both the most popular databases and the most relevant databases for the machine learning community and, finally, the incorporation of schemes that explain the fundamentals of the main learnings considered when generating ELM-based trained smart models, which can be useful for medical image processing. | spa |
dc.format.mimetype | ||
dc.identifier.doi | https://doi.org/10.1016/j.neucom.2023.126618 | |
dc.identifier.issn | 09252312 (Electrónico) | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/16113 | |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0925231223007415 | |
dc.language.iso | eng | |
dc.publisher | ELSEVIER | spa |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.source | Neurocomputing | eng |
dc.source | Vol. 556 (2023) | spa |
dc.subject.keywords | Extreme learning machine | eng |
dc.subject.keywords | Medical imaging | eng |
dc.subject.keywords | Supervised training | eng |
dc.subject.keywords | Unsupervised training | eng |
dc.subject.keywords | Semi-supervised training | eng |
dc.title | A comprehensive review of extreme learning machine on medical imaging | spa |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.spa | Artículo científico | |
dcterms.references | Cao W., Wang X., Ming Z., Gao J. A review on neural networks with random weights Neurocomputing, 275 (2018), pp. 278-287 | eng |
dcterms.references | Zhang L., Suganthan P.N. A survey of randomized algorithms for training neural networks Inform. Sci., 364 (2016), pp. 146-155 | eng |
dcterms.references | Suganthan P.N., Katuwal R. On the origins of randomization-based feedforward neural networks Appl. Soft Comput., 105 (2021), Article 107239 | eng |
dcterms.references | Jiang Q., Zhu L., Shu C., Sekar V. An efficient multilayer RBF neural network and its application to regression problems Neural Comput. Appl. (2022), pp. 1-18 | eng |
dcterms.references | Zhuo J., An C., Fei J. Fuzzy multiple hidden layer neural sliding mode control of active power filter with multiple feedback loop IEEE Access, 9 (2021), pp. 114294-114307 | eng |
dcterms.references | Li Z., Liu F., Yang W., Peng S., Zhou J. A survey of convolutional neural networks: Analysis, applications, and prospects IEEE Trans. Neural Netw. Learn. Syst. (2021) | eng |
dcterms.references | Caterini A.L., Chang D.E., Caterini A.L., Chang D.E. Recurrent neural networks Deep Neural Netw. Math. Framew. (2018), pp. 59-79 | eng |
dcterms.references | Liguori A., Markovic R., Dam T.T.H., Frisch J., van Treeck C., Causone F. Indoor environment data time-series reconstruction using autoencoder neural networks Build. Environ., 191 (2021), Article 107623 | eng |
dcterms.references | Pao Y.-H., Takefuji Y. Functional-link net computing: Theory, system architecture, and functionalities Computer, 25 (5) (1992), pp. 76-79 | eng |
dcterms.references | Zhang L., Suganthan P.N. A comprehensive evaluation of random vector functional link networks Inform. Sci., 367 (2016), pp. 1094-1105 | eng |
dcterms.references | Vuković N., Petrović M., Miljković Z. A comprehensive experimental evaluation of orthogonal polynomial expanded random vector functional link neural networks for regression Appl. Soft Comput., 70 (2018), pp. 1083-1096 | eng |
dcterms.references | Schmidt W.F., Kraaijveld M.A., Duin R.P., et al. Feed forward neural networks with random weights International Conference on Pattern Recognition, IEEE Computer Society Press (1992), p. 1 | eng |
dcterms.references | Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: A new learning scheme of feedforward neural networks 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), Vol. 2, Ieee (2004), pp. 985-990 | eng |
dcterms.references | Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: Theory and applications Neurocomputing, 70 (1–3) (2006), pp. 489-501 | eng |
dcterms.references | Huang G., Song S., Gupta J.N., Wu C. Semi-supervised and unsupervised extreme learning machines IEEE Trans. Cybern., 44 (12) (2014), pp. 2405-2417 | eng |
dcterms.references | Chen J., Zeng Y., Li Y., Huang G.-B. Unsupervised feature selection based extreme learning machine for clustering | eng |
dcterms.references | Ding S., Jia W., Su C., Zhang L., Liu L. Research of neural network algorithm based on factor analysis and cluster analysis Neural Comput. Appl., 20 (2) (2011), pp. 297-302 | eng |
dcterms.references | Shi Q., Suganthan P.N., Del Ser J. Jointly optimized ensemble deep random vector functional link network for semi-supervised classification Eng. Appl. Artif. Intell., 115 (2022), Article 105214 | eng |
dcterms.references | Ye H., Cao F., Wang D. A hybrid regularization approach for random vector functional-link networks Expert Syst. Appl., 140 (2020), Article 112912 | eng |
dcterms.references | Hu M., Suganthan P.N. Representation learning using deep random vector functional link networks for clustering Pattern Recognit., 129 (2022), Article 108744 | eng |
dcterms.references | Scardapane S., Wang D. Randomness in neural networks: an overview Wiley Interdisc. Rev.: Data Min. Knowl. Discov., 7 (2) (2017), Article e1200 | eng |
dcterms.references | Huang G.-B., Chen L., Siew C.K., et al. Universal approximation using incremental constructive feedforward networks with random hidden nodes IEEE Trans. Neural Netw., 17 (4) (2006), pp. 879-892 | eng |
dcterms.references | Zhong H., Miao C., Shen Z., Feng Y. Comparing the learning effectiveness of BP, ELM, I-ELM, and SVM for corporate credit ratings Neurocomputing, 128 (2014), pp. 285-295 | eng |
dcterms.references | Zhang L., Zhang D., Tian F. SVM and ELM: Who wins? Object recognition with deep convolutional features from ImageNet Proceedings of ELM-2015 Volume 1: Theory, Algorithms and Applications (I), Springer (2016), pp. 249-263 | eng |
dcterms.references | Olatunji S.O. Extreme learning machines and support vector machines models for email spam detection 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering, CCECE, IEEE (2017), pp. 1-6 | eng |
dcterms.references | Maglogiannis I.G., Zafiropoulos E.P. Characterization of digital medical images utilizing support vector machines BMC Med. Inform. Decision Making, 4 (1) (2004), pp. 1-9 | eng |
dcterms.references | Akyol K. Comparing of deep neural networks and extreme learning machines based on growing and pruning approach Expert Syst. Appl., 140 (2020), Article 112875 | eng |
dcterms.references | Jain M., Andreopoulos W., Stamp M. Convolutional neural networks and extreme learning machines for malware classification J. Comput. Virol. Hacking Tech., 16 (2020), pp. 229-244 | eng |
dcterms.references | Kamnitsas K., Ledig C., Newcombe V.F., Simpson J.P., Kane A.D., Menon D.K., Rueckert D., Glocker B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation Med. Image Anal., 36 (2017), pp. 61-78 | eng |
dcterms.references | Alzubaidi L., Zhang J., Humaidi A.J., Al-Dujaili A., Duan Y., Al-Shamma O., Santamaría J., Fadhel M.A., Al-Amidie M., Farhan L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions J. big Data, 8 (2021), pp. 1-74 | eng |
dcterms.references | Albadra M.A.A., Tiuna S. Extreme learning machine: A review Int. J. Appl. Eng. Res., 12 (14) (2017), pp. 4610-4623 | eng |
dcterms.references | Deng B., Zhang X., Gong W., Shang D. An overview of extreme learning machine 2019 4th International Conference on Control, Robotics and Cybernetics, CRC, IEEE (2019), pp. 189-195 | eng |
dcterms.references | Wang J., Lu S., Wang S.-H., Zhang Y.-D. A review on extreme learning machine Multimedia Tools Appl., 81 (29) (2022), pp. 41611-41660 | eng |
dcterms.references | Huang G., Huang G.-B., Song S., You K. Trends in extreme learning machines: A review Neural Netw., 61 (2015), pp. 32-48 | eng |
dcterms.references | Alade O.A., Selamat A., Sallehuddin R. A review of advances in extreme learning machine techniques and its applications International Conference of Reliable Information and Communication Technology, Springer (2017), pp. 885-895 | eng |
dcterms.references | Nilesh R., Sunil W. Improving extreme learning machine through optimization a review 2021 7th International Conference on Advanced Computing and Communication Systems, Vol. 1, ICACCS, IEEE (2021), pp. 906-912 | eng |
dcterms.references | Ding S., Xu X., Nie R. Extreme learning machine and its applications Neural Comput. Appl., 25 (3) (2014), pp. 549-556 | eng |
dcterms.references | Ghosh S., Mukherjee H., Obaidullah S.M., Santosh K., Das N., Roy K. A survey on extreme learning machine and evolution of its variants Recent Trends in Image Processing and Pattern Recognition: Second International Conference, RTIP2R 2018, Solapur, India, December 21–22, 2018, Revised Selected Papers, Part I 2, Springer (2019), pp. 572-583 | eng |
dcterms.references | De Campos Souza P.V., Bambirra Torres L.C., Lacerda Silva G.R., Braga A.d.P., Lughofer E. An advanced pruning method in the architecture of extreme learning machines using l1-regularization and bootstrapping Electronics, 9 (5) (2020), p. 811 | eng |
dcterms.references | Tian Z., Wang G., Li S., Wang Y., Wang X. Artificial bee colony algorithm–optimized error minimized extreme learning machine and its application in short-term wind speed prediction Wind Eng., 43 (3) (2019), pp. 263-276 | eng |
dcterms.references | Zang S., Li X., Ma J., Yan Y., Gao J., Wei Y. TSTELM: Two-stage transfer extreme learning machine for unsupervised domain adaptation Comput. Intell. Neurosci., 2022 (2022) | eng |
dcterms.references | Zhang J., Li Y., Xiao W. Adaptive online sequential extreme learning machine for dynamic modeling Soft Comput., 25 (2021), pp. 2177-2189 | eng |
dcterms.references | Zhang J., Li Y., Xiao W., Zhang Z. Non-iterative and fast deep learning: Multilayer extreme learning machines J. Franklin Inst. B, 357 (13) (2020), pp. 8925-8955 | eng |
dcterms.references | Vásquez-Coronel J.A., Mora M., Vilches K. A review of multilayer extreme learning machine neural networks Artif. Intell. Rev. (2023), pp. 1-52 | eng |
dcterms.references | Kaur R., Roul R.K., Batra S. Multilayer extreme learning machine: A systematic review Multimedia Tools Appl. (2023), pp. 1-39 | eng |
dcterms.references | Tang J., Deng C., Huang G.-B. Extreme learning machine for multilayer perceptron IEEE Trans. Neural Netw. Learn. Syst., 27 (4) (2015), pp. 809-821 | eng |
dcterms.references | Li R., Wang X., Lei L., Wu C. Representation learning by hierarchical ELM auto-encoder with double random hidden layers IET Comput. Vis., 13 (4) (2019), pp. 411-419 | eng |
dcterms.references | Wang J., Lu S., Wang S.-H., Zhang Y.-D. A review on extreme learning machine Multimedia Tools Appl. (2021), pp. 1-50 | eng |
dcterms.references | Eshtay M., Faris H., Obeid N. Metaheuristic-based extreme learning machines: A review of design formulations and applications Int. J. Mach. Learn. Cybern., 10 (6) (2019), pp. 1543-1561 | eng |
dcterms.references | Azam M.A., Khan K.B., Salahuddin S., Rehman E., Khan S.A., Khan M.A., Kadry S., Gandomi A.H. A review on multimodal medical image fusion: Compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics Comput. Biol. Med., 144 (2022), Article 105253 | eng |
dcterms.references | Wang Z., Luo Y., Xin J., Zhang H., Qu L., Wang Z., Yao Y., Zhu W., Wang X. Computer-aided diagnosis based on extreme learning machine: A review IEEE Access, 8 (2020), pp. 141657-141673 | eng |
dcterms.references | Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: Theory and applications Neurocomputing, 70 (1–3) (2006), pp. 489-501, 10.1016/j.neucom.2005.12.126 | eng |
dcterms.references | Huang G.-B., Chen L. Convex incremental extreme learning machine Neurocomputing, 70 (16–18) (2007), pp. 3056-3062 | eng |
dcterms.references | Huang G.-B., Chen L. Enhanced random search based incremental extreme learning machine Neurocomputing, 71 (16–18) (2008), pp. 3460-3468 | eng |
dcterms.references | Huang G.-B., Zhou H., Ding X., Zhang R. Extreme learning machine for regression and multiclass classification IEEE Trans. Syst. Man Cybern. B, 42 (2) (2011), pp. 513-529 | eng |
dcterms.references | Wang D., Huang G.-B. Protein sequence classification using extreme learning machine Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, Vol. 3, IEEE (2005), pp. 1406-1411 | eng |
dcterms.references | Liang N.-Y., Saratchandran P., Huang G.-B., Sundararajan N. Classification of mental tasks from EEG signals using extreme learning machine Int. J. Neural Syst., 16 (01) (2006), pp. 29-38 | eng |
dcterms.references | Rong H.-J., Huang G.-B., Ong Y.-S. Extreme learning machine for multi-categories classification applications 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), IEEE (2008), pp. 1709-1713 | eng |
dcterms.references | Vani G., Savitha R., Sundararajan N. Classification of abnormalities in digitized mammograms using extreme learning machine 2010 11th International Conference on Control Automation Robotics & Vision, IEEE (2010), pp. 2114-2117 | eng |
dcterms.references | Suresh S., Saras-wathi S., Sundararajan N. Performance enhancement of extreme learning machine for multi-category sparse data classification problems Eng. Appl. Artif. Intell., 23 (7) (2010), pp. 1149-1157 | eng |
dcterms.references | Pal M., Max-well A.E., Warner T.A. Kernel-based extreme learning machine for remote-sensing image classification Remote Sens. Lett., 4 (9) (2013), pp. 853-862 | eng |
dcterms.references | Zheng W., Fu X., Ying Y. Spectroscopy-based food classification with extreme learning machine Chemometr. Intell. Lab. Syst., 139 (2014), pp. 42-47 | eng |
dcterms.references | Xie W., Li Y., Ma Y. Breast mass classification in digital mammography based on extreme learning machine Neurocomputing, 173 (2016), pp. 930-941 | eng |
dcterms.references | Lan Y., Soh Y.C., Huang G.-B. Two-stage extreme learning machine for regression Neurocomputing, 73 (16–18) (2010), pp. 3028-3038 | eng |
dcterms.references | Martínez-Martínez J.M., Escandell-Montero P., Soria-Olivas E., Martín-Guerrero J.D., Magdalena-Benedito R., GóMez-Sanchis J. Regularized extreme learning machine for regression problems Neurocomputing, 74 (17) (2011), pp. 3716-3721 | eng |
dcterms.references | Yuan Y., Wang Y., Cao F. Optimization approximation solution for regression problem based on extreme learning machine Neurocomputing, 74 (16) (2011), pp. 2475-2482 | eng |
dcterms.references | Yang Y., Wang Y., Yuan X. Bidirectional extreme learning machine for regression problem and its learning effectiveness IEEE Trans. Neural Netw. Learn. Syst., 23 (9) (2012), pp. 1498-1505 | eng |
dcterms.references | Feng G., Qian Z., Zhang X. Evolutionary selection extreme learning machine optimization for regression Soft Comput., 16 (9) (2012), pp. 1485-1491 | eng |
dcterms.references | Lima A.R., Cannon A.J., Hsieh W.W. Nonlinear regression in environmental sciences using extreme learning machines: A comparative evaluation Environ. Model. Softw., 73 (2015), pp. 175-188 | eng |
dcterms.references | Zhang K., Luo M. Outlier-robust extreme learning machine for regression problems Neurocomputing, 151 (2015), pp. 1519-1527 | eng |
dcterms.references | Huang G., Liu T., Yang Y., Lin Z., Song S., Wu C. Discriminative clustering via extreme learning machine Neural Netw., 70 (2015), pp. 1-8 | eng |
dcterms.references | Wang Q., Dou Y., Liu X., Lv Q., Li S. Multi-view clustering with extreme learning machine Neurocomputing, 214 (2016), pp. 483-494 | eng |
dcterms.references | Zhang J., Xiao W., Li Y., Zhang S. Residual compensation extreme learning machine for regression Neurocomputing, 311 (2018), pp. 126-136 | eng |
dcterms.references | He Q., Jin X., Du C., Zhuang F., Shi Z. Clustering in extreme learning machine feature space Neurocomputing, 128 (2014), pp. 88-95 | eng |
dcterms.references | Lekamalage C.K.L., Liu T., Yang Y., Lin Z., Huang G.-B. Extreme learning machine for clustering Proceedings of ELM-2014 Volume 1, Springer (2015), pp. 435-444 | eng |
dcterms.references | Javed K., Gouriveau R., Zerhouni N. A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering IEEE Trans. Cybern., 45 (12) (2015), pp. 2626-2639 | eng |
dcterms.references | Huang J., Yu Z.L., Gu Z. A clustering method based on extreme learning machine Neurocomputing, 277 (2018), pp. 108-119 | eng |
dcterms.references | Liu T., Lekamalage C.K.L., Huang G.-B., Lin Z. Extreme learning machine for joint embedding and clustering Neurocomputing, 277 (2018), pp. 78-88 | eng |
dcterms.references | Chen J., Zeng Y., Li Y., Huang G.-B. Unsupervised feature selection based extreme learning machine for clustering Neurocomputing, 386 (2020), pp. 198-207 | eng |
dcterms.references | Fredholm I. Sur une classe d’équations fonctionnelles Acta mathematica, 27 (1903), pp. 365-390 | eng |
dcterms.references | Hilbert D. Grundzüge einer allgemeinen Theorie der linearen Integralrechnungen.(Zweite Mitteilung) Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1904 (1904), pp. 213-260 | eng |
dcterms.references | Moore E.H. On the reciprocal of the general algebraic matrix Bull. Amer. Math. Soc., 26 (1920), pp. 394-395 | eng |
dcterms.references | Penrose R. A generalized inverse for matrices Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 51, no. 3, Cambridge University Press (1955), pp. 406-413 | eng |
dcterms.references | Drazin M. Pseudo-inverses in associative rings and semigroups Am. Math. Monthly, 65 (7) (1958), pp. 506-514 | eng |
dcterms.references | Manjunatha Prasad K., Mohana K. Core–EP inverse Linear Multilinear Algebra, 62 (6) (2014), pp. 792-802 | eng |
dcterms.references | Luo G., Zuo K., Zhou L. Revisitation of the core inverse Wuhan Univ. J. Nat. Sci., 20 (5) (2015), pp. 381-385 | eng |
dcterms.references | Zuo K., Li Y., Luo G. A new generalized inverse of matrices from core-EP decomposition (2020) arXiv preprint arXiv:2007.02364 | eng |
dcterms.references | Chen Y., Zuo K., Fu Z. New characterizations of the generalized Moore-Penrose inverse of matrices AIMS Math., 7 (3) (2022), pp. 4359-4375 | eng |
dcterms.references | Malik S.B., Thome N. On a new generalized inverse for matrices of an arbitrary index Appl. Math. Comput., 226 (2014), pp. 575-580 | eng |
dcterms.references | Mehdipour M., Salemi A. On a new generalized inverse of matrices Linear Multilinear Algebra, 66 (5) (2018), pp. 1046-1053 | eng |
dcterms.references | Malik S.B., Rueda L., Thome N. The class of m-EP and m-normal matrices Linear Multilinear Algebra, 64 (11) (2016), pp. 2119-2132 | eng |
dcterms.references | Rao C.R., Mitra S.K. Further contributions to the theory of generalized inverse of matrices and its applications Sankhyā: Indian J. Stat. Ser. A (1971), pp. 289-300 | eng |
dcterms.references | Alaba P.A., Popoola S.I., Olatomiwa L., Akanle M.B., Ohunakin O.S., Adetiba E., Alex O.D., Atayero A.A., Daud W.M.A.W. Towards a more efficient and cost-sensitive extreme learning machine: A state-of-the-art review of recent trend Neurocomputing, 350 (2019), pp. 70-90 | eng |
dcterms.references | Deng W.-Y., Zheng Q.-H., Lian S., Chen L., Wang X. Ordinal extreme learning machine Neurocomputing, 74 (1–3) (2010), pp. 447-456 | eng |
dcterms.references | Bartlett P. The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network IEEE Trans. Inform. Theory, 44 (2) (1998), pp. 525-536, 10.1109/18.661502 | eng |
dcterms.references | Ren L.-R., Gao Y.-L., Liu J.-X., Zhu R., Kong X.-Z. L2, 1-extreme learning machine: An efficient robust classifier for tumor classification Comput. Biol. Chem., 89 (2020), Article 107368 | eng |
dcterms.references | Cao J., Lin Z., Huang G.-B. Self-adaptive evolutionary extreme learning machine Neural Process. Lett., 36 (3) (2012), pp. 285-305 | eng |
dcterms.references | Li M.-B., Huang G.-B., Saratchandran P., Sundararajan N. Fully complex extreme learning machine Neurocomputing, 68 (2005), pp. 306-314 | eng |
dcterms.references | Liang N.-Y., Huang G.-B., Saratchandran P., Sundararajan N. A fast and accurate online sequential learning algorithm for feedforward networks IEEE Trans. Neural Netw., 17 (6) (2006), pp. 1411-1423 | eng |
dcterms.references | El Bouchefry K., de Souza R.S. Learning in big data: Introduction to machine learning Knowledge Discovery in Big Data from Astronomy and Earth Observation, Elsevier (2020), pp. 225-249 | eng |
dcterms.references | Peng Y., Zheng W.-L., Lu B.-L. An unsupervised discriminative extreme learning machine and its applications to data clustering Neurocomputing, 174 (2016), pp. 250-264 | eng |
dcterms.references | Das S.P., Padhy S. Unsupervised extreme learning machine and support vector regression hybrid model for predicting energy commodity futures index Memet. Comput., 9 (4) (2017), pp. 333-346 | eng |
dcterms.references | Wang Z., Huang Y., Li M., Zhang H., Li C., Xin J., Qian W. Breast mass detection and diagnosis using fused features with density J. X-ray Sci. Technol., 27 (2) (2019), pp. 321-342 | eng |
dcterms.references | Kasun L.L.C., Zhou H., Huang G.-B., Vong C.M. Representational learning with ELMs for big data Intell. Syst., 28 (2013), pp. 31-34 | eng |
dcterms.references | Sun K., Zhang J., Zhang C., Hu J. Generalized extreme learning machine autoencoder and a new deep neural network Neurocomputing, 230 (2017), pp. 374-381 | eng |
dcterms.references | Nuha H.H., Balghonaim A., Liu B., Mohandes M., Deriche M., Fekri F. Deep neural networks with extreme learning machine for seismic data compression Arab. J. Sci. Eng., 45 (3) (2020), pp. 1367-1377 | eng |
dcterms.references | Li S., Song S., Wan Y. Laplacian twin extreme learning machine for semi-supervised classification Neurocomputing, 321 (2018), pp. 17-27 | eng |
dcterms.references | Gong X., Zhang T., Chen C.P., Liu Z. Research review for broad learning system: Algorithms, theory, and applications IEEE Trans. Cybern. (2021) | eng |
dcterms.references | Drew P., Chatwin J., Collins S. Conversation analysis: A method for research into interactions between patients and health-care professionals Health Expect., 4 (1) (2001), pp. 58-70 | eng |
dcterms.references | Houssein E.H., Emam M.M., Ali A.A., Suganthan P.N. Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review Expert Syst. Appl., 167 (2021), Article 114161 | eng |
dcterms.references | Marin D., Nelson R.C., Schindera S.T., Richard S., Youngblood R.S., Yoshizumi T.T., Samei E. Low-tube-voltage, high-tube-current multidetector abdominal CT: Improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm—initial clinical experience Radiology, 254 (1) (2010), pp. 145-153 | eng |
dcterms.references | Thibault J.-B., Sauer K.D., Bouman C.A., Hsieh J. A three-dimensional statistical approach to improved image quality for multislice helical CT Med. Phys., 34 (11) (2007), pp. 4526-4544 | eng |
dcterms.references | Haidekker M.A. X-ray projection imaging Medical Imaging Technology, Springer (2013), pp. 13-35 | eng |
dcterms.references | Kasban H., El-Bendary M., Salama D. A comparative study of medical imaging techniques Int. J. Inform. Sci. Intell. Syst., 4 (2) (2015), pp. 37-58 | eng |
dcterms.references | MedLinePlus H. National library of medicine (2022) https://medlineplus.gov/xrays.html (Accedido en junio de 2022) | eng |
dcterms.references | Nahiduzzaman M., Goni M.O.F., Anower M.S., Islam M.R., Ahsan M., Haider J., Gurusamy S., Hassan R., Islam M.R. A novel method for multivariant pneumonia classification based on hybrid CNN-PCA based feature extraction using extreme learning machine with CXR images IEEE Access, 9 (2021), pp. 147512-147526 | eng |
dcterms.references | Wu C., Khishe M., Mohammadi M., Taher Karim S.H., Rashid T.A. Evolving deep convolutional neutral network by hybrid sine–cosine and extreme learning machine for real-time COVID19 diagnosis from X-ray images Soft Comput. (2021), pp. 1-20 | eng |
dcterms.references | Cohen J.P., Morrison P., Dao L., Roth K., Duong T.Q., Ghassemi M. COVID-19 image data collection: Prospective predictions are the future (2020) arXiv:2006.11988 https://github.com/ieee8023/covid-chestxray-dataset | eng |
dcterms.references | Stiller W. Basics of iterative reconstruction methods in computed tomography: A vendor-independent overview Eur. J. Radiol., 109 (2018), pp. 147-154 | eng |
dcterms.references | Llorente E.R., Alvarez E.A. conceptos básicos en la tomografía computarizada de tórax Medicina respiratoria, 1 (11) (2018), pp. 23-35 | eng |
dcterms.references | Clark K., Vendt B., Smith K., Freymann J., Kirby J., Koppel P., Moore S., Phillips S., Maffitt D., Pringle M., et al. The cancer imaging archive (TCIA): Maintaining and operating a public information repository J. Digit. Imaging, 26 (6) (2013), pp. 1045-1057 | eng |
dcterms.references | Vera M., Bravo A., Medina R. Description and use of three-dimensional numerical phantoms of cardiac computed tomography images Data, 7 (8) (2022), p. 115 | eng |
dcterms.references | Gore J., Orr J. Image formation by back-projection: A reappraisal Phys. Med. Biol., 24 (4) (1979), p. 793 | eng |
dcterms.references | Gordon R., Bender R., Herman G.T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography J. Theoret. Biol., 29 (3) (1970), pp. 471-481 | eng |
dcterms.references | Lange K., Carson R., et al. EM reconstruction algorithms for emission and transmission tomography J. Comput. Assist. Tomogr., 8 (2) (1984), pp. 306-316 | eng |
dcterms.references | Pereira R.d.O., Luz L.A.d., Chagas D.C., Amorim J.R., Nery-Júnior E.d.J., Alves A.C.B.R., Abreu-Neto F.T.d., Oliveira M.d.C.B., Silva D.R.C., Soares-Júnior J.M., et al. Evaluation of the accuracy of mammography, ultrasound and magnetic resonance imaging in suspect breast lesions Clinics, 75 (2020) | eng |
dcterms.references | NIBIB R.d.O. National institute of biomedical imaging and bioengineering (2022) https://www.nibib.nih.gov/ (Accedido en septiembre de 2022) | eng |
dcterms.references | Suckling J., Parker J., Dance D., Astley S., Hutt I., Boggis C., Ricketts I., Stamatakis E., Cerneaz N., Kok S., et al. Mammographic image analysis society (mias) database v1. 21 (2015) | eng |
dcterms.references | Heath M., Bowyer K., Kopans D., Kegelmeyer P., Moore R., Chang K., Munishkumaran S. Current status of the digital database for screening mammography Digital Mammography, Springer (1998), pp. 457-460 | eng |
dcterms.references | Gowri D.S., Amudha T. A review on mammogram image enhancement techniques for breast cancer detection 2014 International Conference on Intelligent Computing Applications, IEEE (2014), pp. 47-51 | eng |
dcterms.references | Elmoufidi A. Pre-processing algorithms on digital X-ray mammograms 2019 IEEE International Smart Cities Conference, ISC2, IEEE (2019), pp. 87-92 | eng |
dcterms.references | Valverde C.N., Maqueda J.R., Reyes M.J.R., Ruiz I.E., Medina D.G., Jiménez R.P., Rodríguez-Gómez C., del Ojo J.L., Cayuela A., Molano-Casimiro F.J. Magnetic resonance imaging in patients with cardiac implantable electronic devices: A prospective study Magn. Res. Imaging, 91 (2022), pp. 9-15 | eng |
dcterms.references | MITA C.N. Medical imaging & technology alliance (2022) https://www.medicalimaging.org/about-mita/medical-imaging-primer/ (Accedido en junio de 2022) | eng |
dcterms.references | Zerhouni E.A., Parish D.M., Rogers W.J., Yang A., Shapiro E.P. Human heart: Tagging with MR imaging–a method for noninvasive assessment of myocardial motion Radiology, 169 (1) (1988), pp. 59-63 | eng |
dcterms.references | Karamitsos T., Neubauer S. Cardiovascular magnetic resonance imaging Medicine, 50 (6) (2022), pp. 372-378 | eng |
dcterms.references | James A.P., Dasarathy B.V. Medical image fusion: A survey of the state of the art Inform. Fusion, 19 (2014), pp. 4-19 | eng |
dcterms.references | Cootney R.W. Ultrasound imaging: Principles and applications in rodent research Ilar J., 42 (3) (2001), pp. 233-247 | eng |
dcterms.references | Carovac A., Smajlovic F., Junuzovic D. Application of ultrasound in medicine Acta Inform. Medica, 19 (3) (2011), p. 168 | eng |
dcterms.references | Ali M., Magee D., Dasgupta U. Signal processing overview of ultrasound systems for medical imaging SPRAB12, Texas Instrum. Texas, 55 (2008) | eng |
dcterms.references | Dipu N.M., Shohan S.A., Salam K.A. Brain tumor detection using various deep learning algorithms 2021 International Conference on Science & Contemporary Technologies, ICSCT, IEEE (2021), pp. 1-6 | eng |
dcterms.references | Menze B., Jakab A., Bauer S., Reyes M., Prastawa M., Van Leemput K. Proceedings of the miccai challenge on multimodal brain tumor image segmentation (brats) 2012 MICCAI Challenge on Multimodal Brain Tumor Image Segmentation, BRATS, MICCAI (2012), p. 77 | eng |
dcterms.references | Nayak D.R., Das D., Dash R., Majhi S., Majhi B. Deep extreme learning machine with leaky rectified linear unit for multiclass classification of pathological brain images Multimedia Tools Appl., 79 (21) (2020), pp. 15381-15396 | eng |
dcterms.references | Sheela Shiney T., Rose R.J. Deep auto encoder based extreme learning system for automatic segmentation of cervical cells IETE J. Res. (2021), pp. 1-21 | eng |
dcterms.references | Ghoneim A., Muhammad G., Hossain M.S. Cervical cancer classification using convolutional neural networks and extreme learning machines Future Gener. Comput. Syst., 102 (2020), pp. 643-649 | eng |
dcterms.references | Painuli D., Bhardwaj S., et al. Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review Comput. Biol. Med. (2022), Article 105580 | eng |
dcterms.references | Düntsch I., Gediga G. Indices for rough set approximation and the application to confusion matrices Internat. J. Approx. Reason., 118 (2020), pp. 155-172 | eng |
dcterms.references | Pi P., Lima D. Gray level co-occurrence matrix and extreme learning machine for Covid-19 diagnosis Int. J. Cogn. Comput. Eng., 2 (2021), pp. 93-103 | eng |
dcterms.references | Huang X., Lei Q., Xie T., Zhang Y., Hu Z., Zhou Q. Deep transfer convolutional neural network and extreme learning machine for lung nodule diagnosis on CT images Knowl.-Based Syst., 204 (2020), Article 106230 | eng |
dcterms.references | Lama R.K., Gwak J., Park J.-S., Lee S.-W. Diagnosis of Alzheimer’s disease based on structural MRI images using a regularized extreme learning machine and PCA features J. Healthcare Eng., 2017 (2017) | eng |
dcterms.references | Zhu C., Zou B., Zhao R., Cui J., Duan X., Chen Z., Liang Y. Retinal vessel segmentation in colour fundus images using extreme learning machine Comput. Med. Imaging Graph., 55 (2017), pp. 68-77 | eng |
dcterms.references | Kuppili V., Biswas M., Sreekumar A., Suri H.S., Saba L., Edla D.R., Marinhoe R.T., Sanches J.M., Suri J.S. Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization J. Med. Syst., 41 (10) (2017), pp. 1-20 | eng |
dcterms.references | Punithavathi I.H., Kumar P.G. Severity grading of diabetic retinopathy using extreme learning machine 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing, INCOS, IEEE (2017), pp. 1-6 | eng |
dcterms.references | Luo Y., Yang B., Xu L., Hao L., Liu J., Yao Y., Vosse F.v.d. Segmentation of the left ventricle in cardiac MRI using a hierarchical extreme learning machine model Int. J. Mach. Learn. Cybern., 9 (10) (2018), pp. 1741-1751 | eng |
dcterms.references | Toprak A. Extreme learning machine (elm)-based classification of benign and malignant cells in breast cancer Med. Sci. Monitor: Int. Med. J. Exper. Clin. Res., 24 (2018), p. 6537 | eng |
dcterms.references | Eshtay M., Faris H., Obeid N. Improving extreme learning machine by competitive swarm optimization and its application for medical diagnosis problems Expert Syst. Appl., 104 (2018), pp. 134-152 | eng |
dcterms.references | Nayak D.R., Dash R., Majhi B., Wang S. Combining extreme learning machine with modified sine cosine algorithm for detection of pathological brain Comput. Electr. Eng., 68 (2018), pp. 366-380 | eng |
dcterms.references | Gumaei A., Hassan M.M., Hassan M.R., Alelaiwi A., Fortino G. A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification IEEE Access, 7 (2019), pp. 36266-36273 | eng |
dcterms.references | Rahmat R.F., Wijaya R.M., Faza S., Nababan E.B., Nadi F., et al. Classification of primary and secondary brain tumor using extreme learning machine 2021 International Conference on Data Science, Artificial Intelligence, and Business Analytics, DATABIA, IEEE (2021), pp. 101-105 | eng |
dcterms.references | Sasank V., Venkateswarlu S. Brain tumor classification using modified kernel based softplus extreme learning machine Multimedia Tools Appl., 80 (9) (2021), pp. 13513-13534 | eng |
dcterms.references | Devanathan B., Kamarasan M. Automated brain tumor diagnosis using residual network with optimal kernel extreme learning machine 2022 4th International Conference on Smart Systems and Inventive Technology, ICSSIT, IEEE (2022), pp. 860-865 | eng |
dcterms.references | Dhivya S., Nithya A., Abirami T. Mamogram image classification using extreme learning machine Indian J. Sci. Technol., 11 (17) (2018), pp. 1-4 | eng |
dcterms.references | Lahoura V., Singh H., Aggarwal A., Sharma B., Mohammed M.A., Damaševičius R., Kadry S., Cengiz K. Cloud computing-based framework for breast cancer diagnosis using extreme learning machine Diagnostics, 11 (2) (2021), p. 241 | eng |
dcterms.references | Aslan M.F., Ceylan M., Durdu A. Segmentation of retinal blood vessel using gabor filter and extreme learning machines 2018 International Conference on Artificial Intelligence and Data Processing, IDAP, IEEE (2018), pp. 1-5 | eng |
dcterms.references | Huang H., Ma H., van Triest H.J., Wei Y., Qian W. Automatic detection of neovascularization in retinal images using extreme learning machine Neurocomputing, 277 (2018), pp. 218-227 | eng |
dcterms.references | Krishna B., Gnanasekaran T. Retinal vessel extraction framework using modified adaboost extreme learning machine CMC-Comput. Mater. Continua, 60 (3) (2019), pp. 855-869 | eng |
dcterms.references | Nazir T., Irtaza A., Shabbir Z., Javed A., Akram U., Mahmood M.T. Diabetic retinopathy detection through novel tetragonal local octa patterns and extreme learning machines Artif. Intell. Med., 99 (2019), Article 101695 | eng |
dcterms.references | Shyla N.J., Emmanuel W.S. Automated classification of glaucoma using DWT and HOG features with extreme learning machine 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks, ICICV, IEEE (2021), pp. 725-730 | eng |
dcterms.references | Pappu G.P., Biswal B., Gandhi T.K., Sai Ram M.V.S. Classification of neovascularization on retinal images using extreme learning machine Int. J. Imaging Syst. Technol., 31 (3) (2021), pp. 1536-1550 | eng |
dcterms.references | Sousa L.S., Rebouças Filho P.P., Bezerra F.N., Neto A.R.R., Oliveira S.A. An improved retinal blood vessel detection system using an extreme learning machine Int. J. E-Health Med. Commun. (IJEHMC), 10 (3) (2019), pp. 39-55 | eng |
dcterms.references | George J., et al. Extreme learning machine based classification for detecting micro-calcification in mammogram using multi scale features 2019 International Conference on Computer Communication and Informatics, ICCCI, IEEE (2019), pp. 1-7 | eng |
dcterms.references | Sharifmoghadam M., Jazayeriy H. Breast cancer classification using AdaBoost-extreme learning machine 2019 5th Iranian Conference on Signal Processing and Intelligent Systems, ICSPIS, IEEE (2019), pp. 1-5 | eng |
dcterms.references | Mohanty F., Rup S., Dash B. Automated diagnosis of breast cancer using parameter optimized kernel extreme learning machine Biomed. Signal Process. Control, 62 (2020), Article 102108 | eng |
dcterms.references | Bacha S., Ben Abdellafou K., Aljuhani A., Taouali O., Liouane N. Early detection of digital mammogram using kernel extreme learning machine Concurr. Comput.: Pract. Exper. (2022), Article e6971 | eng |
dcterms.references | Tandungan S., Nurtanio I., et al. Comparison of accuracy in extreme learning machine based on hidden node structure variation for lung cancer classification IOP Conf. Ser.: Mater. Sci. Eng., 676 (1) (2019), Article 012014 | eng |
dcterms.references | Sharif M., Amin J., Raza M., Anjum M.A., Afzal H., Shad S.A. Brain tumor detection based on extreme learning Neural Comput. Appl., 32 (20) (2020), pp. 15975-15987 | eng |
dcterms.references | Hari A., Vanamala H., Sanjana N., Jain R., et al. An extreme learning machine based approach to detect the Alzheimer’s disease 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies, GUCON, IEEE (2021), pp. 1-6 | eng |
dcterms.references | Govindarajan S., Swaminathan R. Extreme learning machine based differentiation of pulmonary tuberculosis in chest radiographs using integrated local feature descriptors Comput. Methods Programs Biomed., 204 (2021), Article 106058 | eng |
dcterms.references | Khan M.A., Majid A., Akram T., Hussain N., Nam Y., Kadry S., Wang S.-H., Alhaisoni M. Classification of COVID-19 CT scans via extreme learning machine CMC-Comput. Mater. Continua (2021) | eng |
dcterms.references | Suksmono A.B., Rulaningtyas R., Triyana K., Sitanggang I.S., Rahaju A.S., Kusumastuti E.H., Nabila A.N.L., Maharani R.N., Ismayanto D.F., Katherine F.J., et al. Classification of adeno carcinoma, high squamous intraephithelial lesion, and squamous cell Carcinoma in pap smear images based on extreme learning machine Comput. Methods Biomech. Biomed. Eng.: Imaging Visual., 9 (2) (2021), pp. 115-120 | eng |
dcterms.references | Al-Hammouri S., Fora M., Ibbini M. Extreme learning machine for melanoma classification 2021 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology, JEEIT, IEEE (2021), pp. 114-119 | eng |
dcterms.references | Elsayed N., ElSayed Z., Ozer M. Early stage diabetes prediction via extreme learning machine SoutheastCon 2022, IEEE (2022), pp. 374-379 | eng |
dcterms.references | Hao R., Qiang Z., Qiang Y., Ge L., Zhao J. Automatic diagnosis of pulmonary nodules using a hierarchical extreme learning machine model Int. J. Bio-Inspired Comput., 11 (3) (2018), pp. 192-201 | eng |
dcterms.references | Lingappa H., Suresh H., Manvi S. Medical image segmentation based on extreme learning machine algorithm in kernel fuzzy c-means using artificial bee colony method Int. J. Intell. Eng. Syst, 11 (2018), pp. 128-136 | eng |
dcterms.references | Mohan N.J., Murugan R., Goel T., Roy P. Fast and robust exudate detection in retinal fundus images using extreme learning machine autoencoders and modified KAZE features J. Digit. Imaging (2022), pp. 1-18 | eng |
dcterms.references | Wang Z., Xin J., Sun P., Lin Z., Yao Y., Gao X. Improved lung nodule diagnosis accuracy using lung CT images with uncertain class Comput. Methods Programs Biomed., 162 (2018), pp. 197-209 | eng |
dcterms.references | Pashaei A., Sajedi H., Jazayeri N. Brain tumor classification via convolutional neural network and extreme learning machines 2018 8th International Conference on Computer and Knowledge Engineering, ICCKE, IEEE (2018), pp. 314-319 | eng |
dcterms.references | She Q., Hu B., Gan H., Fan Y., Nguyen T., Potter T., Zhang Y. Safe semi-supervised extreme learning machine for EEG signal classification IEEE Access, 6 (2018), pp. 49399-49407 | eng |
dcterms.references | She Q., Hu B., Luo Z., Nguyen T., Zhang Y. A hierarchical semi-supervised extreme learning machine method for EEG recognition Med. Biol. Eng. Comput., 57 (1) (2019), pp. 147-157 | eng |
dcterms.references | Ronoud S., Asadi S. An evolutionary deep belief network extreme learning-based for breast cancer diagnosis Soft Comput., 23 (24) (2019), pp. 13139-13159 | eng |
dcterms.references | Vijendran S., Dubey R. Deep online sequential extreme learning machines and its application in pneumonia detection 2019 8th International Conference on Industrial Technology and Management, ICITM, IEEE (2019), pp. 311-316 | eng |
dcterms.references | Fei X., Zhou W., Shen L., Chang C., Zhou S., Shi J. Ultrasound-based diagnosis of breast tumor with parameter transfer multilayer kernel extreme learning machine 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, IEEE (2019), pp. 933-936 | eng |
dcterms.references | Zhou W., Qiao S., Yi Y., Han N., Chen Y., Lei G. Automatic optic disc detection using low-rank representation based semi-supervised extreme learning machine Int. J. Mach. Learn. Cybern., 11 (1) (2020), pp. 55-69 | eng |
dcterms.references | Wang P., Song Q., Li Y., Lv S., Wang J., Li L., Zhang H. Cross-task extreme learning machine for breast cancer image classification with deep convolutional features Biomed. Signal Process. Control, 57 (2020), Article 101789 | eng |
dcterms.references | Saxena S., Shukla S., Gyanchandani M. Breast cancer histopathology image classification using kernelized weighted extreme learning machine Int. J. Imaging Syst. Technol., 31 (1) (2021), pp. 168-179 | eng |
dcterms.references | SR S.C., Rajaguru H. Deep features with improved extreme learning machine for breast cancer classification 2021 8th International Conference on Soft Computing & Machine Intelligence, ISCMI, IEEE (2021), pp. 237-241 | eng |
dcterms.references | Turkoglu M. COVID-19 detection system using chest CT images and multiple kernels-extreme learning machine based on deep neural network IRBM, 42 (4) (2021), pp. 207-214 | eng |
dcterms.references | Murugan R., Goel T. E-DiCoNet: Extreme learning machine based classifier for diagnosis of COVID-19 using deep convolutional network J. Ambient Intell. Humaniz. Comput., 12 (9) (2021), pp. 8887-8898 | eng |
dcterms.references | Afza F., Sharif M., Khan M.A., Tariq U., Yong H.-S., Cha J. Multiclass skin lesion classification using hybrid deep features selection and extreme learning machine Sensors, 22 (3) (2022), p. 799 | eng |
dcterms.references | Luo X., Li X., Wang Z., Liang J. Discriminant autoencoder for feature extraction in fault diagnosis Chemometr. Intell. Lab. Syst., 192 (2019), Article 103814, 10.1016/j.chemolab.2019.103814 | eng |
dcterms.references | Alharbi A., Alghahtani M. Using genetic algorithm and ELM neural networks for feature extraction and classification of type 2-diabetes mellitus Appl. Artif. Intell., 33 (4) (2019), pp. 311-328 | eng |
dcterms.references | Doğantekin A., Özyurt F., Avcı E., Koc M. A novel approach for liver image classification: PH-C-ELM Measurement, 137 (2019), pp. 332-338 | eng |
dcterms.references | Khan M.A., Akram T., Zhang Y.-D., Alhaisoni M., Al Hejaili A., Shaban K.A., Tariq U., Zayyan M.H. SkinNet-ENDO: Multiclass skin lesion recognition using deep neural network and entropy-normal distribution optimization algorithm with ELM Int. J. Imaging Syst. Technol. (2023) | eng |
dcterms.references | Prates M.O. Spatial extreme learning machines: An application on prediction of disease counts Statist. Methods Med. Res., 28 (9) (2019), pp. 2583-2594 | eng |
dcterms.references | Jiang M., Pan Z., Li N. Multi-label text categorization using L21-norm minimization extreme learning machine Neurocomputing, 261 (2017), pp. 4-10 | eng |
dcterms.references | Li R., Wang X., Song Y., Lei L. Hierarchical extreme learning machine with L21-norm loss and regularization Int. J. Mach. Learn. Cybern., 12 (5) (2021), pp. 1297-1310 | eng |
dcterms.references | Li R., Wang X., Lei L., Song Y. { }-Norm based loss function and regularization extreme learning machine IEEE Access, 7 (2018), pp. 6575-6586 | eng |
dcterms.references | Preeti R., Bala R., Dagar A., Singh R.P. A novel online sequential extreme learning machine with L 2, 1-norm regularization for prediction problems Appl. Intell., 51 (2021), pp. 1669-1689 | eng |
dcterms.references | Xiao W., Zhang J., Li Y., Zhang S., Yang W. Class-specific cost regulation extreme learning machine for imbalanced classification Neurocomputing, 261 (2017), pp. 70-82 | eng |
dcterms.references | Zhang L., Yang H., Jiang Z. Imbalanced biomedical data classification using self-adaptive multilayer ELM combined with dynamic GAN Biomed. Eng. Online, 17 (1) (2018), pp. 1-21 | eng |
dcterms.references | Qin J., Wang C., Zou Q., Sun Y., Chen B. Active learning with extreme learning machine for online imbalanced multiclass classification Knowl.-Based Syst., 231 (2021), Article 107385 | eng |
dcterms.references | Guo Y., Jiao B., Tan Y., Zhang P., Tang F. A transfer weighted extreme learning machine for imbalanced classification Int. J. Intell. Syst., 37 (10) (2022), pp. 7685-7705 | eng |
dcterms.references | Pradhan A., Mishra D., Das K., Panda G., Kumar S., Zymbler M. On the classification of MR images using “ELM-SSA” coated hybrid model Mathematics, 9 (17) (2021), p. 2095 | eng |
dcterms.references | Zhang J., Zhao Y., Shone F., Li Z., Frangi A.F., Xie S.Q., Zhang Z.-Q. Physics-informed deep learning for musculoskeletal modelling: Predicting muscle forces and joint kinematics from surface EMG IEEE Trans. Neural Syst. Rehabil. Eng. (2022) | eng |
dcterms.references | Ding S., Zhang N., Xu X., Guo L., Zhang J. Deep extreme learning machine and its application in EEG classification Math. Probl. Eng., 2015 (2015) | eng |
dcterms.references | Li L., Fan Y., Tse M., Lin K.-Y. A review of applications in federated learning Comput. Ind. Eng., 149 (2020), Article 106854 | eng |
dcterms.references | Wang R., Shi R., Hu X., Shen C. Remaining useful life prediction of rolling bearings based on multiscale convolutional neural network with integrated dilated convolution blocks Shock Vib., 2021 (2021) | eng |
dcterms.references | Li H., Zhao W., Zhang Y., Zio E. Remaining useful life prediction using multi-scale deep convolutional neural network Appl. Soft Comput., 89 (2020), Article 106113 | eng |
dcterms.references | Zhou S., Liu X., Liu Q., Wang S., Zhu C., Yin J. Random Fourier extreme learning machine with -norm regularization Neurocomputing, 174 (2016), pp. 143-153 | eng |
dcterms.references | Luo X., Chang X., Ban X. Regression and classification using extreme learning machine based on norm and norm Neurocomputing, 174 (2016), pp. 179-186 | eng |