A comprehensive review of extreme learning machine on medical imaging

datacite.rightshttp://purl.org/coar/access_right/c_abf2
dc.contributor.authorHuérfano Maldonado, Yoleidy
dc.contributor.authorMora, Marco
dc.contributor.authorVilches, Karina
dc.contributor.authorHernández García, Ruber
dc.contributor.authorGutiérrez, Rodrigo
dc.contributor.authorVera, Miguel
dc.date.accessioned2025-01-17T20:06:01Z
dc.date.available2025-01-17T20:06:01Z
dc.date.issued2023
dc.description.abstractThe feedforward neural network based on randomization has been of great interest in the scientific community, particularly extreme learning machines, due to its simplicity, training speed, and levels of accuracy comparable to traditional learning algorithms. Extreme learning machines (ELMs) are a type of artificial neural network (ANN) with one or more hidden layers that are trained under supervised, unsupervised, or semi-supervised learning approaches. These networks are widely used in various research areas, such as medical image processing (MI). This research work presents an exhaustive review of extreme learning machines (ELM) and medical image processing (MI), due to the high impact that these networks have had on the scientific community and the importance of MI for physicians who use them to diagnose different injuries and diseases. First, the theoretical construct of ELMs is developed based on the types of supervised, unsupervised, and semi-supervised learning. Then, the importance of MI for the diagnosis of a disease or classification of the most commonly used imaging modalities is analyzed for articles concerning radiography, computed tomography (CT), magnetic resonance (MR), ultrasound (US), and mammography (MG). Next, the reference data sets linked to various human body organs, such as the brain, lungs, skin, eyes, breasts, and cervix are described. Then, a review, analysis, and classification of the development of the last 6 years (2017–2022) of ELMs, based on learning types and MI, is performed. With the information obtained above, a construction of summary tables of the articles, classified according to the type of learning, is performed, highlighting the organ, reference, year, methodology, database, modality, and results. Finally, the discussion, conclusions and challenges related to this topic are presented. The findings indicate that the review articles reported in the literature have not addressed the relationship between ELMs and medical imaging in depth and have excluded key aspects, which are developed in this article. These aspects include a comprehensive analysis of the most popular imaging modalities, a detailed description of both the most popular databases and the most relevant databases for the machine learning community and, finally, the incorporation of schemes that explain the fundamentals of the main learnings considered when generating ELM-based trained smart models, which can be useful for medical image processing.spa
dc.format.mimetypepdf
dc.identifier.doihttps://doi.org/10.1016/j.neucom.2023.126618
dc.identifier.issn09252312 (Electrónico)
dc.identifier.urihttps://hdl.handle.net/20.500.12442/16113
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0925231223007415
dc.language.isoeng
dc.publisherELSEVIERspa
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateseng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.sourceNeurocomputingeng
dc.sourceVol. 556 (2023)spa
dc.subject.keywordsExtreme learning machineeng
dc.subject.keywordsMedical imagingeng
dc.subject.keywordsSupervised trainingeng
dc.subject.keywordsUnsupervised trainingeng
dc.subject.keywordsSemi-supervised trainingeng
dc.titleA comprehensive review of extreme learning machine on medical imagingspa
dc.type.driverinfo:eu-repo/semantics/article
dc.type.spaArtículo científico
dcterms.referencesCao W., Wang X., Ming Z., Gao J. A review on neural networks with random weights Neurocomputing, 275 (2018), pp. 278-287eng
dcterms.referencesZhang L., Suganthan P.N. A survey of randomized algorithms for training neural networks Inform. Sci., 364 (2016), pp. 146-155eng
dcterms.referencesSuganthan P.N., Katuwal R. On the origins of randomization-based feedforward neural networks Appl. Soft Comput., 105 (2021), Article 107239eng
dcterms.referencesJiang Q., Zhu L., Shu C., Sekar V. An efficient multilayer RBF neural network and its application to regression problems Neural Comput. Appl. (2022), pp. 1-18eng
dcterms.referencesZhuo J., An C., Fei J. Fuzzy multiple hidden layer neural sliding mode control of active power filter with multiple feedback loop IEEE Access, 9 (2021), pp. 114294-114307eng
dcterms.referencesLi Z., Liu F., Yang W., Peng S., Zhou J. A survey of convolutional neural networks: Analysis, applications, and prospects IEEE Trans. Neural Netw. Learn. Syst. (2021)eng
dcterms.referencesCaterini A.L., Chang D.E., Caterini A.L., Chang D.E. Recurrent neural networks Deep Neural Netw. Math. Framew. (2018), pp. 59-79eng
dcterms.referencesLiguori A., Markovic R., Dam T.T.H., Frisch J., van Treeck C., Causone F. Indoor environment data time-series reconstruction using autoencoder neural networks Build. Environ., 191 (2021), Article 107623eng
dcterms.referencesPao Y.-H., Takefuji Y. Functional-link net computing: Theory, system architecture, and functionalities Computer, 25 (5) (1992), pp. 76-79eng
dcterms.referencesZhang L., Suganthan P.N. A comprehensive evaluation of random vector functional link networks Inform. Sci., 367 (2016), pp. 1094-1105eng
dcterms.referencesVuković N., Petrović M., Miljković Z. A comprehensive experimental evaluation of orthogonal polynomial expanded random vector functional link neural networks for regression Appl. Soft Comput., 70 (2018), pp. 1083-1096eng
dcterms.referencesSchmidt W.F., Kraaijveld M.A., Duin R.P., et al. Feed forward neural networks with random weights International Conference on Pattern Recognition, IEEE Computer Society Press (1992), p. 1eng
dcterms.referencesHuang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: A new learning scheme of feedforward neural networks 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), Vol. 2, Ieee (2004), pp. 985-990eng
dcterms.referencesHuang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: Theory and applications Neurocomputing, 70 (1–3) (2006), pp. 489-501eng
dcterms.referencesHuang G., Song S., Gupta J.N., Wu C. Semi-supervised and unsupervised extreme learning machines IEEE Trans. Cybern., 44 (12) (2014), pp. 2405-2417eng
dcterms.referencesChen J., Zeng Y., Li Y., Huang G.-B. Unsupervised feature selection based extreme learning machine for clusteringeng
dcterms.referencesDing S., Jia W., Su C., Zhang L., Liu L. Research of neural network algorithm based on factor analysis and cluster analysis Neural Comput. Appl., 20 (2) (2011), pp. 297-302eng
dcterms.referencesShi Q., Suganthan P.N., Del Ser J. Jointly optimized ensemble deep random vector functional link network for semi-supervised classification Eng. Appl. Artif. Intell., 115 (2022), Article 105214eng
dcterms.referencesYe H., Cao F., Wang D. A hybrid regularization approach for random vector functional-link networks Expert Syst. Appl., 140 (2020), Article 112912eng
dcterms.referencesHu M., Suganthan P.N. Representation learning using deep random vector functional link networks for clustering Pattern Recognit., 129 (2022), Article 108744eng
dcterms.referencesScardapane S., Wang D. Randomness in neural networks: an overview Wiley Interdisc. Rev.: Data Min. Knowl. Discov., 7 (2) (2017), Article e1200eng
dcterms.referencesHuang G.-B., Chen L., Siew C.K., et al. Universal approximation using incremental constructive feedforward networks with random hidden nodes IEEE Trans. Neural Netw., 17 (4) (2006), pp. 879-892eng
dcterms.referencesZhong H., Miao C., Shen Z., Feng Y. Comparing the learning effectiveness of BP, ELM, I-ELM, and SVM for corporate credit ratings Neurocomputing, 128 (2014), pp. 285-295eng
dcterms.referencesZhang L., Zhang D., Tian F. SVM and ELM: Who wins? Object recognition with deep convolutional features from ImageNet Proceedings of ELM-2015 Volume 1: Theory, Algorithms and Applications (I), Springer (2016), pp. 249-263eng
dcterms.referencesOlatunji S.O. Extreme learning machines and support vector machines models for email spam detection 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering, CCECE, IEEE (2017), pp. 1-6eng
dcterms.referencesMaglogiannis I.G., Zafiropoulos E.P. Characterization of digital medical images utilizing support vector machines BMC Med. Inform. Decision Making, 4 (1) (2004), pp. 1-9eng
dcterms.referencesAkyol K. Comparing of deep neural networks and extreme learning machines based on growing and pruning approach Expert Syst. Appl., 140 (2020), Article 112875eng
dcterms.referencesJain M., Andreopoulos W., Stamp M. Convolutional neural networks and extreme learning machines for malware classification J. Comput. Virol. Hacking Tech., 16 (2020), pp. 229-244eng
dcterms.referencesKamnitsas K., Ledig C., Newcombe V.F., Simpson J.P., Kane A.D., Menon D.K., Rueckert D., Glocker B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation Med. Image Anal., 36 (2017), pp. 61-78eng
dcterms.referencesAlzubaidi L., Zhang J., Humaidi A.J., Al-Dujaili A., Duan Y., Al-Shamma O., Santamaría J., Fadhel M.A., Al-Amidie M., Farhan L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions J. big Data, 8 (2021), pp. 1-74eng
dcterms.referencesAlbadra M.A.A., Tiuna S. Extreme learning machine: A review Int. J. Appl. Eng. Res., 12 (14) (2017), pp. 4610-4623eng
dcterms.referencesDeng B., Zhang X., Gong W., Shang D. An overview of extreme learning machine 2019 4th International Conference on Control, Robotics and Cybernetics, CRC, IEEE (2019), pp. 189-195eng
dcterms.referencesWang J., Lu S., Wang S.-H., Zhang Y.-D. A review on extreme learning machine Multimedia Tools Appl., 81 (29) (2022), pp. 41611-41660eng
dcterms.referencesHuang G., Huang G.-B., Song S., You K. Trends in extreme learning machines: A review Neural Netw., 61 (2015), pp. 32-48eng
dcterms.referencesAlade O.A., Selamat A., Sallehuddin R. A review of advances in extreme learning machine techniques and its applications International Conference of Reliable Information and Communication Technology, Springer (2017), pp. 885-895eng
dcterms.referencesNilesh R., Sunil W. Improving extreme learning machine through optimization a review 2021 7th International Conference on Advanced Computing and Communication Systems, Vol. 1, ICACCS, IEEE (2021), pp. 906-912eng
dcterms.referencesDing S., Xu X., Nie R. Extreme learning machine and its applications Neural Comput. Appl., 25 (3) (2014), pp. 549-556eng
dcterms.referencesGhosh S., Mukherjee H., Obaidullah S.M., Santosh K., Das N., Roy K. A survey on extreme learning machine and evolution of its variants Recent Trends in Image Processing and Pattern Recognition: Second International Conference, RTIP2R 2018, Solapur, India, December 21–22, 2018, Revised Selected Papers, Part I 2, Springer (2019), pp. 572-583eng
dcterms.referencesDe Campos Souza P.V., Bambirra Torres L.C., Lacerda Silva G.R., Braga A.d.P., Lughofer E. An advanced pruning method in the architecture of extreme learning machines using l1-regularization and bootstrapping Electronics, 9 (5) (2020), p. 811eng
dcterms.referencesTian Z., Wang G., Li S., Wang Y., Wang X. Artificial bee colony algorithm–optimized error minimized extreme learning machine and its application in short-term wind speed prediction Wind Eng., 43 (3) (2019), pp. 263-276eng
dcterms.referencesZang S., Li X., Ma J., Yan Y., Gao J., Wei Y. TSTELM: Two-stage transfer extreme learning machine for unsupervised domain adaptation Comput. Intell. Neurosci., 2022 (2022)eng
dcterms.referencesZhang J., Li Y., Xiao W. Adaptive online sequential extreme learning machine for dynamic modeling Soft Comput., 25 (2021), pp. 2177-2189eng
dcterms.referencesZhang J., Li Y., Xiao W., Zhang Z. Non-iterative and fast deep learning: Multilayer extreme learning machines J. Franklin Inst. B, 357 (13) (2020), pp. 8925-8955eng
dcterms.referencesVásquez-Coronel J.A., Mora M., Vilches K. A review of multilayer extreme learning machine neural networks Artif. Intell. Rev. (2023), pp. 1-52eng
dcterms.referencesKaur R., Roul R.K., Batra S. Multilayer extreme learning machine: A systematic review Multimedia Tools Appl. (2023), pp. 1-39eng
dcterms.referencesTang J., Deng C., Huang G.-B. Extreme learning machine for multilayer perceptron IEEE Trans. Neural Netw. Learn. Syst., 27 (4) (2015), pp. 809-821eng
dcterms.referencesLi R., Wang X., Lei L., Wu C. Representation learning by hierarchical ELM auto-encoder with double random hidden layers IET Comput. Vis., 13 (4) (2019), pp. 411-419eng
dcterms.referencesWang J., Lu S., Wang S.-H., Zhang Y.-D. A review on extreme learning machine Multimedia Tools Appl. (2021), pp. 1-50eng
dcterms.referencesEshtay M., Faris H., Obeid N. Metaheuristic-based extreme learning machines: A review of design formulations and applications Int. J. Mach. Learn. Cybern., 10 (6) (2019), pp. 1543-1561eng
dcterms.referencesAzam M.A., Khan K.B., Salahuddin S., Rehman E., Khan S.A., Khan M.A., Kadry S., Gandomi A.H. A review on multimodal medical image fusion: Compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics Comput. Biol. Med., 144 (2022), Article 105253eng
dcterms.referencesWang Z., Luo Y., Xin J., Zhang H., Qu L., Wang Z., Yao Y., Zhu W., Wang X. Computer-aided diagnosis based on extreme learning machine: A review IEEE Access, 8 (2020), pp. 141657-141673eng
dcterms.referencesHuang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: Theory and applications Neurocomputing, 70 (1–3) (2006), pp. 489-501, 10.1016/j.neucom.2005.12.126eng
dcterms.referencesHuang G.-B., Chen L. Convex incremental extreme learning machine Neurocomputing, 70 (16–18) (2007), pp. 3056-3062eng
dcterms.referencesHuang G.-B., Chen L. Enhanced random search based incremental extreme learning machine Neurocomputing, 71 (16–18) (2008), pp. 3460-3468eng
dcterms.referencesHuang G.-B., Zhou H., Ding X., Zhang R. Extreme learning machine for regression and multiclass classification IEEE Trans. Syst. Man Cybern. B, 42 (2) (2011), pp. 513-529eng
dcterms.referencesWang D., Huang G.-B. Protein sequence classification using extreme learning machine Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, Vol. 3, IEEE (2005), pp. 1406-1411eng
dcterms.referencesLiang N.-Y., Saratchandran P., Huang G.-B., Sundararajan N. Classification of mental tasks from EEG signals using extreme learning machine Int. J. Neural Syst., 16 (01) (2006), pp. 29-38eng
dcterms.referencesRong H.-J., Huang G.-B., Ong Y.-S. Extreme learning machine for multi-categories classification applications 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), IEEE (2008), pp. 1709-1713eng
dcterms.referencesVani G., Savitha R., Sundararajan N. Classification of abnormalities in digitized mammograms using extreme learning machine 2010 11th International Conference on Control Automation Robotics & Vision, IEEE (2010), pp. 2114-2117eng
dcterms.referencesSuresh S., Saras-wathi S., Sundararajan N. Performance enhancement of extreme learning machine for multi-category sparse data classification problems Eng. Appl. Artif. Intell., 23 (7) (2010), pp. 1149-1157eng
dcterms.referencesPal M., Max-well A.E., Warner T.A. Kernel-based extreme learning machine for remote-sensing image classification Remote Sens. Lett., 4 (9) (2013), pp. 853-862eng
dcterms.referencesZheng W., Fu X., Ying Y. Spectroscopy-based food classification with extreme learning machine Chemometr. Intell. Lab. Syst., 139 (2014), pp. 42-47eng
dcterms.referencesXie W., Li Y., Ma Y. Breast mass classification in digital mammography based on extreme learning machine Neurocomputing, 173 (2016), pp. 930-941eng
dcterms.referencesLan Y., Soh Y.C., Huang G.-B. Two-stage extreme learning machine for regression Neurocomputing, 73 (16–18) (2010), pp. 3028-3038eng
dcterms.referencesMartínez-Martínez J.M., Escandell-Montero P., Soria-Olivas E., Martín-Guerrero J.D., Magdalena-Benedito R., GóMez-Sanchis J. Regularized extreme learning machine for regression problems Neurocomputing, 74 (17) (2011), pp. 3716-3721eng
dcterms.referencesYuan Y., Wang Y., Cao F. Optimization approximation solution for regression problem based on extreme learning machine Neurocomputing, 74 (16) (2011), pp. 2475-2482eng
dcterms.referencesYang Y., Wang Y., Yuan X. Bidirectional extreme learning machine for regression problem and its learning effectiveness IEEE Trans. Neural Netw. Learn. Syst., 23 (9) (2012), pp. 1498-1505eng
dcterms.referencesFeng G., Qian Z., Zhang X. Evolutionary selection extreme learning machine optimization for regression Soft Comput., 16 (9) (2012), pp. 1485-1491eng
dcterms.referencesLima A.R., Cannon A.J., Hsieh W.W. Nonlinear regression in environmental sciences using extreme learning machines: A comparative evaluation Environ. Model. Softw., 73 (2015), pp. 175-188eng
dcterms.referencesZhang K., Luo M. Outlier-robust extreme learning machine for regression problems Neurocomputing, 151 (2015), pp. 1519-1527eng
dcterms.referencesHuang G., Liu T., Yang Y., Lin Z., Song S., Wu C. Discriminative clustering via extreme learning machine Neural Netw., 70 (2015), pp. 1-8eng
dcterms.referencesWang Q., Dou Y., Liu X., Lv Q., Li S. Multi-view clustering with extreme learning machine Neurocomputing, 214 (2016), pp. 483-494eng
dcterms.referencesZhang J., Xiao W., Li Y., Zhang S. Residual compensation extreme learning machine for regression Neurocomputing, 311 (2018), pp. 126-136eng
dcterms.referencesHe Q., Jin X., Du C., Zhuang F., Shi Z. Clustering in extreme learning machine feature space Neurocomputing, 128 (2014), pp. 88-95eng
dcterms.referencesLekamalage C.K.L., Liu T., Yang Y., Lin Z., Huang G.-B. Extreme learning machine for clustering Proceedings of ELM-2014 Volume 1, Springer (2015), pp. 435-444eng
dcterms.referencesJaved K., Gouriveau R., Zerhouni N. A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering IEEE Trans. Cybern., 45 (12) (2015), pp. 2626-2639eng
dcterms.referencesHuang J., Yu Z.L., Gu Z. A clustering method based on extreme learning machine Neurocomputing, 277 (2018), pp. 108-119eng
dcterms.referencesLiu T., Lekamalage C.K.L., Huang G.-B., Lin Z. Extreme learning machine for joint embedding and clustering Neurocomputing, 277 (2018), pp. 78-88eng
dcterms.referencesChen J., Zeng Y., Li Y., Huang G.-B. Unsupervised feature selection based extreme learning machine for clustering Neurocomputing, 386 (2020), pp. 198-207eng
dcterms.referencesFredholm I. Sur une classe d’équations fonctionnelles Acta mathematica, 27 (1903), pp. 365-390eng
dcterms.referencesHilbert D. Grundzüge einer allgemeinen Theorie der linearen Integralrechnungen.(Zweite Mitteilung) Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1904 (1904), pp. 213-260eng
dcterms.referencesMoore E.H. On the reciprocal of the general algebraic matrix Bull. Amer. Math. Soc., 26 (1920), pp. 394-395eng
dcterms.referencesPenrose R. A generalized inverse for matrices Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 51, no. 3, Cambridge University Press (1955), pp. 406-413eng
dcterms.referencesDrazin M. Pseudo-inverses in associative rings and semigroups Am. Math. Monthly, 65 (7) (1958), pp. 506-514eng
dcterms.referencesManjunatha Prasad K., Mohana K. Core–EP inverse Linear Multilinear Algebra, 62 (6) (2014), pp. 792-802eng
dcterms.referencesLuo G., Zuo K., Zhou L. Revisitation of the core inverse Wuhan Univ. J. Nat. Sci., 20 (5) (2015), pp. 381-385eng
dcterms.referencesZuo K., Li Y., Luo G. A new generalized inverse of matrices from core-EP decomposition (2020) arXiv preprint arXiv:2007.02364eng
dcterms.referencesChen Y., Zuo K., Fu Z. New characterizations of the generalized Moore-Penrose inverse of matrices AIMS Math., 7 (3) (2022), pp. 4359-4375eng
dcterms.referencesMalik S.B., Thome N. On a new generalized inverse for matrices of an arbitrary index Appl. Math. Comput., 226 (2014), pp. 575-580eng
dcterms.referencesMehdipour M., Salemi A. On a new generalized inverse of matrices Linear Multilinear Algebra, 66 (5) (2018), pp. 1046-1053eng
dcterms.referencesMalik S.B., Rueda L., Thome N. The class of m-EP and m-normal matrices Linear Multilinear Algebra, 64 (11) (2016), pp. 2119-2132eng
dcterms.referencesRao C.R., Mitra S.K. Further contributions to the theory of generalized inverse of matrices and its applications Sankhyā: Indian J. Stat. Ser. A (1971), pp. 289-300eng
dcterms.referencesAlaba P.A., Popoola S.I., Olatomiwa L., Akanle M.B., Ohunakin O.S., Adetiba E., Alex O.D., Atayero A.A., Daud W.M.A.W. Towards a more efficient and cost-sensitive extreme learning machine: A state-of-the-art review of recent trend Neurocomputing, 350 (2019), pp. 70-90eng
dcterms.referencesDeng W.-Y., Zheng Q.-H., Lian S., Chen L., Wang X. Ordinal extreme learning machine Neurocomputing, 74 (1–3) (2010), pp. 447-456eng
dcterms.referencesBartlett P. The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network IEEE Trans. Inform. Theory, 44 (2) (1998), pp. 525-536, 10.1109/18.661502eng
dcterms.referencesRen L.-R., Gao Y.-L., Liu J.-X., Zhu R., Kong X.-Z. L2, 1-extreme learning machine: An efficient robust classifier for tumor classification Comput. Biol. Chem., 89 (2020), Article 107368eng
dcterms.referencesCao J., Lin Z., Huang G.-B. Self-adaptive evolutionary extreme learning machine Neural Process. Lett., 36 (3) (2012), pp. 285-305eng
dcterms.referencesLi M.-B., Huang G.-B., Saratchandran P., Sundararajan N. Fully complex extreme learning machine Neurocomputing, 68 (2005), pp. 306-314eng
dcterms.referencesLiang N.-Y., Huang G.-B., Saratchandran P., Sundararajan N. A fast and accurate online sequential learning algorithm for feedforward networks IEEE Trans. Neural Netw., 17 (6) (2006), pp. 1411-1423eng
dcterms.referencesEl Bouchefry K., de Souza R.S. Learning in big data: Introduction to machine learning Knowledge Discovery in Big Data from Astronomy and Earth Observation, Elsevier (2020), pp. 225-249eng
dcterms.referencesPeng Y., Zheng W.-L., Lu B.-L. An unsupervised discriminative extreme learning machine and its applications to data clustering Neurocomputing, 174 (2016), pp. 250-264eng
dcterms.referencesDas S.P., Padhy S. Unsupervised extreme learning machine and support vector regression hybrid model for predicting energy commodity futures index Memet. Comput., 9 (4) (2017), pp. 333-346eng
dcterms.referencesWang Z., Huang Y., Li M., Zhang H., Li C., Xin J., Qian W. Breast mass detection and diagnosis using fused features with density J. X-ray Sci. Technol., 27 (2) (2019), pp. 321-342eng
dcterms.referencesKasun L.L.C., Zhou H., Huang G.-B., Vong C.M. Representational learning with ELMs for big data Intell. Syst., 28 (2013), pp. 31-34eng
dcterms.referencesSun K., Zhang J., Zhang C., Hu J. Generalized extreme learning machine autoencoder and a new deep neural network Neurocomputing, 230 (2017), pp. 374-381eng
dcterms.referencesNuha H.H., Balghonaim A., Liu B., Mohandes M., Deriche M., Fekri F. Deep neural networks with extreme learning machine for seismic data compression Arab. J. Sci. Eng., 45 (3) (2020), pp. 1367-1377eng
dcterms.referencesLi S., Song S., Wan Y. Laplacian twin extreme learning machine for semi-supervised classification Neurocomputing, 321 (2018), pp. 17-27eng
dcterms.referencesGong X., Zhang T., Chen C.P., Liu Z. Research review for broad learning system: Algorithms, theory, and applications IEEE Trans. Cybern. (2021)eng
dcterms.referencesDrew P., Chatwin J., Collins S. Conversation analysis: A method for research into interactions between patients and health-care professionals Health Expect., 4 (1) (2001), pp. 58-70eng
dcterms.referencesHoussein E.H., Emam M.M., Ali A.A., Suganthan P.N. Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review Expert Syst. Appl., 167 (2021), Article 114161eng
dcterms.referencesMarin D., Nelson R.C., Schindera S.T., Richard S., Youngblood R.S., Yoshizumi T.T., Samei E. Low-tube-voltage, high-tube-current multidetector abdominal CT: Improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm—initial clinical experience Radiology, 254 (1) (2010), pp. 145-153eng
dcterms.referencesThibault J.-B., Sauer K.D., Bouman C.A., Hsieh J. A three-dimensional statistical approach to improved image quality for multislice helical CT Med. Phys., 34 (11) (2007), pp. 4526-4544eng
dcterms.referencesHaidekker M.A. X-ray projection imaging Medical Imaging Technology, Springer (2013), pp. 13-35eng
dcterms.referencesKasban H., El-Bendary M., Salama D. A comparative study of medical imaging techniques Int. J. Inform. Sci. Intell. Syst., 4 (2) (2015), pp. 37-58eng
dcterms.referencesMedLinePlus H. National library of medicine (2022) https://medlineplus.gov/xrays.html (Accedido en junio de 2022)eng
dcterms.referencesNahiduzzaman M., Goni M.O.F., Anower M.S., Islam M.R., Ahsan M., Haider J., Gurusamy S., Hassan R., Islam M.R. A novel method for multivariant pneumonia classification based on hybrid CNN-PCA based feature extraction using extreme learning machine with CXR images IEEE Access, 9 (2021), pp. 147512-147526eng
dcterms.referencesWu C., Khishe M., Mohammadi M., Taher Karim S.H., Rashid T.A. Evolving deep convolutional neutral network by hybrid sine–cosine and extreme learning machine for real-time COVID19 diagnosis from X-ray images Soft Comput. (2021), pp. 1-20eng
dcterms.referencesCohen J.P., Morrison P., Dao L., Roth K., Duong T.Q., Ghassemi M. COVID-19 image data collection: Prospective predictions are the future (2020) arXiv:2006.11988 https://github.com/ieee8023/covid-chestxray-dataseteng
dcterms.referencesStiller W. Basics of iterative reconstruction methods in computed tomography: A vendor-independent overview Eur. J. Radiol., 109 (2018), pp. 147-154eng
dcterms.referencesLlorente E.R., Alvarez E.A. conceptos básicos en la tomografía computarizada de tórax Medicina respiratoria, 1 (11) (2018), pp. 23-35eng
dcterms.referencesClark K., Vendt B., Smith K., Freymann J., Kirby J., Koppel P., Moore S., Phillips S., Maffitt D., Pringle M., et al. The cancer imaging archive (TCIA): Maintaining and operating a public information repository J. Digit. Imaging, 26 (6) (2013), pp. 1045-1057eng
dcterms.referencesVera M., Bravo A., Medina R. Description and use of three-dimensional numerical phantoms of cardiac computed tomography images Data, 7 (8) (2022), p. 115eng
dcterms.referencesGore J., Orr J. Image formation by back-projection: A reappraisal Phys. Med. Biol., 24 (4) (1979), p. 793eng
dcterms.referencesGordon R., Bender R., Herman G.T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography J. Theoret. Biol., 29 (3) (1970), pp. 471-481eng
dcterms.referencesLange K., Carson R., et al. EM reconstruction algorithms for emission and transmission tomography J. Comput. Assist. Tomogr., 8 (2) (1984), pp. 306-316eng
dcterms.referencesPereira R.d.O., Luz L.A.d., Chagas D.C., Amorim J.R., Nery-Júnior E.d.J., Alves A.C.B.R., Abreu-Neto F.T.d., Oliveira M.d.C.B., Silva D.R.C., Soares-Júnior J.M., et al. Evaluation of the accuracy of mammography, ultrasound and magnetic resonance imaging in suspect breast lesions Clinics, 75 (2020)eng
dcterms.referencesNIBIB R.d.O. National institute of biomedical imaging and bioengineering (2022) https://www.nibib.nih.gov/ (Accedido en septiembre de 2022)eng
dcterms.referencesSuckling J., Parker J., Dance D., Astley S., Hutt I., Boggis C., Ricketts I., Stamatakis E., Cerneaz N., Kok S., et al. Mammographic image analysis society (mias) database v1. 21 (2015)eng
dcterms.referencesHeath M., Bowyer K., Kopans D., Kegelmeyer P., Moore R., Chang K., Munishkumaran S. Current status of the digital database for screening mammography Digital Mammography, Springer (1998), pp. 457-460eng
dcterms.referencesGowri D.S., Amudha T. A review on mammogram image enhancement techniques for breast cancer detection 2014 International Conference on Intelligent Computing Applications, IEEE (2014), pp. 47-51eng
dcterms.referencesElmoufidi A. Pre-processing algorithms on digital X-ray mammograms 2019 IEEE International Smart Cities Conference, ISC2, IEEE (2019), pp. 87-92eng
dcterms.referencesValverde C.N., Maqueda J.R., Reyes M.J.R., Ruiz I.E., Medina D.G., Jiménez R.P., Rodríguez-Gómez C., del Ojo J.L., Cayuela A., Molano-Casimiro F.J. Magnetic resonance imaging in patients with cardiac implantable electronic devices: A prospective study Magn. Res. Imaging, 91 (2022), pp. 9-15eng
dcterms.referencesMITA C.N. Medical imaging & technology alliance (2022) https://www.medicalimaging.org/about-mita/medical-imaging-primer/ (Accedido en junio de 2022)eng
dcterms.referencesZerhouni E.A., Parish D.M., Rogers W.J., Yang A., Shapiro E.P. Human heart: Tagging with MR imaging–a method for noninvasive assessment of myocardial motion Radiology, 169 (1) (1988), pp. 59-63eng
dcterms.referencesKaramitsos T., Neubauer S. Cardiovascular magnetic resonance imaging Medicine, 50 (6) (2022), pp. 372-378eng
dcterms.referencesJames A.P., Dasarathy B.V. Medical image fusion: A survey of the state of the art Inform. Fusion, 19 (2014), pp. 4-19eng
dcterms.referencesCootney R.W. Ultrasound imaging: Principles and applications in rodent research Ilar J., 42 (3) (2001), pp. 233-247eng
dcterms.referencesCarovac A., Smajlovic F., Junuzovic D. Application of ultrasound in medicine Acta Inform. Medica, 19 (3) (2011), p. 168eng
dcterms.referencesAli M., Magee D., Dasgupta U. Signal processing overview of ultrasound systems for medical imaging SPRAB12, Texas Instrum. Texas, 55 (2008)eng
dcterms.referencesDipu N.M., Shohan S.A., Salam K.A. Brain tumor detection using various deep learning algorithms 2021 International Conference on Science & Contemporary Technologies, ICSCT, IEEE (2021), pp. 1-6eng
dcterms.referencesMenze B., Jakab A., Bauer S., Reyes M., Prastawa M., Van Leemput K. Proceedings of the miccai challenge on multimodal brain tumor image segmentation (brats) 2012 MICCAI Challenge on Multimodal Brain Tumor Image Segmentation, BRATS, MICCAI (2012), p. 77eng
dcterms.referencesNayak D.R., Das D., Dash R., Majhi S., Majhi B. Deep extreme learning machine with leaky rectified linear unit for multiclass classification of pathological brain images Multimedia Tools Appl., 79 (21) (2020), pp. 15381-15396eng
dcterms.referencesSheela Shiney T., Rose R.J. Deep auto encoder based extreme learning system for automatic segmentation of cervical cells IETE J. Res. (2021), pp. 1-21eng
dcterms.referencesGhoneim A., Muhammad G., Hossain M.S. Cervical cancer classification using convolutional neural networks and extreme learning machines Future Gener. Comput. Syst., 102 (2020), pp. 643-649eng
dcterms.referencesPainuli D., Bhardwaj S., et al. Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review Comput. Biol. Med. (2022), Article 105580eng
dcterms.referencesDüntsch I., Gediga G. Indices for rough set approximation and the application to confusion matrices Internat. J. Approx. Reason., 118 (2020), pp. 155-172eng
dcterms.referencesPi P., Lima D. Gray level co-occurrence matrix and extreme learning machine for Covid-19 diagnosis Int. J. Cogn. Comput. Eng., 2 (2021), pp. 93-103eng
dcterms.referencesHuang X., Lei Q., Xie T., Zhang Y., Hu Z., Zhou Q. Deep transfer convolutional neural network and extreme learning machine for lung nodule diagnosis on CT images Knowl.-Based Syst., 204 (2020), Article 106230eng
dcterms.referencesLama R.K., Gwak J., Park J.-S., Lee S.-W. Diagnosis of Alzheimer’s disease based on structural MRI images using a regularized extreme learning machine and PCA features J. Healthcare Eng., 2017 (2017)eng
dcterms.referencesZhu C., Zou B., Zhao R., Cui J., Duan X., Chen Z., Liang Y. Retinal vessel segmentation in colour fundus images using extreme learning machine Comput. Med. Imaging Graph., 55 (2017), pp. 68-77eng
dcterms.referencesKuppili V., Biswas M., Sreekumar A., Suri H.S., Saba L., Edla D.R., Marinhoe R.T., Sanches J.M., Suri J.S. Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization J. Med. Syst., 41 (10) (2017), pp. 1-20eng
dcterms.referencesPunithavathi I.H., Kumar P.G. Severity grading of diabetic retinopathy using extreme learning machine 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing, INCOS, IEEE (2017), pp. 1-6eng
dcterms.referencesLuo Y., Yang B., Xu L., Hao L., Liu J., Yao Y., Vosse F.v.d. Segmentation of the left ventricle in cardiac MRI using a hierarchical extreme learning machine model Int. J. Mach. Learn. Cybern., 9 (10) (2018), pp. 1741-1751eng
dcterms.referencesToprak A. Extreme learning machine (elm)-based classification of benign and malignant cells in breast cancer Med. Sci. Monitor: Int. Med. J. Exper. Clin. Res., 24 (2018), p. 6537eng
dcterms.referencesEshtay M., Faris H., Obeid N. Improving extreme learning machine by competitive swarm optimization and its application for medical diagnosis problems Expert Syst. Appl., 104 (2018), pp. 134-152eng
dcterms.referencesNayak D.R., Dash R., Majhi B., Wang S. Combining extreme learning machine with modified sine cosine algorithm for detection of pathological brain Comput. Electr. Eng., 68 (2018), pp. 366-380eng
dcterms.referencesGumaei A., Hassan M.M., Hassan M.R., Alelaiwi A., Fortino G. A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification IEEE Access, 7 (2019), pp. 36266-36273eng
dcterms.referencesRahmat R.F., Wijaya R.M., Faza S., Nababan E.B., Nadi F., et al. Classification of primary and secondary brain tumor using extreme learning machine 2021 International Conference on Data Science, Artificial Intelligence, and Business Analytics, DATABIA, IEEE (2021), pp. 101-105eng
dcterms.referencesSasank V., Venkateswarlu S. Brain tumor classification using modified kernel based softplus extreme learning machine Multimedia Tools Appl., 80 (9) (2021), pp. 13513-13534eng
dcterms.referencesDevanathan B., Kamarasan M. Automated brain tumor diagnosis using residual network with optimal kernel extreme learning machine 2022 4th International Conference on Smart Systems and Inventive Technology, ICSSIT, IEEE (2022), pp. 860-865eng
dcterms.referencesDhivya S., Nithya A., Abirami T. Mamogram image classification using extreme learning machine Indian J. Sci. Technol., 11 (17) (2018), pp. 1-4eng
dcterms.referencesLahoura V., Singh H., Aggarwal A., Sharma B., Mohammed M.A., Damaševičius R., Kadry S., Cengiz K. Cloud computing-based framework for breast cancer diagnosis using extreme learning machine Diagnostics, 11 (2) (2021), p. 241eng
dcterms.referencesAslan M.F., Ceylan M., Durdu A. Segmentation of retinal blood vessel using gabor filter and extreme learning machines 2018 International Conference on Artificial Intelligence and Data Processing, IDAP, IEEE (2018), pp. 1-5eng
dcterms.referencesHuang H., Ma H., van Triest H.J., Wei Y., Qian W. Automatic detection of neovascularization in retinal images using extreme learning machine Neurocomputing, 277 (2018), pp. 218-227eng
dcterms.referencesKrishna B., Gnanasekaran T. Retinal vessel extraction framework using modified adaboost extreme learning machine CMC-Comput. Mater. Continua, 60 (3) (2019), pp. 855-869eng
dcterms.referencesNazir T., Irtaza A., Shabbir Z., Javed A., Akram U., Mahmood M.T. Diabetic retinopathy detection through novel tetragonal local octa patterns and extreme learning machines Artif. Intell. Med., 99 (2019), Article 101695eng
dcterms.referencesShyla N.J., Emmanuel W.S. Automated classification of glaucoma using DWT and HOG features with extreme learning machine 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks, ICICV, IEEE (2021), pp. 725-730eng
dcterms.referencesPappu G.P., Biswal B., Gandhi T.K., Sai Ram M.V.S. Classification of neovascularization on retinal images using extreme learning machine Int. J. Imaging Syst. Technol., 31 (3) (2021), pp. 1536-1550eng
dcterms.referencesSousa L.S., Rebouças Filho P.P., Bezerra F.N., Neto A.R.R., Oliveira S.A. An improved retinal blood vessel detection system using an extreme learning machine Int. J. E-Health Med. Commun. (IJEHMC), 10 (3) (2019), pp. 39-55eng
dcterms.referencesGeorge J., et al. Extreme learning machine based classification for detecting micro-calcification in mammogram using multi scale features 2019 International Conference on Computer Communication and Informatics, ICCCI, IEEE (2019), pp. 1-7eng
dcterms.referencesSharifmoghadam M., Jazayeriy H. Breast cancer classification using AdaBoost-extreme learning machine 2019 5th Iranian Conference on Signal Processing and Intelligent Systems, ICSPIS, IEEE (2019), pp. 1-5eng
dcterms.referencesMohanty F., Rup S., Dash B. Automated diagnosis of breast cancer using parameter optimized kernel extreme learning machine Biomed. Signal Process. Control, 62 (2020), Article 102108eng
dcterms.referencesBacha S., Ben Abdellafou K., Aljuhani A., Taouali O., Liouane N. Early detection of digital mammogram using kernel extreme learning machine Concurr. Comput.: Pract. Exper. (2022), Article e6971eng
dcterms.referencesTandungan S., Nurtanio I., et al. Comparison of accuracy in extreme learning machine based on hidden node structure variation for lung cancer classification IOP Conf. Ser.: Mater. Sci. Eng., 676 (1) (2019), Article 012014eng
dcterms.referencesSharif M., Amin J., Raza M., Anjum M.A., Afzal H., Shad S.A. Brain tumor detection based on extreme learning Neural Comput. Appl., 32 (20) (2020), pp. 15975-15987eng
dcterms.referencesHari A., Vanamala H., Sanjana N., Jain R., et al. An extreme learning machine based approach to detect the Alzheimer’s disease 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies, GUCON, IEEE (2021), pp. 1-6eng
dcterms.referencesGovindarajan S., Swaminathan R. Extreme learning machine based differentiation of pulmonary tuberculosis in chest radiographs using integrated local feature descriptors Comput. Methods Programs Biomed., 204 (2021), Article 106058eng
dcterms.referencesKhan M.A., Majid A., Akram T., Hussain N., Nam Y., Kadry S., Wang S.-H., Alhaisoni M. Classification of COVID-19 CT scans via extreme learning machine CMC-Comput. Mater. Continua (2021)eng
dcterms.referencesSuksmono A.B., Rulaningtyas R., Triyana K., Sitanggang I.S., Rahaju A.S., Kusumastuti E.H., Nabila A.N.L., Maharani R.N., Ismayanto D.F., Katherine F.J., et al. Classification of adeno carcinoma, high squamous intraephithelial lesion, and squamous cell Carcinoma in pap smear images based on extreme learning machine Comput. Methods Biomech. Biomed. Eng.: Imaging Visual., 9 (2) (2021), pp. 115-120eng
dcterms.referencesAl-Hammouri S., Fora M., Ibbini M. Extreme learning machine for melanoma classification 2021 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology, JEEIT, IEEE (2021), pp. 114-119eng
dcterms.referencesElsayed N., ElSayed Z., Ozer M. Early stage diabetes prediction via extreme learning machine SoutheastCon 2022, IEEE (2022), pp. 374-379eng
dcterms.referencesHao R., Qiang Z., Qiang Y., Ge L., Zhao J. Automatic diagnosis of pulmonary nodules using a hierarchical extreme learning machine model Int. J. Bio-Inspired Comput., 11 (3) (2018), pp. 192-201eng
dcterms.referencesLingappa H., Suresh H., Manvi S. Medical image segmentation based on extreme learning machine algorithm in kernel fuzzy c-means using artificial bee colony method Int. J. Intell. Eng. Syst, 11 (2018), pp. 128-136eng
dcterms.referencesMohan N.J., Murugan R., Goel T., Roy P. Fast and robust exudate detection in retinal fundus images using extreme learning machine autoencoders and modified KAZE features J. Digit. Imaging (2022), pp. 1-18eng
dcterms.referencesWang Z., Xin J., Sun P., Lin Z., Yao Y., Gao X. Improved lung nodule diagnosis accuracy using lung CT images with uncertain class Comput. Methods Programs Biomed., 162 (2018), pp. 197-209eng
dcterms.referencesPashaei A., Sajedi H., Jazayeri N. Brain tumor classification via convolutional neural network and extreme learning machines 2018 8th International Conference on Computer and Knowledge Engineering, ICCKE, IEEE (2018), pp. 314-319eng
dcterms.referencesShe Q., Hu B., Gan H., Fan Y., Nguyen T., Potter T., Zhang Y. Safe semi-supervised extreme learning machine for EEG signal classification IEEE Access, 6 (2018), pp. 49399-49407eng
dcterms.referencesShe Q., Hu B., Luo Z., Nguyen T., Zhang Y. A hierarchical semi-supervised extreme learning machine method for EEG recognition Med. Biol. Eng. Comput., 57 (1) (2019), pp. 147-157eng
dcterms.referencesRonoud S., Asadi S. An evolutionary deep belief network extreme learning-based for breast cancer diagnosis Soft Comput., 23 (24) (2019), pp. 13139-13159eng
dcterms.referencesVijendran S., Dubey R. Deep online sequential extreme learning machines and its application in pneumonia detection 2019 8th International Conference on Industrial Technology and Management, ICITM, IEEE (2019), pp. 311-316eng
dcterms.referencesFei X., Zhou W., Shen L., Chang C., Zhou S., Shi J. Ultrasound-based diagnosis of breast tumor with parameter transfer multilayer kernel extreme learning machine 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, IEEE (2019), pp. 933-936eng
dcterms.referencesZhou W., Qiao S., Yi Y., Han N., Chen Y., Lei G. Automatic optic disc detection using low-rank representation based semi-supervised extreme learning machine Int. J. Mach. Learn. Cybern., 11 (1) (2020), pp. 55-69eng
dcterms.referencesWang P., Song Q., Li Y., Lv S., Wang J., Li L., Zhang H. Cross-task extreme learning machine for breast cancer image classification with deep convolutional features Biomed. Signal Process. Control, 57 (2020), Article 101789eng
dcterms.referencesSaxena S., Shukla S., Gyanchandani M. Breast cancer histopathology image classification using kernelized weighted extreme learning machine Int. J. Imaging Syst. Technol., 31 (1) (2021), pp. 168-179eng
dcterms.referencesSR S.C., Rajaguru H. Deep features with improved extreme learning machine for breast cancer classification 2021 8th International Conference on Soft Computing & Machine Intelligence, ISCMI, IEEE (2021), pp. 237-241eng
dcterms.referencesTurkoglu M. COVID-19 detection system using chest CT images and multiple kernels-extreme learning machine based on deep neural network IRBM, 42 (4) (2021), pp. 207-214eng
dcterms.referencesMurugan R., Goel T. E-DiCoNet: Extreme learning machine based classifier for diagnosis of COVID-19 using deep convolutional network J. Ambient Intell. Humaniz. Comput., 12 (9) (2021), pp. 8887-8898eng
dcterms.referencesAfza F., Sharif M., Khan M.A., Tariq U., Yong H.-S., Cha J. Multiclass skin lesion classification using hybrid deep features selection and extreme learning machine Sensors, 22 (3) (2022), p. 799eng
dcterms.referencesLuo X., Li X., Wang Z., Liang J. Discriminant autoencoder for feature extraction in fault diagnosis Chemometr. Intell. Lab. Syst., 192 (2019), Article 103814, 10.1016/j.chemolab.2019.103814eng
dcterms.referencesAlharbi A., Alghahtani M. Using genetic algorithm and ELM neural networks for feature extraction and classification of type 2-diabetes mellitus Appl. Artif. Intell., 33 (4) (2019), pp. 311-328eng
dcterms.referencesDoğantekin A., Özyurt F., Avcı E., Koc M. A novel approach for liver image classification: PH-C-ELM Measurement, 137 (2019), pp. 332-338eng
dcterms.referencesKhan M.A., Akram T., Zhang Y.-D., Alhaisoni M., Al Hejaili A., Shaban K.A., Tariq U., Zayyan M.H. SkinNet-ENDO: Multiclass skin lesion recognition using deep neural network and entropy-normal distribution optimization algorithm with ELM Int. J. Imaging Syst. Technol. (2023)eng
dcterms.referencesPrates M.O. Spatial extreme learning machines: An application on prediction of disease counts Statist. Methods Med. Res., 28 (9) (2019), pp. 2583-2594eng
dcterms.referencesJiang M., Pan Z., Li N. Multi-label text categorization using L21-norm minimization extreme learning machine Neurocomputing, 261 (2017), pp. 4-10eng
dcterms.referencesLi R., Wang X., Song Y., Lei L. Hierarchical extreme learning machine with L21-norm loss and regularization Int. J. Mach. Learn. Cybern., 12 (5) (2021), pp. 1297-1310eng
dcterms.referencesLi R., Wang X., Lei L., Song Y. { }-Norm based loss function and regularization extreme learning machine IEEE Access, 7 (2018), pp. 6575-6586eng
dcterms.referencesPreeti R., Bala R., Dagar A., Singh R.P. A novel online sequential extreme learning machine with L 2, 1-norm regularization for prediction problems Appl. Intell., 51 (2021), pp. 1669-1689eng
dcterms.referencesXiao W., Zhang J., Li Y., Zhang S., Yang W. Class-specific cost regulation extreme learning machine for imbalanced classification Neurocomputing, 261 (2017), pp. 70-82eng
dcterms.referencesZhang L., Yang H., Jiang Z. Imbalanced biomedical data classification using self-adaptive multilayer ELM combined with dynamic GAN Biomed. Eng. Online, 17 (1) (2018), pp. 1-21eng
dcterms.referencesQin J., Wang C., Zou Q., Sun Y., Chen B. Active learning with extreme learning machine for online imbalanced multiclass classification Knowl.-Based Syst., 231 (2021), Article 107385eng
dcterms.referencesGuo Y., Jiao B., Tan Y., Zhang P., Tang F. A transfer weighted extreme learning machine for imbalanced classification Int. J. Intell. Syst., 37 (10) (2022), pp. 7685-7705eng
dcterms.referencesPradhan A., Mishra D., Das K., Panda G., Kumar S., Zymbler M. On the classification of MR images using “ELM-SSA” coated hybrid model Mathematics, 9 (17) (2021), p. 2095eng
dcterms.referencesZhang J., Zhao Y., Shone F., Li Z., Frangi A.F., Xie S.Q., Zhang Z.-Q. Physics-informed deep learning for musculoskeletal modelling: Predicting muscle forces and joint kinematics from surface EMG IEEE Trans. Neural Syst. Rehabil. Eng. (2022)eng
dcterms.referencesDing S., Zhang N., Xu X., Guo L., Zhang J. Deep extreme learning machine and its application in EEG classification Math. Probl. Eng., 2015 (2015)eng
dcterms.referencesLi L., Fan Y., Tse M., Lin K.-Y. A review of applications in federated learning Comput. Ind. Eng., 149 (2020), Article 106854eng
dcterms.referencesWang R., Shi R., Hu X., Shen C. Remaining useful life prediction of rolling bearings based on multiscale convolutional neural network with integrated dilated convolution blocks Shock Vib., 2021 (2021)eng
dcterms.referencesLi H., Zhao W., Zhang Y., Zio E. Remaining useful life prediction using multi-scale deep convolutional neural network Appl. Soft Comput., 89 (2020), Article 106113eng
dcterms.referencesZhou S., Liu X., Liu Q., Wang S., Zhu C., Yin J. Random Fourier extreme learning machine with -norm regularization Neurocomputing, 174 (2016), pp. 143-153eng
dcterms.referencesLuo X., Chang X., Ban X. Regression and classification using extreme learning machine based on norm and norm Neurocomputing, 174 (2016), pp. 179-186eng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
3.24 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones