Profiling analysis of circulating microRNA in peripheral blood of patients with class IV lupus nephritis
dc.contributor.author | Navarro-Quiroz, Elkin | |
dc.contributor.author | Pacheco-Lugo, Lisandro | |
dc.contributor.author | Navarro-Quiroz, Roberto | |
dc.contributor.author | Lorenzi, Hernan | |
dc.contributor.author | España-Puccini, Pierine | |
dc.contributor.author | DõÂaz-Olmos, Yirys | |
dc.contributor.author | Almendrales, Lisneth | |
dc.contributor.author | Olave, Valeria | |
dc.contributor.author | Gonzalez-Torres, Henry | |
dc.contributor.author | Diaz-Perez, Anderson | |
dc.contributor.author | Dominguez, Alex | |
dc.contributor.author | Iglesias, Antonio | |
dc.contributor.author | García, Raul | |
dc.contributor.author | Aroca-Martinez, Gustavo | |
dc.date.accessioned | 2018-02-05T20:25:44Z | |
dc.date.available | 2018-02-05T20:25:44Z | |
dc.date.issued | 2017-11-14 | |
dc.description.abstract | Renal involvement in Systemic Lupus Erythematous (SLE) patients is one of the leading causes of morbidity and a significant contributor to mortality. It's estimated that nearly 50% of SLE individuals develop kidney disease in the first year of the diagnosis. Class IV lupus nephritis (LN-IV) is the class of lupus nephritis most common in Colombian patients with SLE. Altered miRNAs expression levels have been reported in human autoimmune diseases including lupus. Variations in the expression pattern of peripheral blood circulating miRNAs specific for this class of lupus nephritis could be correlated with the pathophysiological status of this group of individuals. The aim of this study was to evaluate the relative abundance of circulating microRNAs in peripheral blood from Colombian patients with LN-IV. Circulating miRNAs in plasma of patients with diagnosis of LN-IV were compared with individuals without renal involvement (LNN group) and healthy individuals (CTL group). Total RNA was extracted from 10 ml of venous blood and subsequently sequenced using Illumina. The sequences were processed and these were analyzed using miRBase and Ensembl databases. Differential gene expression analysis was carried out with edgeR and functional analysis were done with DIANA-miRPath. Analysis was carried out using as variables of selection fold change ( 2 o -2) and false discovery rate (0.05). We identified 24 circulating microRNAs with differential abundance between LN-IV and CTL groups, fourteen of these microRNAs are described for the first time to lupus nephritis (hsa-miR-589-3p, hsa-miR-1260b, hsa-miR-4511, hsa-miR- 485-5p, hsa-miR-584-5p, hsa-miR-543, hsa-miR-153-3p, hsa-miR-6087, hsa-miR-3942-5p, hsa-miR-7977, hsa-miR-323b-3p, hsa-miR-4732-3p and hsa-miR-6741-3p). These changes in the abundance of miRNAs could be interpreted as alterations in the miRNAs-mRNA regulatory network in the pathogenesis of LN, preceding the clinical onset of the disease. The findings thus contribute to understanding the disease process and are likely to pave the way towards identifying disease biomarkers for early diagnosis of LN. | spa |
dc.identifier.issn | 19326203 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12442/1600 | |
dc.language.iso | eng | spa |
dc.publisher | Xu-jie Zhou, Peking University First Hospital, CHINA | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional | eng |
dc.source | PLOS ONE | eng |
dc.source | Vol. 12 (2017) | |
dc.source.uri | https://doi.org/10.1371/journal. | |
dc.subject | Lupus | spa |
dc.title | Profiling analysis of circulating microRNA in peripheral blood of patients with class IV lupus nephritis | eng |
dc.type | article | spa |
dcterms.references | Talaat RM, Mohamed SF, Bassyouni IH, Raouf AA. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine. 2015; 72: 146±153. https://doi.org/10.1016/j.cyto.2014.12.027 PMID: 25647269 | eng |
dcterms.references | Lech M, Anders H-J. The pathogenesis of lupus nephritis. J Am Soc Nephrol. 2013; 24: 1357±66. https://doi.org/10.1681/ASN.2013010026 PMID: 23929771 | eng |
dcterms.references | Celhar T, Hopkins R, Thornhill SI, De Magalhaes R, Hwang S-H, Lee H-Y, et al. RNA sensing by conventional dendritic cells is central to the development of lupus nephritis. Proc Natl Acad Sci U S A. National Academy of Sciences; 2015; 112: E6195±204. https://doi.org/10.1073/pnas.1507052112 PMID: 26512111 | eng |
dcterms.references | Davidson A. What is damaging the kidney in lupus nephritis? Nat Rev Rheumatol. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2015; 12: 143±153. https://doi. org/10.1038/nrrheum.2015.159 PMID: 26581344 | eng |
dcterms.references | Navarro-Quiroz E, Pacheco-Lugo L, Lorenzi H, DõÂaz-Olmos Y, Almendrales L, Rico E, et al. High- Throughput Sequencing Reveals Circulating miRNAs as Potential Biomarkers of Kidney Damage in Patients with Systemic Lupus Erythematosus. Zhou X, editor. PLoS One. 2016; 11: e0166202. https:// doi.org/10.1371/journal.pone.0166202 PMID: 27835701 | eng |
dcterms.references | Pan Q, Li Y, Ye L, Deng Z, Li L, Feng Y, et al. Geographical distribution, a risk factor for the incidence of lupus nephritis in China. BMC Nephrol. BioMed Central; 2014; 15: 67. https://doi.org/10.1186/1471- 2369-15-67 PMID: 24885458 | eng |
dcterms.references | Contreras G, Lenz O, Pardo V, Borja E, Cely C, Iqbal K, et al. Outcomes in African Americans and Hispanics with lupus nephritis. Kidney Int. Igaku-Shoin, New York; 2006; 69: 1846±1851. https://doi.org/10. 1038/sj.ki.5000243 PMID: 16598205 | eng |
dcterms.references | Arroyo C AR, GarcõÂa R, Aroca G, Cadena A, Acosta J. CorrelacioÂn clõÂnica e inmunohistopatoloÂgica de la nefropatõÂa luÂpica en un centro de referencia del Caribe colombiano durante los años 2012 a 2013. Rev Colomb Nefrol. 2014; 1: 57±64. https://doi.org/10.22265/acnef.1.2.176 | eng |
dcterms.references | Haøadyj E, Cervera R. Do we still need renal biopsy in lupus nephritis? Reumatologia. Termedia Publishing; 2016; 54: 61±6. https://doi.org/10.5114/reum.2016.60214 PMID: 27407281 | eng |
dcterms.references | Ardekani AM, Naeini MM. The Role of MicroRNAs in Human Diseases. Avicenna J Med Biotechnol. Avicenna Research Institute; 2010; 2: 161±79. Available: http://www.ncbi.nlm.nih.gov/pubmed/23407304 PMID: 23407304 | eng |
dcterms.references | Ajit SK. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors (Basel). 2012; 12: 3359±69. https://doi.org/10.3390/s120303359 PMID: 22737013 | eng |
dcterms.references | Schena FP, Sallustio F, Serino G. microRNAs in glomerular diseases from pathophysiology to potential treatment target. Clin Sci (Lond). Portland Press Limited; 2015; 128: 775±88. https://doi.org/10.1042/ CS20140733 PMID: 25881669 | eng |
dcterms.references | Liu Y, Anders H-J. Lupus nephritis: from pathogenesis to targets for biologic treatment. Nephron Clin Pract. 2014; 128: 224±31. https://doi.org/10.1159/000368581 PMID: 25401461 | eng |
dcterms.references | Gordon C, Ranges GE, Greenspan JS, Wofsy D. Chronic therapy with recombinant tumor necrosis factor- alpha in autoimmune NZB/NZW F1 mice. Clin Immunol Immunopathol. 52: 421±434. PMID: 2758698 | eng |
dcterms.references | Petri M, Orbai A-M, AlarcoÂn GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012; 64: 2677±2686. https://doi.org/10.1002/art.34473 PMID: 22553077 | eng |
dcterms.references | Weening JJ, D'Agati VD, Schwartz MM, Seshan S V., Alpers CE, Appel GB, et al. The Classification of Glomerulonephritis in Systemic Lupus Erythematosus Revisited. J Am Soc Nephrol. American Society of Nephrology; 2004; 15: 241±250. https://doi.org/10.1097/01.ASN.0000108969.21691.5D PMID: 14747370 | eng |
dcterms.references | Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26: 139±40. https://doi.org/10.1093/ bioinformatics/btp616 PMID: 19910308 | eng |
dcterms.references | Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing [Internet]. Journal of the Royal Statistical Society. Series B (Methodological). WileyRoyal Statistical Society; 1995. pp. 289±300. https://doi.org/10.2307/2346101 | eng |
dcterms.references | Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015; 43: W460±6. https://doi.org/10.1093/nar/gkv403 PMID: 25977294 | eng |
dcterms.references | Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009; 37: D98±104. https://doi.org/ 10.1093/nar/gkn714 PMID: 18927107 | eng |
dcterms.references | Ruepp A, Kowarsch A, Schmidl D, Bruggenthin F, Brauner B, Dunger I, et al. PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol. BioMed Central; 2010; 11: R6. https://doi.org/10.1186/gb-2010-11-1-r6 PMID: 20089154 | eng |
dcterms.references | Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, et al. HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res. Oxford University Press; 2014; 42: D1070±4. https://doi.org/10.1093/nar/gkt1023 PMID: 24194601 | eng |
dcterms.references | Wang J, Lu M, Qiu C, Cui Q. TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res. Oxford University Press; 2010; 38: D119±22. https://doi.org/10.1093/nar/gkp803 PMID: 19786497 | eng |
dcterms.references | Chien C-H, Sun Y-M, Chang W-C, Chiang-Hsieh P-Y, Lee T-Y, Tsai W-C, et al. Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res. 2011; 39: 9345±9356. https://doi.org/10.1093/nar/gkr604 PMID: 21821656 | eng |
dcterms.references | Kutmon M, Kelder T, Mandaviya P, Evelo CTA, Coort SL. CyTargetLinker: A Cytoscape App to Integrate Regulatory Interactions in Network Analysis. Vera J, editor. PLoS One. Public Library of Science; 2013; 8: e82160. https://doi.org/10.1371/journal.pone.0082160 PMID: 24340000 | eng |
dcterms.references | Te JL, Dozmorov IM, Guthridge JM, Nguyen KL, Cavett JW, Kelly JA, et al. Identification of unique microRNA signature associated with lupus nephritis. PLoS One. 2010; 5: e10344. https://doi.org/10. 1371/journal.pone.0010344 PMID: 20485490 | eng |
dcterms.references | Lu M-C, Lai N-S, Chen H-C, Yu H-C, Huang K-Y, Tung C-H, et al. Decreased microRNA(miR)-145 and increased miR-224 expression in T cells from patients with systemic lupus erythematosus involved in lupus immunopathogenesis. Clin Exp Immunol. Wiley-Blackwell; 2013; 171: 91±9. https://doi.org/10. 1111/j.1365-2249.2012.04676.x PMID: 23199328 | eng |
dcterms.references | Liu D, Zhang N, Zhang X, Qin M, Dong Y, Jin L. MiR-410 Down-Regulates the Expression of Interleukin- 10 by Targeting <b><i>STAT3</i></b> in the Pathogenesis of Systemic Lupus Erythematosus. Cell Physiol Biochem. 2016; 39: 303±315. https://doi.org/10.1159/000445625 PMID: 27351906 | eng |
dcterms.references | Te JL, Dozmorov IM, Guthridge JM, Nguyen KL, Cavett JW, Kelly JA, et al. Identification of unique microRNA signature associated with lupus nephritis. PLoS One. Public Library of Science; 2010; 5: e10344. https://doi.org/10.1371/journal.pone.0010344 PMID: 20485490 | eng |
dcterms.references | Carlsen AL, Schetter AJ, Nielsen CT, Lood C, Knudsen S, Voss A, et al. Circulating MicroRNA Expression Profiles Associated With Systemic Lupus Erythematosus. Arthritis Rheum. Wiley Subscription Services, Inc., A Wiley Company; 2013; 65: 1324±1334. https://doi.org/10.1002/art.37890 PMID: 23401079 | eng |
dcterms.references | Choi EW, Lee M, Song JW, Shin IS, Kim SJ. Mesenchymal stem cell transplantation can restore lupus disease-associated miRNA expression and Th1/Th2 ratios in a murine model of SLE. Sci Rep. 2016; 6: 38237. https://doi.org/10.1038/srep38237 PMID: 27924862 | eng |
dcterms.references | Hsu S-D, Lin F-M, Wu W-Y, Liang C, Huang W-C, Chan W-L, et al. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. Oxford University Press; 2011; 39: D163±9. https://doi.org/10.1093/nar/gkq1107 PMID: 21071411 | eng |
dcterms.references | Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. American Society for Biochemistry and Molecular Biology; 2008; 283: 14910±4. https://doi.org/ 10.1074/jbc.C800074200 PMID: 18411277 | eng |
dcterms.references | Kawasaki Y, Sato R, Akiyama T. Mutated APC and Asef are involved in the migration of colorectal tumour cells. Nat Cell Biol. Nature Publishing Group; 2003; 5: 211±215. https://doi.org/10.1038/ncb937 PMID: 12598901 | eng |
dcterms.references | Whisnant AW, Bogerd HP, Flores O, Ho P, Powers JG, Sharova N, et al. In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. MBio. 2013; 4: e000193. https://doi.org/10.1128/mBio.00193-13 PMID: 23592263 | eng |
dcterms.references | Choudhuri K, Llodra J, Roth EW, Tsai J, Gordo S, Wucherpfennig KW, et al. Polarized release of T-cellreceptor- enriched microvesicles at the immunological synapse. Nature. 2014; 507: 118±23. https://doi. org/10.1038/nature12951 PMID: 24487619 | eng |
dcterms.references | Saito Y, Saito H. Role of CTCF in the regulation of microRNA expression. Front Genet. 2012; 3: 186. https://doi.org/10.3389/fgene.2012.00186 PMID: 23056006 | eng |
dcterms.references | de Souza Rocha Simonini P, Breiling A, Gupta N, Malekpour M, Youns M, Omranipour R, et al. Epigenetically Deregulated microRNA-375 Is Involved in a Positive Feedback Loop with Estrogen Receptor in Breast Cancer Cells. Cancer Res. 2010; 70: 9175±9184. https://doi.org/10.1158/0008-5472.CAN-10- 1318 PMID: 20978187 | eng |
dcterms.references | Kameswaran V, Bramswig NC, McKenna LB, Penn M, Schug J, Hand NJ, et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab. 2014; 19: 135±45. https://doi.org/10.1016/j.cmet.2013.11.016 PMID: 24374217 | eng |
dcterms.references | Palm T, Hemmer K, Winter J, Fricke IB, Tarbashevich K, Sadeghi Shakib F, et al. A systemic transcriptome analysis reveals the regulation of neural stem cell maintenance by an E2F1±miRNA feedback loop. Nucleic Acids Res. Oxford University Press; 2013; 41: 3699±3712. https://doi.org/10.1093/nar/ gkt070 PMID: 23396440 | eng |
dcterms.references | Fang X, Ye D. E2F1: a potential therapeutic target for systematic lupus erythematosus. Rheumatol Int. 2014; 34: 1175±1176. https://doi.org/10.1007/s00296-013-2873-2 PMID: 24071937 | eng |
dcterms.references | Feng B, Dong TT, Wang LL, Zhou HM, Zhao HC, Dong F, et al. Colorectal cancer migration and invasion initiated by microRNA-106a. PLoS One. Public Library of Science; 2012; 7: e43452. https://doi.org/ 10.1371/journal.pone.0043452 PMID: 22912877 | eng |
dcterms.references | Prud'homme GJ, Piccirillo CA. The Inhibitory Effects of Transforming Growth Factor-Beta-1 (TGF-β1) in Autoimmune Diseases. J Autoimmun. 2000; 14: 23±42. https://doi.org/10.1006/jaut.1999.0339 PMID: 10648114 | eng |
dcterms.references | Hedrich CM, Rauen T, Apostolidis SA, Grammatikos AP, Rodriguez Rodriguez N, Ioannidis C, et al. Stat3 promotes IL-10 expression in lupus T cells through trans-activation and chromatin remodeling. Proc Natl Acad Sci U S A. National Academy of Sciences; 2014; 111: 13457±62. https://doi.org/10. 1073/pnas.1408023111 PMID: 25187566 | eng |
dcterms.references | Karginov F V, Hannon GJ. Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. Genes Dev. 2013; 27: 1624±32. https:// doi.org/10.1101/gad.215939.113 PMID: 23824327 | eng |
dcterms.references | Lu R, Ji Z, Li X, Zhai Q, Zhao C, Jiang Z, et al. miR-145 functions as tumor suppressor and targets two oncogenes, ANGPT2 and NEDD9, in renal cell carcinoma. J Cancer Res Clin Oncol. 2014; 140: 387± 97. https://doi.org/10.1007/s00432-013-1577-z PMID: 24384875 | eng |
dcterms.references | Edwards LJ, Mizui M, Kyttaris V. Signal transducer and activator of transcription (STAT) 3 inhibition delays the onset of lupus nephritis in MRL/lpr mice. Clin Immunol. 2015; 158: 221±230. https://doi.org/ 10.1016/j.clim.2015.04.004 PMID: 25869298 | eng |
dcterms.references | Kameswaran V, Bramswig NC, McKenna LB, Penn M, Schug J, Hand NJ, et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab. Elsevier; 2014; 19: 135± 45. https://doi.org/10.1016/j.cmet.2013.11.016 PMID: 24374217 | eng |
dcterms.references | Helwak A, Kudla G, Dudnakova T, Tollervey D, Altschul SF, Gish W, et al. Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding. Cell. Elsevier; 2013; 153: 654±665. https://doi.org/10.1016/j.cell.2013.03.043 PMID: 23622248 | eng |
dcterms.references | Balakrishnan I, Yang X, Brown J, Ramakrishnan A, Torok-Storb B, Kabos P, et al. Genome-wide analysis of miRNA-mRNA interactions in marrow stromal cells. Stem Cells. 2014; 32: 662±73. https://doi.org/ 10.1002/stem.1531 PMID: 24038734 | eng |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- PDF.pdf
- Tamaño:
- 1.51 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Formato Pdf texto completo
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: