Profiling analysis of circulating microRNA in peripheral blood of patients with class IV lupus nephritis

dc.contributor.authorNavarro-Quiroz, Elkin
dc.contributor.authorPacheco-Lugo, Lisandro
dc.contributor.authorNavarro-Quiroz, Roberto
dc.contributor.authorLorenzi, Hernan
dc.contributor.authorEspaña-Puccini, Pierine
dc.contributor.authorDõÂaz-Olmos, Yirys
dc.contributor.authorAlmendrales, Lisneth
dc.contributor.authorOlave, Valeria
dc.contributor.authorGonzalez-Torres, Henry
dc.contributor.authorDiaz-Perez, Anderson
dc.contributor.authorDominguez, Alex
dc.contributor.authorIglesias, Antonio
dc.contributor.authorGarcía, Raul
dc.contributor.authorAroca-Martinez, Gustavo
dc.date.accessioned2018-02-05T20:25:44Z
dc.date.available2018-02-05T20:25:44Z
dc.date.issued2017-11-14
dc.description.abstractRenal involvement in Systemic Lupus Erythematous (SLE) patients is one of the leading causes of morbidity and a significant contributor to mortality. It's estimated that nearly 50% of SLE individuals develop kidney disease in the first year of the diagnosis. Class IV lupus nephritis (LN-IV) is the class of lupus nephritis most common in Colombian patients with SLE. Altered miRNAs expression levels have been reported in human autoimmune diseases including lupus. Variations in the expression pattern of peripheral blood circulating miRNAs specific for this class of lupus nephritis could be correlated with the pathophysiological status of this group of individuals. The aim of this study was to evaluate the relative abundance of circulating microRNAs in peripheral blood from Colombian patients with LN-IV. Circulating miRNAs in plasma of patients with diagnosis of LN-IV were compared with individuals without renal involvement (LNN group) and healthy individuals (CTL group). Total RNA was extracted from 10 ml of venous blood and subsequently sequenced using Illumina. The sequences were processed and these were analyzed using miRBase and Ensembl databases. Differential gene expression analysis was carried out with edgeR and functional analysis were done with DIANA-miRPath. Analysis was carried out using as variables of selection fold change ( 2 o -2) and false discovery rate (0.05). We identified 24 circulating microRNAs with differential abundance between LN-IV and CTL groups, fourteen of these microRNAs are described for the first time to lupus nephritis (hsa-miR-589-3p, hsa-miR-1260b, hsa-miR-4511, hsa-miR- 485-5p, hsa-miR-584-5p, hsa-miR-543, hsa-miR-153-3p, hsa-miR-6087, hsa-miR-3942-5p, hsa-miR-7977, hsa-miR-323b-3p, hsa-miR-4732-3p and hsa-miR-6741-3p). These changes in the abundance of miRNAs could be interpreted as alterations in the miRNAs-mRNA regulatory network in the pathogenesis of LN, preceding the clinical onset of the disease. The findings thus contribute to understanding the disease process and are likely to pave the way towards identifying disease biomarkers for early diagnosis of LN.spa
dc.identifier.issn19326203
dc.identifier.urihttp://hdl.handle.net/20.500.12442/1600
dc.language.isoengspa
dc.publisherXu-jie Zhou, Peking University First Hospital, CHINAeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenselicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionaleng
dc.sourcePLOS ONEeng
dc.sourceVol. 12 (2017)
dc.source.urihttps://doi.org/10.1371/journal.
dc.subjectLupusspa
dc.titleProfiling analysis of circulating microRNA in peripheral blood of patients with class IV lupus nephritiseng
dc.typearticlespa
dcterms.referencesTalaat RM, Mohamed SF, Bassyouni IH, Raouf AA. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine. 2015; 72: 146±153. https://doi.org/10.1016/j.cyto.2014.12.027 PMID: 25647269eng
dcterms.referencesLech M, Anders H-J. The pathogenesis of lupus nephritis. J Am Soc Nephrol. 2013; 24: 1357±66. https://doi.org/10.1681/ASN.2013010026 PMID: 23929771eng
dcterms.referencesCelhar T, Hopkins R, Thornhill SI, De Magalhaes R, Hwang S-H, Lee H-Y, et al. RNA sensing by conventional dendritic cells is central to the development of lupus nephritis. Proc Natl Acad Sci U S A. National Academy of Sciences; 2015; 112: E6195±204. https://doi.org/10.1073/pnas.1507052112 PMID: 26512111eng
dcterms.referencesDavidson A. What is damaging the kidney in lupus nephritis? Nat Rev Rheumatol. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2015; 12: 143±153. https://doi. org/10.1038/nrrheum.2015.159 PMID: 26581344eng
dcterms.referencesNavarro-Quiroz E, Pacheco-Lugo L, Lorenzi H, DõÂaz-Olmos Y, Almendrales L, Rico E, et al. High- Throughput Sequencing Reveals Circulating miRNAs as Potential Biomarkers of Kidney Damage in Patients with Systemic Lupus Erythematosus. Zhou X, editor. PLoS One. 2016; 11: e0166202. https:// doi.org/10.1371/journal.pone.0166202 PMID: 27835701eng
dcterms.referencesPan Q, Li Y, Ye L, Deng Z, Li L, Feng Y, et al. Geographical distribution, a risk factor for the incidence of lupus nephritis in China. BMC Nephrol. BioMed Central; 2014; 15: 67. https://doi.org/10.1186/1471- 2369-15-67 PMID: 24885458eng
dcterms.referencesContreras G, Lenz O, Pardo V, Borja E, Cely C, Iqbal K, et al. Outcomes in African Americans and Hispanics with lupus nephritis. Kidney Int. Igaku-Shoin, New York; 2006; 69: 1846±1851. https://doi.org/10. 1038/sj.ki.5000243 PMID: 16598205eng
dcterms.referencesArroyo C AR, GarcõÂa R, Aroca G, Cadena A, Acosta J. CorrelacioÂn clõÂnica e inmunohistopatoloÂgica de la nefropatõÂa luÂpica en un centro de referencia del Caribe colombiano durante los años 2012 a 2013. Rev Colomb Nefrol. 2014; 1: 57±64. https://doi.org/10.22265/acnef.1.2.176eng
dcterms.referencesHaøadyj E, Cervera R. Do we still need renal biopsy in lupus nephritis? Reumatologia. Termedia Publishing; 2016; 54: 61±6. https://doi.org/10.5114/reum.2016.60214 PMID: 27407281eng
dcterms.referencesArdekani AM, Naeini MM. The Role of MicroRNAs in Human Diseases. Avicenna J Med Biotechnol. Avicenna Research Institute; 2010; 2: 161±79. Available: http://www.ncbi.nlm.nih.gov/pubmed/23407304 PMID: 23407304eng
dcterms.referencesAjit SK. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors (Basel). 2012; 12: 3359±69. https://doi.org/10.3390/s120303359 PMID: 22737013eng
dcterms.referencesSchena FP, Sallustio F, Serino G. microRNAs in glomerular diseases from pathophysiology to potential treatment target. Clin Sci (Lond). Portland Press Limited; 2015; 128: 775±88. https://doi.org/10.1042/ CS20140733 PMID: 25881669eng
dcterms.referencesLiu Y, Anders H-J. Lupus nephritis: from pathogenesis to targets for biologic treatment. Nephron Clin Pract. 2014; 128: 224±31. https://doi.org/10.1159/000368581 PMID: 25401461eng
dcterms.referencesGordon C, Ranges GE, Greenspan JS, Wofsy D. Chronic therapy with recombinant tumor necrosis factor- alpha in autoimmune NZB/NZW F1 mice. Clin Immunol Immunopathol. 52: 421±434. PMID: 2758698eng
dcterms.referencesPetri M, Orbai A-M, AlarcoÂn GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012; 64: 2677±2686. https://doi.org/10.1002/art.34473 PMID: 22553077eng
dcterms.referencesWeening JJ, D'Agati VD, Schwartz MM, Seshan S V., Alpers CE, Appel GB, et al. The Classification of Glomerulonephritis in Systemic Lupus Erythematosus Revisited. J Am Soc Nephrol. American Society of Nephrology; 2004; 15: 241±250. https://doi.org/10.1097/01.ASN.0000108969.21691.5D PMID: 14747370eng
dcterms.referencesRobinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26: 139±40. https://doi.org/10.1093/ bioinformatics/btp616 PMID: 19910308eng
dcterms.referencesBenjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing [Internet]. Journal of the Royal Statistical Society. Series B (Methodological). WileyRoyal Statistical Society; 1995. pp. 289±300. https://doi.org/10.2307/2346101eng
dcterms.referencesVlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015; 43: W460±6. https://doi.org/10.1093/nar/gkv403 PMID: 25977294eng
dcterms.referencesJiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009; 37: D98±104. https://doi.org/ 10.1093/nar/gkn714 PMID: 18927107eng
dcterms.referencesRuepp A, Kowarsch A, Schmidl D, Bruggenthin F, Brauner B, Dunger I, et al. PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol. BioMed Central; 2010; 11: R6. https://doi.org/10.1186/gb-2010-11-1-r6 PMID: 20089154eng
dcterms.referencesLi Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, et al. HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res. Oxford University Press; 2014; 42: D1070±4. https://doi.org/10.1093/nar/gkt1023 PMID: 24194601eng
dcterms.referencesWang J, Lu M, Qiu C, Cui Q. TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res. Oxford University Press; 2010; 38: D119±22. https://doi.org/10.1093/nar/gkp803 PMID: 19786497eng
dcterms.referencesChien C-H, Sun Y-M, Chang W-C, Chiang-Hsieh P-Y, Lee T-Y, Tsai W-C, et al. Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res. 2011; 39: 9345±9356. https://doi.org/10.1093/nar/gkr604 PMID: 21821656eng
dcterms.referencesKutmon M, Kelder T, Mandaviya P, Evelo CTA, Coort SL. CyTargetLinker: A Cytoscape App to Integrate Regulatory Interactions in Network Analysis. Vera J, editor. PLoS One. Public Library of Science; 2013; 8: e82160. https://doi.org/10.1371/journal.pone.0082160 PMID: 24340000eng
dcterms.referencesTe JL, Dozmorov IM, Guthridge JM, Nguyen KL, Cavett JW, Kelly JA, et al. Identification of unique microRNA signature associated with lupus nephritis. PLoS One. 2010; 5: e10344. https://doi.org/10. 1371/journal.pone.0010344 PMID: 20485490eng
dcterms.referencesLu M-C, Lai N-S, Chen H-C, Yu H-C, Huang K-Y, Tung C-H, et al. Decreased microRNA(miR)-145 and increased miR-224 expression in T cells from patients with systemic lupus erythematosus involved in lupus immunopathogenesis. Clin Exp Immunol. Wiley-Blackwell; 2013; 171: 91±9. https://doi.org/10. 1111/j.1365-2249.2012.04676.x PMID: 23199328eng
dcterms.referencesLiu D, Zhang N, Zhang X, Qin M, Dong Y, Jin L. MiR-410 Down-Regulates the Expression of Interleukin- 10 by Targeting <b><i>STAT3</i></b> in the Pathogenesis of Systemic Lupus Erythematosus. Cell Physiol Biochem. 2016; 39: 303±315. https://doi.org/10.1159/000445625 PMID: 27351906eng
dcterms.referencesTe JL, Dozmorov IM, Guthridge JM, Nguyen KL, Cavett JW, Kelly JA, et al. Identification of unique microRNA signature associated with lupus nephritis. PLoS One. Public Library of Science; 2010; 5: e10344. https://doi.org/10.1371/journal.pone.0010344 PMID: 20485490eng
dcterms.referencesCarlsen AL, Schetter AJ, Nielsen CT, Lood C, Knudsen S, Voss A, et al. Circulating MicroRNA Expression Profiles Associated With Systemic Lupus Erythematosus. Arthritis Rheum. Wiley Subscription Services, Inc., A Wiley Company; 2013; 65: 1324±1334. https://doi.org/10.1002/art.37890 PMID: 23401079eng
dcterms.referencesChoi EW, Lee M, Song JW, Shin IS, Kim SJ. Mesenchymal stem cell transplantation can restore lupus disease-associated miRNA expression and Th1/Th2 ratios in a murine model of SLE. Sci Rep. 2016; 6: 38237. https://doi.org/10.1038/srep38237 PMID: 27924862eng
dcterms.referencesHsu S-D, Lin F-M, Wu W-Y, Liang C, Huang W-C, Chan W-L, et al. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. Oxford University Press; 2011; 39: D163±9. https://doi.org/10.1093/nar/gkq1107 PMID: 21071411eng
dcterms.referencesKorpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. American Society for Biochemistry and Molecular Biology; 2008; 283: 14910±4. https://doi.org/ 10.1074/jbc.C800074200 PMID: 18411277eng
dcterms.referencesKawasaki Y, Sato R, Akiyama T. Mutated APC and Asef are involved in the migration of colorectal tumour cells. Nat Cell Biol. Nature Publishing Group; 2003; 5: 211±215. https://doi.org/10.1038/ncb937 PMID: 12598901eng
dcterms.referencesWhisnant AW, Bogerd HP, Flores O, Ho P, Powers JG, Sharova N, et al. In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. MBio. 2013; 4: e000193. https://doi.org/10.1128/mBio.00193-13 PMID: 23592263eng
dcterms.referencesChoudhuri K, Llodra J, Roth EW, Tsai J, Gordo S, Wucherpfennig KW, et al. Polarized release of T-cellreceptor- enriched microvesicles at the immunological synapse. Nature. 2014; 507: 118±23. https://doi. org/10.1038/nature12951 PMID: 24487619eng
dcterms.referencesSaito Y, Saito H. Role of CTCF in the regulation of microRNA expression. Front Genet. 2012; 3: 186. https://doi.org/10.3389/fgene.2012.00186 PMID: 23056006eng
dcterms.referencesde Souza Rocha Simonini P, Breiling A, Gupta N, Malekpour M, Youns M, Omranipour R, et al. Epigenetically Deregulated microRNA-375 Is Involved in a Positive Feedback Loop with Estrogen Receptor in Breast Cancer Cells. Cancer Res. 2010; 70: 9175±9184. https://doi.org/10.1158/0008-5472.CAN-10- 1318 PMID: 20978187eng
dcterms.referencesKameswaran V, Bramswig NC, McKenna LB, Penn M, Schug J, Hand NJ, et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab. 2014; 19: 135±45. https://doi.org/10.1016/j.cmet.2013.11.016 PMID: 24374217eng
dcterms.referencesPalm T, Hemmer K, Winter J, Fricke IB, Tarbashevich K, Sadeghi Shakib F, et al. A systemic transcriptome analysis reveals the regulation of neural stem cell maintenance by an E2F1±miRNA feedback loop. Nucleic Acids Res. Oxford University Press; 2013; 41: 3699±3712. https://doi.org/10.1093/nar/ gkt070 PMID: 23396440eng
dcterms.referencesFang X, Ye D. E2F1: a potential therapeutic target for systematic lupus erythematosus. Rheumatol Int. 2014; 34: 1175±1176. https://doi.org/10.1007/s00296-013-2873-2 PMID: 24071937eng
dcterms.referencesFeng B, Dong TT, Wang LL, Zhou HM, Zhao HC, Dong F, et al. Colorectal cancer migration and invasion initiated by microRNA-106a. PLoS One. Public Library of Science; 2012; 7: e43452. https://doi.org/ 10.1371/journal.pone.0043452 PMID: 22912877eng
dcterms.referencesPrud'homme GJ, Piccirillo CA. The Inhibitory Effects of Transforming Growth Factor-Beta-1 (TGF-β1) in Autoimmune Diseases. J Autoimmun. 2000; 14: 23±42. https://doi.org/10.1006/jaut.1999.0339 PMID: 10648114eng
dcterms.referencesHedrich CM, Rauen T, Apostolidis SA, Grammatikos AP, Rodriguez Rodriguez N, Ioannidis C, et al. Stat3 promotes IL-10 expression in lupus T cells through trans-activation and chromatin remodeling. Proc Natl Acad Sci U S A. National Academy of Sciences; 2014; 111: 13457±62. https://doi.org/10. 1073/pnas.1408023111 PMID: 25187566eng
dcterms.referencesKarginov F V, Hannon GJ. Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. Genes Dev. 2013; 27: 1624±32. https:// doi.org/10.1101/gad.215939.113 PMID: 23824327eng
dcterms.referencesLu R, Ji Z, Li X, Zhai Q, Zhao C, Jiang Z, et al. miR-145 functions as tumor suppressor and targets two oncogenes, ANGPT2 and NEDD9, in renal cell carcinoma. J Cancer Res Clin Oncol. 2014; 140: 387± 97. https://doi.org/10.1007/s00432-013-1577-z PMID: 24384875eng
dcterms.referencesEdwards LJ, Mizui M, Kyttaris V. Signal transducer and activator of transcription (STAT) 3 inhibition delays the onset of lupus nephritis in MRL/lpr mice. Clin Immunol. 2015; 158: 221±230. https://doi.org/ 10.1016/j.clim.2015.04.004 PMID: 25869298eng
dcterms.referencesKameswaran V, Bramswig NC, McKenna LB, Penn M, Schug J, Hand NJ, et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab. Elsevier; 2014; 19: 135± 45. https://doi.org/10.1016/j.cmet.2013.11.016 PMID: 24374217eng
dcterms.referencesHelwak A, Kudla G, Dudnakova T, Tollervey D, Altschul SF, Gish W, et al. Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding. Cell. Elsevier; 2013; 153: 654±665. https://doi.org/10.1016/j.cell.2013.03.043 PMID: 23622248eng
dcterms.referencesBalakrishnan I, Yang X, Brown J, Ramakrishnan A, Torok-Storb B, Kabos P, et al. Genome-wide analysis of miRNA-mRNA interactions in marrow stromal cells. Stem Cells. 2014; 32: 662±73. https://doi.org/ 10.1002/stem.1531 PMID: 24038734eng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2017_Profiling_analysis_of_circulating_microRNA_in_peri (1).pdf
Tamaño:
1.51 MB
Formato:
Adobe Portable Document Format
Descripción:
Formato Pdf texto completo
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones