Strategies for microbial decontamination of fresh blueberries and derived products

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.authorPérez-Lavalle, Liliana
dc.contributor.authorCarrasco, Elena
dc.contributor.authorValero, Antonio
dc.date.accessioned2020-11-05T10:32:33Z
dc.date.available2020-11-05T10:32:33Z
dc.date.issued2020
dc.description.abstractIncreasing consumption of blueberries is associated with appreciation of their organoleptic properties together with their multiple health benefits. The increasing number of outbreaks caused by pathogenic microorganisms associated with their consumption in the fresh state and the rapid spoilage of this product which is mainly caused by moulds, has led to the development and evaluation of alternatives that help mitigate this problem. This article presents di erent strategies ranging from chemical, physical and biological technologies to combined methods applied for microbial decontamination of fresh blueberries and derived products. Sanitizers such as peracetic acid (PAA), ozone (O3), and electrolyzed water (EOW), and physical technologies such as pulsed light (PL) and cold plasma (CP) are potential alternatives to the use of traditional chlorine. Likewise, high hydrostatic pressure (HHP) or pulsed electrical fields (PEF) successfully achieve microbial reductions in derivative products. A combination of methods at moderate intensities or levels is a promising strategy to increase microbial decontamination with a minimal impact on product quality.spa
dc.format.mimetypepdfspa
dc.identifier.doihttps://doi.org/10.3390/foods9111558
dc.identifier.issn23048158
dc.identifier.urihttps://hdl.handle.net/20.500.12442/6753
dc.identifier.urlhttps://www.mdpi.com/2304-8158/9/11/1558
dc.language.isoengspa
dc.publisherMDPIeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceFoodseng
dc.sourceVol. 9 N° 11, (2020)
dc.subjectblueberryeng
dc.subjectProcessed fruitseng
dc.subjectNon-thermal technologieseng
dc.subjectChemical strategieseng
dc.subjectPhysical strategieseng
dc.subjectBiological strategieseng
dc.subjectMicrobial decontaminationeng
dc.subjectQuality and safetyeng
dc.titleStrategies for microbial decontamination of fresh blueberries and derived productseng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesJimenez-Garcia, S.N.; Guevara-Gonzalez, R.G.; Miranda-Lopez, R.; Feregrino-Perez, A.A.; Torres-Pacheco, I.; Vazquez-Cruz, M.A. Functional properties and quality characteristics of bioactive compounds in berries: Biochemistry, biotechnology, and genomics. Food Res. Int. 2013, 54, 1195–1207.eng
dcterms.referencesNile, S.H.; Park, S.W. Edible berries: Bioactive components and their e ect on human health. Nutrition 2014, 30, 134–144.eng
dcterms.referencesCassidy, A. Berry anthocyanin intake and cardiovascular health. Mol. Asp. Med. 2018, 61, 76–82.eng
dcterms.referencesIstek, N.; Gurbuz, O. Investigation of the impact of blueberries on metabolic factors influencing health. J. Funct. Foods 2017, 38, 298–307.eng
dcterms.referencesNeto, C.C. Cranberry and blueberry: Evidence for protective e ects against cancer and vascular diseases. Mol. Nutr. Food Res. 2007, 51, 652–664.eng
dcterms.referencesNorberto, S.; Silva, S.; Meireles, M.; Faria, A.; Pintado, M.; Calhau, C. Blueberry anthocyanins in health promotion: A metabolic overview. J. Funct. Foods 2013, 5, 1518–1528.eng
dcterms.referencesRyser, E.T.; Marth, E.H. Listeria, Listeriosis, and Food Safety; CRC Press: Boca Raton, FL, USA, 2007.eng
dcterms.referencesCalder, L.; Simmons, G.; Thornley, C. An outbreak of hepatitis A associated with consumption of raw blueberries. Epidemiol. Infect. 2003, 131, 745–751.eng
dcterms.referencesLuna-Gierke, R.E.; Gri n, P.M.; Gould, L.H.; Herman, K.; Boop, C.A.; Strockbine, N.; Mody, R.K. Outbreaks of non-O157 Shiga toxin-producing Escherichia coli infection: USA. Epidemiol. Infect. 2014, 2270–2280.eng
dcterms.referencesNational Outbreak Reporting System (NORS). Dashboard CDC. Available online: https://wwwn.cdc.gov/ norsdashboard/ (accessed on 31 August 2020).eng
dcterms.referencesMiller, B.D.; Rigdon, C.E.; Robinson, T.J.; Hedberg, C.; Smith, K.E. Use of Global Trade Item Numbers in the Investigation of a Salmonella Newport Outbreak Associated with Blueberries in Minnesota, 2010. J. Food Prot. 2013, 76, 762–769.eng
dcterms.referencesRASFF. Portal. Available online: https://webgate.ec.europa.eu/rasff-window/portal/?event=notificationDetail& NOTIF_REFERENCE=2020.0759 (accessed on 31 August 2020).eng
dcterms.referencesRASFF. Portal. Available online: https://webgate.ec.europa.eu/rasff-window/portal/?event=notificationDetail& NOTIF_REFERENCE=2018.3574 (accessed on 31 August 2020).eng
dcterms.referencesEFSA. Scientific Opinion on the risk posed by pathogens in food of non-animal origin. Part 2 (Salmonella and Norovirus in berries) 1. EFSA J. 2014, 12, 1–95.eng
dcterms.referencesGazula, H.; Quansah, J.; Allen, R.; Scherm, H.; Li, C.; Takeda, F.; Chen, J. Microbial loads on selected fresh blueberry packing lines. Food Control 2019, 100, 315–320.eng
dcterms.referencesQuansah, J.K.; Gazula, H.; Holland, R.; Scherm, H.; Li, C.; Takeda, F.; Chen, J. Microbial quality of blueberries for the fresh market. Food Control 2019, 100, 92–96.eng
dcterms.referencesEckert, J.W.; Ogawa, J.M. The Chemical Control of Postharvest Diseases: Deciduous Fruits, Berries, Vegetables and Root/Tuber Crops. Annu. Rev. Phytopathol. 1988, 26, 433–469.eng
dcterms.referencesTournas, V.H.; Katsoudas, E.Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. FoodMicrobiol. 2005, 105, 11–17.eng
dcterms.referencesWang, S.Y.; Chen, C.; Yin, J. E ect of allyl isothiocyanate on antioxidants and fruit decay of blueberries. Food Chem. 2010, 120, 199–204.eng
dcterms.referencesForney, C.F. Postharvest issues in blueberry and cranberry and methods to improve market-life. Acta Hortic. 2009, 810, 785–798.eng
dcterms.referencesUSHBC. Available online: Blueberries-retail-channel-w-Wild.vLogo_.pdf (accessed on 31 August 2020).eng
dcterms.referencesCBI-Centre for the Promotion of Imports from Developing Countries. The European Market Potential for Fresh Blueberries. Available online: https://www.cbi.eu/market-information/fresh-fruit-vegetables/blueberries/ market-potential (accessed on 31 August 2020).eng
dcterms.referencesHuang, Y.; Chen, H. A novel water-assisted pulsed light processing for decontamination of blueberries. Food Microbiol. 2014, 40, 1–8.eng
dcterms.referencesSy, K.V.; Watters, K.H.; Beuchat, L. E cacy of Gaseous Chlorine Dioxide as a Sanitizer for Killing Salmonella, Yeasts, and Molds on Blueberries, Strawberries, and Raspberries. J. Food Prot. 2005, 68, 1165–1175.eng
dcterms.referencesCrowe, K.M.; Bushway, A.A.; Bushway, R.J.; Crowe, K.M.; Bushway, A.A. E ects of Alternative Postharvest Treatments on the Microbiological Quality of Lowbush Blueberries. Small Fruits Rev. 2005, 4, 29–39.eng
dcterms.referencesLafarga, T.; Colás-medà, P.; Abadías, M.; Aguiló-aguayo, I.; Bobo, G. Strategies to reduce microbial risk and improve quality of fresh and processed strawberries: A review. Innov. Food Sci. Emerg. Technol. 2019, 52, 197–212.eng
dcterms.referencesMeireles, A.; Giaouris, E.; Simões, M. Alternative disinfection methods to chlorine for use in the fresh-cut industry. FRIN 2016, 82, 71–85.eng
dcterms.referencesBeuchat, L.R.; Pettigrew, C.A.; Tremblay, M.E.; Roselle, B.J.; Scouten, A.J. Lethality of Chlorine, Chlorine Dioxide, and a Commercial Fruit and Vegetable Sanitizer to Vegetative Cells and Spores of Bacillus cereus and Spores of Bacillus thuringiensis. J. Food Prot. 2004, 67, 1702–1708.eng
dcterms.referencesOlmez, H.; Kretzschmar, U. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT Food Sci. Technol. 2009, 42, 686–693.eng
dcterms.referencesWu, V.C.H.; Kim, B. E ect of a simple chlorine dioxide method for controlling five foodborne pathogens, yeasts and molds on blueberries. Food Microbiol. 2007, 24, 794–800.eng
dcterms.referencesSun, X.; Baldwin, E.; Bai, J. Applications of gaseous chlorine dioxide on postharvest handling and storage of fruits and vegetables–A review. Food Control 2019, 95, 18–26.eng
dcterms.referencesAnnous, B.A.; Buckley, D.; Burke, A. Evaluation of Chlorine Dioxide Gas against Four Salmonella enterica Serovars Artificially Contaminated on Whole Blueberries. J. Food Prot. 2020, 83, 412–417.eng
dcterms.referencesRamos, B.; Miller, F.A.; Brandão, T.R.S.; Teixeira, P.; Silva, C.L.M. Fresh fruits and vegetables—An overview on applied methodologies to improve its quality and safety. Innov. Food Sci. Emerg. Technol. 2013, 20, 1–15.eng
dcterms.referencesCFR-Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/ cfdocs/cfcfr/CFRSearch.cfm?fr=173.300 (accessed on 31 August 2020).eng
dcterms.referencesDeng, L.Z.; Mujumdar, A.S.; Pan, Z.; Vidyarthi, S.K.; Xu, J.; Zielinska, M.; Xiao, H.-W. Emerging chemical and physical disinfection technologies of fruits and vegetables: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2481–2508.eng
dcterms.referencesZhang, L.; Yan, Z.; Hanson, E.J.; Ryser, E.T. E cacy of chlorine dioxide gas and freezing rate on the microbiological quality of frozen blueberries. Food Control 2015, 47, 114–119.eng
dcterms.referencesChai, H.-E.; Hwang, C.A.; Huang, L.; Wu, V.C.H.; Sheen, L.Y. Feasibility and e cacy of using gaseous chlorine dioxide generated by sodium chlorite-acid reaction for decontamination of foodborne pathogens on produce. Food Control 2020, 108, 106839.eng
dcterms.referencesKingsley, D.H.; Annous, B.A. Evaluation of Steady-State Gaseous Chlorine Dioxide Treatment for the Inactivation of Tulane virus on Berry Fruits. Food Environ. Virol. 2019, 11, 214–219.eng
dcterms.referencesKingsley, D.H.; Pérez-pérez, R.E.; Niemira, B.A.; Fan, X. Evaluation of gaseous chlorine dioxide for the inactivation of Tulane virus. Int. J. Food Microbiol. 2018, 273, 28–32.eng
dcterms.referencesSun, X.; Bai, J.; Ference, C.; Wang, Z.H.E.; Zhang, Y.; Narciso, J.A.N.; Zhou, K. Antimicrobial Activity of Controlled-Release Chlorine Dioxide Gas on Fresh Blueberries 1. J. Food Prot. 2014, 77, 1127–1132.eng
dcterms.referencesChun, H.H.; Kang, J.H.; Song, K.B. E ects of aqueous chlorine dioxide treatment and cold storage on microbial growth and quality of blueberries. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 309–315.eng
dcterms.referencesGirard, M.; Mattison, K.; Fliss, I.; Jean, J. E cacy of oxidizing disinfectants at inactivating murine norovirus on ready-to-eat foods. Int. J. Food Microbiol. 2016, 219, 7–11.eng
dcterms.referencesXu, F.;Wang, S.; Xu, J.; Liu, S.; Li, G. E ects of combined aqueous chlorine dioxide and UV-C on shelf-life quality of blueberries. Postharvest Biol. Technol. 2016, 117, 125–131.eng
dcterms.referencesFeliziani, E.; Lichter, A.; Smilanick, J.L.; Ippolito, A. Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biol. Technol. 2016, 122, 53–69.eng
dcterms.referencesHuynh, N.K.;Wilson, M.D.; Eyles, A.; Stanley, R.A. Recent advances in postharvest technologies to extend the shelf life of blueberries (Vaccinium sp.), raspberries (Rubus idaeus L.) and blackberries (Rubus sp.). J. Berry Res. 2019, 9, 687–707.eng
dcterms.referencesBialka, K.L.; Demirci, A. Decontamination of Escherichia coli O157:H7 and Salmonella enterica on blueberries using ozone and pulsed UV-light. J. Food Sci. 2007, 72, 391–396.eng
dcterms.referencesConcha-Meyer, A.; Eifert, J.D.;Williams, R.C.; Marcy, J.E.; Welbaum, G.E. Shelf Life Determination of Fresh Blueberries (Vaccinium corymbosum) Stored under Controlled Atmosphere and Ozone. Available online: https://www.hindawi.com/journals/ijfs/2015/164143/ (accessed on 31 August 2020).eng
dcterms.referencesJaramillo-Sánchez, G.; Contigiani, E.V.; Castro, M.A.; Hodara, K.; Alzamora, S.M.; Loredo, A.G.; Nieto, A.B. Freshness Maintenance of Blueberries (Vaccinium corymbosum L.) during Postharvest Using Ozone in Aqueous Phase: Microbiological, Structure, and Mechanical issues. Food Bioprocess. Technol. 2019, 12, 2136–2147.eng
dcterms.referencesPangloli, P.; Hung, Y. Reducing microbiological safety risk on blueberries through innovative washing technologies. Food Control 2013, 32, 621–625.eng
dcterms.referencesConcha-meyer, A.; Eifert, J.; Williams, R.; Marcy, J.; Welbaum, G. Survival of Listeria monocytogenes on Fresh Blueberries (Vaccinium corymbosum) Stored under Controlled Atmosphere and Ozone. J. Food Prot. 2014, 77, 832–836.eng
dcterms.referencesBridges, D.F.; Rane, B.; Wu, V.C.H. The e ectiveness of closed-circulation gaseous chlorine dioxide or ozone treatment against bacterial pathogens on produce. Food Control 2018, 91, 261–267.eng
dcterms.referencesKim, C.; Hung, Y. Inactivation of E. coli O157: H7 on Blueberries by ElectrolyzedWater, Ultraviolet Light, and Ozone. J. Food Sci. 2012, 77, M206–M211.eng
dcterms.referencesArtés, F.; Gómez, P.; Aguayo, E.; Escalona, V.; Artés-hernández, F. Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biol. Technol. 51 2009, 51, 287–296.eng
dcterms.referencesRood, L.; Koutoulis, A.; Bowman, J.P.; Evans, D.E.; Stanley, R.A.; Kaur, M. Control of microbes on barley grains using peroxyacetic acid and electrolysed water as antimicrobial agents. Food Microbiol. 2018, 76, 103–109.eng
dcterms.referencesSingh, P.; Hung, Y.; Qi, H. E cacy of Peracetic Acid in Inactivating Foodborne Pathogens on Fresh Produce Surface. J. Food Sci. 2018, 88, 432–439.eng
dcterms.referencesSheng, L.; Tsai, H.; Zhu, H.; Zhu, M. Survival of Listeria monocytogenes on blueberries post-sanitizer treatments and subsequent cold storages. Food Control 2019, 100, 138–143.eng
dcterms.referencesCallahan, S.; Perry, J.J. Survival of Listeria innocua and Native Microflora in Sanitizer-TreatedWild Blueberries (Vaccinium angustifolium). Int. J. Fruit Sci. 2019, 1–16.eng
dcterms.referencesde Siqueira Oliveira, L.; Eça, K.S.; de Aquino, A.C.; Vasconcelos, L.B. Chapter 4-Hydrogen Peroxide (H2O2) for Postharvest Fruit and Vegetable Disinfection. In Postharvest Disinfection of Fruits and Vegetables; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 91–99, ISBN 978-0-12-812698-1.eng
dcterms.referencesBecker, B.; Dabisch-Ruthe, M.; Pfannebecker, J. Inactivation of Murine Norovirus on Fruit and Vegetable Surfaces by Vapor Phase Hydrogen Peroxide. J. Food Prot. 2020, 83, 45–51.eng
dcterms.referencesRico, D.; Martín-Diana, A.B.; Barat, J.M.; Barry-Ryan, C. Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends Food Sci. Technol. 2007, 18, 373–386.eng
dcterms.referencesLi, Y.;Wu, C. Enhanced inactivation of Salmonella Typhimurium from blueberries by combinations of sodium dodecyl sulfate with organic acids or hydrogen peroxide. FRIN 2013, 54, 1553–1559.eng
dcterms.referencesLiato, V.; Hammami, R.; Aïder, M. In fluence of electro-activated solutions of weak organic acid salts on microbial quality and overall appearance of blueberries during storage. Food Microbiol. 2017, 64, 56–64.eng
dcterms.referencesChiabrando, V.; Giacalone, G. Anthocyanins, phenolics and antioxidant capacity after fresh storage of blueberry treated with edible coatings. Int. J. Food Sci. Nutr. 2015, 1–6.eng
dcterms.referencesDuan, J.;Wu, R.; Strik, B.C.; Zhao, Y. E ect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biol. Technol. 2011, 59, 71–79.eng
dcterms.referencesDhall, R.K. Advances in Edible Coatings for Fresh Fruits and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450.eng
dcterms.referencesLin, D.; Zhao, Y. Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Fruits and Vegetables. Compr. Rev. Food Sci. Food Saf. 2007, 6, 60–75.eng
dcterms.referencesRabea, E.I.; Stevens, C.V.; Smagghe, G.; Steurbaut,W. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules 2003, 4, 1457–1465. [eng
dcterms.referencesHosseinnejad, M.; Jafari, S.M. Evaluation of di erent factors a ecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475.eng
dcterms.referencesAbugoch, L.E.; Tapia, C.; Villamán, M.C.; Yazdani-Pedram, M.; Díaz-Dosque, M. Characterization of quinoa protein–chitosan blend edible films. Food Hydrocoll. 2011, 25, 879–886.eng
dcterms.referencesChiabrando, V.; Giacalone, G. Quality evaluation of blueberries coated with chitosan and sodium alginate during postharvest storage. Int. Food Res. J. 2017, 24, 1553–1561.eng
dcterms.referencesJiang, H.; Sun, Z.; Jia, R.; Wang, X.; Huang, J. Efect of Chitosan as an Antifungal and Preservative Agent on Postharvest Blueberry. J. Food Qual. 2016, 39, 516–523.eng
dcterms.referencesSun, X.; Narciso, J.;Wang, Z.; Ference, C.; Bai, J.; Zhou, K. E ects of Chitosan-Essential Oil Coatings on Safety and Quality of Fresh Blueberries. J. Food Sci. 2014, 79, 955–960.eng
dcterms.referencesAbugoch, L.; Tapia, C.; Plasencia, D.; Pastor, A.; Castro-Mandujano, O.; López, L.; Escalona, V.H. Shelf-life of fresh blueberries coated with quinoa protein/chitosan/sunflower oil edible film. J. Sci. Food Agric. 2015, 96, 619–626.eng
dcterms.referencesVieira, J.M.; Flores-lópez, M.L.; Jasso de Rodríguez, D.; Sousa, M.C.; Vicente, A.A.; Martins, J.T. E ect of chitosan–Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biol. Technol. 2016, 116, 88–97.eng
dcterms.referencesAlvarez, M.V.; Ponce, A.G.; Moreira, M.R. Influence of polysaccharide-based edible coatings as carriers of prebiotic fibers on quality attributes of ready-to-eat fresh blueberries. J. Sci. Food Agric. 2018, 98, 2587–2597.eng
dcterms.referencesYang, G.; Yue, J.; Gong, X.; Qian, B.;Wang, H.; Deng, Y.; Zhao, Y. Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biol. Technol. 2014, 92, 46–53.eng
dcterms.referencesFalcó, I.; Randazzo, W.; Sánchez, G.; López-Rubio, A.; Fabra, M.J. On the use of carrageenan matrices for the development of antiviral edible coatings of interest in berries. Food Hydrocoll. 2019, 92, 74–85eng
dcterms.referencesMoreno, M.A.; Bojorges, H.; Falcó, I.; Sánchez, G.; López-Carballo, G.; López-Rubio, A.; Zampini, I.C.; Isla, M.I.; Fabra, M.J. Active properties of edible marine polysaccharide-based coatings containing Larrea nitida polyphenols enriched extract. Food Hydrocoll. 2020, 102, 105595. [eng
dcterms.referencesUmagiliyage, A.L.; Becerra-Mora, N.; Kohli, P.; Fisher, D.J.; Choudhary, R. Antimicrobial e cacy of liposomes containing d-limonene and its e ect on the storage life of blueberries. Postharvest Biol. Technol. 2017, 128, 130–137.eng
dcterms.referencesZhang, Z.H.;Wang, L.H.; Zeng, X.A.; Han, Z.; Brennan, C.S. Non-thermal technologies and its current and future application in the food industry: A review. Int. J. Food Sci. Technol. 2019, 54, 1–13.eng
dcterms.referencesKeklik, N.M.; Krishnamurthy, K.; Demirci, A. 12-Microbial decontamination of food by ultraviolet (UV) and pulsed UV light. In Microbial Decontamination in the Food Industry; Demirci, A., Ngadi, M.O., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 344–369, ISBN 978-0-85709-085-0.eng
dcterms.referencesLado, B.H.; Yousef, A.E. Alternative food-preservation technologies: E cacy and mechanisms. Microbes Infect. 2002, 4, 433–440.eng
dcterms.referencesLiu, C.; Li, X.; Chen, H. Application of water-assisted ultraviolet light processing on the inactivation of murine norovirus on blueberries. Int. J. Food Microbiol. 2015, 214, 18–23.eng
dcterms.referencesButot, S.; Cantergiani, F.; Moser, M.; Jean, J.; Lima, A.; Michot, L.; Putallaz, T.; Stroheker, T.; Zuber, S. UV-C inactivation of foodborne bacterial and viral pathogens and surrogates on fresh and frozen berries. Int. J. Food Microbiol. 2018, 275, 8–16.eng
dcterms.referencesHuang, R.; Chen, H. Use of 254 nm ultraviolet light for decontamination of fresh produce and wash water. Food Control 2020, 109, 106926.eng
dcterms.referencesGuo, S.; Huang, R.; Chen, H. Evaluating a Combined Method of UV and Washing for Sanitizing Blueberries, Tomatoes, Strawberries, Baby Spinach, and Lettuce. J. Food Prot. 2019, 82, 1879–1889.eng
dcterms.referencesLiu, C.; Huang, Y.; Chen, H. Inactivation of Escherichia coli O157: H7 and Salmonella enterica on Blueberries in Water Using Ultraviolet Light. J. Food Sci. 2015.eng
dcterms.referencesHuang, R.; Vries, D.D.; Chen, H. Strategies to enhance fresh produce decontamination using combined treatments of ultraviolet, washing and disinfectants. Int. J. Food Microbiol. 2018, 283, 37–44.eng
dcterms.referencesCho, M.; Choi, Y.; Park, H.; Kim, K.;Woo, G.J.; Park, J. Titanium dioxide/UV photocatalytic disinfection in fresh carrots. J. Food Prot. 2007, 70, 97–101.eng
dcterms.referencesRamesh, T.; Nayak, B.; Amirbahman, A.; Tripp, C.P.; Mukhopadhyay, S. Application of ultraviolet light assisted titanium dioxide photocatalysis for food safety: A review. Innov. Food Sci. Emerg. Technol. 2016, 38, 105–115.eng
dcterms.referencesLee, M.; Shahbaz, H.; Kim, J.; Lee, H.; Lee, D.; Park, J. E cacy of UV-TiO 2 photocatalysis technology for inactivation of Escherichia coli K12 on the surface of blueberries and a model agar matrix and the influence of surface characteristics. Food Microbiol. 2018, 76, 526–532.eng
dcterms.referencesKarppinen, K.; Zoratti, L.; Nguyenquynh, N.; Häggman, H.; Jaakola, L. On the developmental and environmental regulation of secondary metabolism in Vaccinium spp. Berries. Front. Plant Sci. 2016, 7, 1–9.eng
dcterms.referencesWang, C.Y.; Chen, C.T.;Wang, S.Y. Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chem. 2009, 117, 426–431.eng
dcterms.referencesBhavya, M.L.; Umesh Hebbar, H. Pulsed light processing of foods for microbial safety. Food Qual. Saf. 2017, 1, 187–201.eng
dcterms.referencesGómez-López, V.M.; Ragaert, P.; Debevere, J.; Devlieghere, F. Pulsed light for food decontamination: A review. Trends Food Sci. Technol. 2007, 18, 464–473.eng
dcterms.referencesCFR-Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/ cfdocs/cfcfr/CFRSearch.cfm?fr=179.41 (accessed on 1 September 2020).eng
dcterms.referencesHuang, Y.; Ye, M.; Cao, X.; Chen, H. Pulsed light inactivation of murine norovirus, Tulane virus, Escherichia coli O157: H7 and Salmonella in suspension and on berry surfaces. Food Microbiol. 2017, 61, 14–17.eng
dcterms.referencesCao, X.; Huang, R.; Chen, H. Evaluation of pulsed light treatments on inactivation of Salmonella on blueberries and its impact on shelf-life and quality attributes. Int. J. Food Microbiol. 2017, 260, 17–26.eng
dcterms.referencesHuang, Y.; Sido, R.; Huang, R.; Chen, H. Application of water-assisted pulsed light treatment to decontaminate raspberries and blueberries from Salmonella. Int. J. Food Microbiol. 2015, 208, 43–50.eng
dcterms.referencesHuang, R.; Chen, H. Comparison ofWater-Assisted Decontamination Systems of Pulsed Light and Ultraviolet for Salmonella Inactivation on Blueberry, Tomato, and Lettuce. J. Food Sci. 2019, 84, 1145–1150.eng
dcterms.referencesHuang, H.W.; Lung, H.M.; Yang, B.B.; Wang, C.Y. Responses of microorganisms to high hydrostatic pressure processing. Food Control 2014, 40, 250–259.eng
dcterms.referencesHuang, R.; Ye, M.; Li, X.; Ji, L.; Karwe, M.; Chen, H. Evaluation of high hydrostatic pressure inactivation of human norovirus on strawberries, blueberries, raspberries and in their purees. Int. J. Food Microbiol. 2016, 223, 17–24.eng
dcterms.referencesLi, X.; Chen, H.; Kingsley, D.H. The influence of temperature, pH, and water immersion on the high hydrostatic pressure inactivation of GI. 1 and GII. 4 human noroviruses. Int. J. Food Microbiol. 2013, 167, 138–143.eng
dcterms.referencesLi, X.; Ye, M.; Neetoo, H.; Golovan, S.; Chen, H. Pressure inactivation of Tulane virus, a candidate surrogate for human norovirus and its potential application in food industry. Int. J. Food Microbiol. 2013, 162, 37–42.eng
dcterms.referencesKabir, N.; Aras, S.; Allison, A.; Adhikari, J.; Chowdhury, S.; Fouladkhah, A. Interactions of Carvacrol, Caprylic Acid, Habituation, and Mild Heat for Pressure-Based Inactivation of O157 and Non-O157 Serogroups of Shiga Toxin-Producing Escherichia coli in Acidic Environment. Microorganisms 2019, 7, 145.eng
dcterms.referencesJames, S.; James, C. Minimal Processing of Ready Meals, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; ISBN 978-0-12-411479-1.eng
dcterms.referencesOdriozola-Serrano, I.; Aguiló-Aguayo, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Pulsed electric fields processing e ects on quality and health-related constituents of plant-based foods. Trends Food Sci. Technol. 2013, 29, 98–107.eng
dcterms.referencesWouters, P.C.; Alvarez, I.; Raso, J. Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends Food Sci. Technol. 2001, 12, 112–121.eng
dcterms.referencesZhu, N.;Wang, Y.; Zhu, Y.; Yang, L.; Yu, N.;Wei, Y.; Zhang, H.; Sun, A. Design of a treatment chamber for low-voltage pulsed electric fi eld sterilization. Innov. Food Sci. Emerg. Technol. 2017, 42, 180–189.eng
dcterms.referencesJin, T.Z.; Yu, Y.; Gurtler, J.B. E ects of pulsed electric field processing on microbial survival, quality change and nutritional characteristics of blueberries. LWT Food Sci. Technol. 2017, 77, 517–524.eng
dcterms.referencesChen, J.; Tao, X.Y.; Sun, A.D.;Wang, Y.; Liao, X.J.; Li, L.N.; Zhang, S. Influence of pulsed electric field and thermal treatments on the quality of blueberry juice. Int. J. Food Prop. 2014, 17, 1419–1427.eng
dcterms.referencesZhu, N.; Yu, N.; Zhu, Y.; Wei, Y.; Hou, Y.; Zhang, H.; Sun, A.D. Identification of spoilage microorganisms in blueberry juice and their inactivation by a microchip pulsed electric field system. Sci. Rep. 2018, 8, 1–8.eng
dcterms.referencesZhu, N.; Zhu, Y.; Yu, N.; Wei, Y.; Zhang, J.; Hou, Y.; Sun, A. Evaluation of microbial, physicochemical parameters and flavor of blueberry juice after microchip-pulsed electric field. Food Chem. 2019, 274, 146–155.eng
dcterms.referencesNiemira, B.A. Cold Plasma Decontamination of Foods. Annu. Rev. Food Sci. Technol 2012, 3, 125–142.eng
dcterms.referencesLacombe, A.; Niemira, B.A.; Gurtler, J.B.; Fan, X.; Sites, J.; Boyd, G.; Chen, H. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and e ects on quality attributes. Food Microbiol. 2015, 46, 479–484.eng
dcterms.referencesLacombe, A.; Niemira, B.A.; Gurtler, J.B.; Sites, J.; Boyd, G.; Kingsley, D.H.; Li, X.; Chen, H. Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma. FoodMicrobiol. 2017, 63, 1–5.eng
dcterms.referencesDong, X.Y.; Yang, Y.L. A Novel Approach to Enhance Blueberry Quality during Storage Using Cold Plasma at Atmospheric Air Pressure. Food Bioprocess. Technol. 2019, 12, 1409–1421.eng
dcterms.referencesPathak, N.; Bovi, G.G.; Limnaios, A.; Fröhling, A.; Brincat, J.P.; Taoukis, P.; Valdramidis, V.P.; Schlüter, O. Impact of cold atmospheric pressure plasma processing on storage of blueberries. J. Food Process. Preserv. 2020, 44, e14581.eng
dcterms.referencesHou, Y.; Wang, R.; Gan, Z.; Shao, T.; Zhang, X.; He, M.; Sun, A. E ect of cold plasma on blueberry juice quality. Food Chem. 2019, 290, 79–86.eng
dcterms.referencesZhou, D.; Wang, Z.; Tu, S.; Chen, S.; Peng, J.; Tu, K. E ects of cold plasma, UV-C or aqueous ozone treatment on Botrytis cinerea and their potential application in preserving blueberry. J. Appl. Microbiol. 2019, 127, 175–185eng
dcterms.referencesMoreno, M.A.; Castell-Perez, M.E.; Gomes, C.; Silva, P.F.D.; Moreira, R.G. Quality of electron beam irradiation of blueberries (Vaccinium corymbosum L) at medium dose levels (1.0–3.2 kGy). LWT Food Sci. Technol. 2007, 40, 1123–1132.eng
dcterms.referencesParish, M.E.; Beuchat, L.R.; Suslow, T.V.; Harris, L.J.; Garrett, E.H.; Farber, J.N.; Busta, F.F. Methods to Reduce/Eliminate Pathogens from Fresh and Fresh-Cut Produce. Compr. Rev. Food Sci. Food Safe 2003, 2, 161–173eng
dcterms.referencesThang, K.; Au, K.; Prakash, A. E ect of phytosanitary irradiation and methyl bromide fumigation on the physical, sensory, and microbiological quality of blueberries and sweet cherries. J. Sci. Food Agric. 2016, 96, 4382–4389.eng
dcterms.referencesLacombe, A.; Breard, A.; Hwang, C.; Hill, D.; Fan, X.; Huang, L.; Kwon, B.; Niemira, B.A.; Gurtler, J.B.; Wu, V.C.H. Inactivation of Toxoplasma gondii on blueberries using low dose irradiation without a ecting quality. Food Control 2017, 73, 981–985.eng
dcterms.referencesKong, Q.;Wu, A.; Qi,W.; Qi, R.; Mark, J.; Rasooly, R.; He, X. E ects of electron-beam irradiation on blueberries inoculated with Escherichia coli and their nutritional quality and shelf life. Postharvest Biol. Technol. 2014, 95, 28–35.eng
dcterms.referencesShahbaz, H.M.; Akram, K.; Ahn, J.J.; Kwon, J.H. Worldwide Status of Fresh Fruits Irradiation and Concerns about Quality, Safety, and Consumer Acceptance. Crit. Rev. Food Sci. Nutr. 2016, 56, 1790–1807.eng
dcterms.referencesNambeesan, S.U.; Doyle, J.W.; Capps, H.D.; Starns, C.; Scherm, H. E ect of Electronic Cold-PasteurizationTM (ECPTM) on Fruit Quality and Postharvest Diseases during Blueberry Storage. Horticulturae 2018, 4, 25.eng
dcterms.referencesde São José, J.F.B.; de Andrade, N.J.; Mota, A.; Dantas Vanetti, M.C.; Stringheta, P.; Paes, J.B. Decontamination by ultrasound application in fresh fruits and vegetables. Food Control 2014, 45, 36–50.eng
dcterms.referencesRezek, J.A.; Šimunek, M.; Evacic, S.; Markov, K.; Smoljanic, G.; Frece, J. Influence of high power ultrasound on selected moulds, yeasts and Alicyclobacillus acidoterrestris in apple, cranberry and blueberry juice and nectar. Ultrasonics 2018, 83, 3–17.eng
dcterms.referencesZhu, J.; Wang, Y.; Li, X.; Li, B.; Liu, S.; Chang, N.; Jie, D.; Ning, C.; Gao, H.; Meng, X. Combined e ect of ultrasound, heat, and pressure on Escherichia coli O157: H7, polyphenol oxidase activity, and anthocyanins in blueberry (Vaccinium corymbosum) juice. Ultrason. Sonochem. 2017, 37, 251–259.eng
dcterms.referencesZhang, H.;Wang, S.; Goon, K.; Gilbert, A.; Nguyen Huu, C.;Walsh, M.; Nitin, N.;Wrenn, S.; Tikekar, R.V. Inactivation of foodborne pathogens based on synergistic e ects of ultrasound and natural compounds during fresh produce washing. Ultrason. Sonochem. 2020, 64, 104983.eng
dcterms.referencesDe Simone, N.; Pace, B.; Grieco, F.; Chimienti, M.; Tyibilika, V.; Santoro, V.; Capozzi, V.; Colelli, G.; Spano, G.; Russo, P. Botrytis cinerea and Table Grapes: A Review of the Main Physical, Chemical, and Bio-Based Control Treatments in Post-Harvest. Foods 2020, 9, 1138.eng
dcterms.referencesTakahashi, M.; Okakura, Y.; Takahashi, H.; Imamura, M. Heat-denatured lysozyme could be a novel disinfectant for reducing hepatitis A virus and murine norovirus on berry fruit. Int. J. Food Microbiol. 2018, 266, 104–108eng
dcterms.referencesBambace, M.F.; Alvarez, M.V.; Moreira, M.D.R. Novel functional blueberries: Fructo-oligosaccharides and probiotic lactobacilli incorporated into alginate edible coatings. Food Res. Int. 2019, 122, 653–660.eng
dcterms.referencesXu, L.; Zhang, B.; Qin, Y.; Li, F.; Yang, S.; Lu, P.; Wang, L.; Fan, J. Preparation and characterization of antifungal coating films composed of sodium alginate and cyclolipopeptides produced by Bacillus subtilis. Int. J. Biol. Macromol. 2020, 143, 602–609.eng
dcterms.referencesPobiega, K.; Igielska, M.;Wnlodarczyk, P.; Gniewosz, M. The use of pullulan coatings with propolis extract to extend the shelf life of blueberry (Vaccinium corymbosum) fruit. Int. J. Food Sci. Technol. 2020, 1–8.eng
dcterms.referencesSonge, J.; Fan, L.; Forney, C.; Campbell-Palmer, L.; Fillmore, S. Effect of hexanal vapor to control postharvest decay and extend shelf-life of highbush blueberry fruit during controlled atmosphere storage. Can. J. Plant Sci. 2010, 90, 359–366.eng
dcterms.referencesCrowe, K.M.; Bushway, A.; Davis-dentici, K. Impact of postharvest treatments, chlorine and ozone, coupledwith low-temperature frozen storage on the antimicrobial quality of lowbush blueberries (Vaccinium angustifolium). LWT Food Sci. Technol. 2012, 47, 213–215.eng
dcterms.referencesKim, T.J.; Corbitt, M.P.; Silva, J.L.; Wang, D.S.; Jung, Y.; Spencer, B. Optimization of Hot Water Treatment for Removing Microbial Colonies on Fresh Blueberry Surface. J Food Sci. 2011.eng
dcterms.referencesKingsley, D.H.; Boyd, G.; Sites, J.; Niemira, B.A. Evaluation of 405-nm monochromatic light for inactivation of Tulane virus on blueberry surfaces. J Appl. Microbiol. 2017, 1017–1022.eng
dcterms.referencesHorm, K.M.; Davidson, P.M.; Harte, F.M.; Souza, D.H.D. Survival and Inactivation of Human Norovirus Surrogates in Blueberry Juice by High-Pressure Homogenization. Foodborne Pathog. Dis. 2012, 9, 974–979.eng
dcterms.referencesBogdanov, T.; Tsonev, I.; Marinova, P.; Benova, E.; Rusanov, K.; Rusanova, M.; Atanassov, I.; Kozáková, Z.; Krˇcma, F. Microwave Plasma Torch Generated in Argon for Small Berries Surface Treatment. Appl. Sci. 2018, 8, 1870.eng
dcterms.referencesFan, L.; Martynenko, A.; Doucette, C.; Hughes, T.; Fillmore, S. Microbial Quality and Shelf Life of Blueberry Purée Developed Using Cavitation Technology. J. Food Sci. 2018, 83, 732–739eng
dcterms.referencesMohideen, F.W.; Solval, K.M.; Li, J.; Zhang, J.; Chouljenko, A.; Chotiko, A.; Prudente, A.D.; Bankston, J.D.; Sathivel, S. E ect of continuous ultra-sonication on microbial counts and physico-chemical properties of blueberry (Vaccinium corymbosum) juice. LWT Food Sci. Technol. 2015, 60, 563–570.eng
dcterms.referencesDe, J.; Sreedharan, A.; Li, Y.; Gutierrez, A.; Brecht, J.K.; Sargent, S.A.; Schneider, K.R. Comparing the E cacy of Postharvest Cooling Methods to Enhance Fruit Quality and Reduce Salmonella in Artificially Inoculated Southern Highbush Blueberry. Hort Technol. 2019, 1.eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
StrategiesforMicrobialDecontaminationofFresh.pdf
Tamaño:
353.41 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones