Dynamics of population immunity due to the herd Effect in the COVID-19 pandemic

dc.contributor.authorClemente-Suárez, Vicente Javier
dc.contributor.authorHormeño-Holgado, Alberto
dc.contributor.authorJiménez, Manuel
dc.contributor.authorBenitez-Agudelo, Juan Camilo
dc.contributor.authorNavarro-Jiménez, Eduardo
dc.contributor.authorPerez-Palencia, Natalia
dc.contributor.authorMaestre-Serrano, Ronald
dc.contributor.authorLaborde-Cárdenas, Carmen Cecilia
dc.contributor.authorTornero-Aguilera, Jose Francisco
dc.date.accessioned2020-05-21T20:24:14Z
dc.date.available2020-05-21T20:24:14Z
dc.date.issued2020
dc.description.abstractThe novel Coronavirus 2 Severe Acute Respiratory Syndrome (SARS-Cov-2) has led to the Coronavirus Disease 2019 (COVID-19) pandemic, which has surprised health authorities around the world, quickly producing a global health crisis. Different actions to cope with this situation are being developed, including confinement, different treatments to improve symptoms, and the creation of the first vaccines. In epidemiology, herd immunity is presented as an area that could also solve this new global threat. In this review, we present the basis of herd immunology, the dynamics of infection transmission that induces specific immunity, and how the application of immunoepidemiology and herd immunology could be used to control the actual COVID-19 pandemic, along with a discussion of its effectiveness, limitations, and applications.eng
dc.format.mimetypepdfspa
dc.identifier.doihttps://doi.org/10.3390/vaccines8020236
dc.identifier.issn2076393X
dc.identifier.urihttps://hdl.handle.net/20.500.12442/5710
dc.language.isoengeng
dc.publisherMDPIeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceRevista Vaccineseng
dc.sourceVol. 8, Issue 2 (2020)
dc.subjectSARS-Cov-2eng
dc.subjectCOVID-19eng
dc.subjectHerd immunologyeng
dc.subjectVaccineseng
dc.subjectPandemiceng
dc.subjectEpidemiologyeng
dc.titleDynamics of population immunity due to the herd Effect in the COVID-19 pandemiceng
dc.typearticleeng
dc.type.driverarticleeng
dcterms.referencesTopley, W.W.C.; Wilson, G.S. The spread of bacterial infection. The problem of herd-immunity. Epidemiol. Infect. 1923, 21, 243–249.eng
dcterms.referencesFine, P.E. Herd immunity: History, theory, practice. Epidemiol. Rev. 1993, 15, 265–302.eng
dcterms.referencesFine, P.; Eames, K.; Heymann, D.L. “Herd immunity”: A rough guide. Clin. Infect. Dis. 2011, 52, 911–916.eng
dcterms.referencesRashid, H.; Khandaker, G.; Booy, R. Vaccination and herd immunity: What more do we know? Curr. Opin. Infect Dis. 2012, 25, 243–249.eng
dcterms.referencesSmith, D.R. Herd Immunity. Vet. Clin. Pract. 2019, 35, 593–604.eng
dcterms.referencesGoncalves, G. Herd immunity: Recent uses in vaccine assessment. Expert Rev. Vaccines 2008, 7, 1493–1506.eng
dcterms.referencesKorppi, M. Universal pneumococcal vaccination provides marked indirect beneficial effects through herd immunity. Acta Paediatr. 2018, 107, 1488–1489.eng
dcterms.referencesNymark, L.S.; Sharma, T.; Miller, A.; Enemark, U.; Griffiths, U.K. Inclusion of the value of herd immunity in economic evaluations of vaccines. A systematic review of methods used. Vaccine 2017, 35, 6828–6841.eng
dcterms.referencesAli, M.; Emch, M.; Von Seidlein, L.; Yunus, M.; Sack, D.A.; Rao, M.; Holmgren, J.; Clemens, J.D. Herd immunity conferred by killed oral cholera vaccines in Bangladesh: A reanalysis. Lancet 2005, 366, 44–49.eng
dcterms.referencesKinoshita, R.; Nishiura, H. Assessing herd immunity against rubella in Japan: A retrospective seroepidemiological analysis of age-dependent transmission dynamics. BMJ Open 2016, 6, doi:10.1136/bmjopen-2015-009928eng
dcterms.referencesSmith, D.; Huynh, C.; Moore, A.J.; Frick, A.; Anderson, C.; Porrachia, M.; Scott, B.; Stous, S.; Schooley, R.; Little, S.; et al. Herd Immunity Likely Protected the Men Who Have Sex With Men in the Recent Hepatitis A Outbreak in San Diego, California. Clin. Infect. Dis. 2019, 68, 1228–1230.eng
dcterms.referencesMaver, P.J.; Poljak, M. Progress in prophylactic human papillomavirus (HPV) vaccination in 2016: A literature review. Vaccine 2018, 36, 5416–5423.eng
dcterms.referencesLeBlanc, J.J.; ElSherif, M.; Ye, L.; MacKinnon-Cameron, D.; Ambrose, A.; Hatchette, T.F.; Lang, A.L.S.; Gillis, H.D.; Martin, I.; Demczuk, W.; et al. Streptococcus pneumoniae serotype 3 is masking PCV13-mediated herd immunity in Canadian adults hospitalized with community acquired pneumonia: A study from the Serious Outcomes Surveillance (SOS) Network of the Canadian immunization research Network (CIRN). Vaccine 2019, 37, 5466–5473.eng
dcterms.referencesPayne, P.; Geyrhofer, L.; Barton, N.H.; Bollback, J.P. CRISPR-based herd immunity can limit phage epidemics in bacterial populations. eLife 2018, 7, e32035.eng
dcterms.referencesAlbuquerque, I.G.C.D.; Marandino, R.; Mendonça, A.P.; Nogueira, R.M.R.; Vasconcelos, P.F.D.C.; Guerra, L.R.; Brandão, B.C.; Mendonça, A.P.; Aguiar, G.R.; Bacco, P.A. Chikungunya virus infection: Report of the first case diagnosed in Rio de Janeiro, Brazil. Rev. Soc. Bras. Med. Trop. 2012, 45, 128–129.eng
dcterms.referencesKwok, K.O.; Lai, F.; Wei, W.I.; Wong, S.Y.S.; Tang, J.W. Herd immunity–estimating the level required to halt the COVID-19 epidemics in affected countries. J. Infect. 2020, 80, e32–e33eng
dcterms.referencesFox, J.P.; Elveback, L.; Scott, W.; Gatewood, L.; Ackerman, E. Herd immunity: Basic concept and relevance to public health immunization practices. Am. J. Epidemiol. 1971, 94, 179–189.eng
dcterms.referencesSinghal, T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr. 2020, 87(4), doi:10.1007/s12098-020-03263-6eng
dcterms.referencesPeng, X.; Xu, X.; Li, Y.; Cheng, L.; Zhou, X.; Ren, B. Transmission routes of 2019-nCoV and controls in dental practice. Int. J. Oral Sci. 2020, 12, 9.eng
dcterms.referencesYeo, C.; Kaushal, S.; Yeo, D. Enteric involvement of coronaviruses: Is faecal–oral transmission of SARSCoV- 2 possible? Lancet Gastroenterol. Hepatol. 2020, 5, 335–337.eng
dcterms.referencesQiao, J. What are the risks of COVID-19 infection in pregnant women? Lancet 2020, 395, 760–762.eng
dcterms.referencesZhou, G.; Zhao, Q. Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int. J. Biol. Sci. 2020, 16, 1718.eng
dcterms.referencesXun, J.; Lu, L.; Jiang, S.; Lu, H.; Wen, Y.; Huang, J. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered 2 patient cohort and their implications. Medrxiv 2020, doi:10.1101/2020.03.30.20047365eng
dcterms.referencesWu, Y.; Guo, C.; Tang, L.; Hong, Z.; Zhou, J.; Dong, X.; Yin, H.; Xiao, Q.; Tang, Y.; Qu, X.; et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 2020, 5, 434–435.eng
dcterms.referencesWu, J.T.; Leung, K.; Bushman, M.; Kishore, N.; Niehus, R.; de Salazar, P.M.; Cowling, B.J.; Lipsitch, M.; Leung, G.M. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 2020, 26, 506–510.eng
dcterms.referencesChen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513.eng
dcterms.referencesMizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020, 25, 2000180eng
dcterms.referencesBenvenuto, D.; Giovanetti, M.; Vassallo, L.; Angeletti, S.; Ciccozzi, M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Brief 2020, 29, 105340.eng
dcterms.referencesRead, J.M.; Bridgen, J.R.; Cummings, D.A.; Ho, A.; Jewell, C.P. Novel coronavirus 2019-nCoV: Early estimation of epidemiological parameters and epidemic predictions. Medrxiv 2020, doi:10.1101/2020.01.23.20018549eng
dcterms.referencesWang, H.; Wang, Z.; Dong, Y.; Chang, R.; Xu, C.; Yu, X.; Zhang, S.; Tsamlag, L.; Shang, M.; Huang, J.; et al. Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China. Cell Discov. 2020, 6, 10.eng
dcterms.referencesTang, B.; Bragazzi, N.L.; Li, Q.; Tang, S.; Xiao, Y.; Wu, J. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect. Dis. Model. 2020, 5, 248–255.eng
dcterms.referencesChen, T.M.; Rui, J.; Wang, Q.P.; Zhao, Z.Y.; Cui, J.A.; Yin, L. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect. Dis. Poverty 2020, 9, 24.eng
dcterms.referencesLiu, Y.; Gayle, A.A.; Wilder-Smith, A.; Rocklöv, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 2020, 27, taaa021eng
dcterms.referencesRandolph, H.E.; Barreiro, L.B. Herd Immunity: Understanding COVID-19. Cell Press 2020 doi:10.1016/j.immuni.2020.04.012eng
dcterms.referencesShim, E.; Tariq, A.; Choi, W.; Lee, Y.; Chowell, G. Transmission potential and severity of COVID-19 in South Korea. Int. J. Infect. Dis. 2020, 93, 339–344.eng
dcterms.referencesAdhikari, S.P.; Meng, S.; Wu, Y.J.; Mao, Y.P.; Ye, R.X.; Wang, Q.Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty 2020, 9, 29.eng
dcterms.referencesShang, W.; Yang, Y.; Rao, Y.; Rao, X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. npj Vaccines 2020, 5, 18.eng
dcterms.referencesSurveillances, V. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China, 2020. China CDC Wkly 2020, 2, 113–122.eng
dcterms.referencesWHO Characterizes COVID-19 as a Pandemic. 2020. Available online: https://www.paho.org/hq/index.php?option=com_content&view=article&id=15756&Itemid=39630&lang= en (accessed on 15/05/2020).eng
dcterms.referencesFoddai, A.; Lindberg, A.; Lubroth, J.; Ellis-Iversen, J. Surveillance to improve evidence for community control decisions during the COVID-19 pandemic–opening the animal epidemic toolbox for public health. One Health 2020, 9, 100130eng
dcterms.referencesde Lusignan, S.; Bernal, J.L.; Zambon, M.; Akinyemi, O.; Amirthalingam, G.; Andrews, N.; Borrow, R.; Byford, R.; Charlett, A.; Dabrera, G.; et al. Emergence of a novel coronavirus (COVID-19): Protocol for extending surveillance used by the Royal College of general practitioners research and surveillance centre and public health England. JMIR Public Health Surveill. 2020, 6, e18606.eng
dcterms.referencesWu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242eng
dcterms.referencesTufan, Z.K.; Kayaaslan, B. Crushing the curve, the role of national and international institutions and policy makers in COVID-19 pandemic. Turk. J. Med. Sci. 2020, 50, 495–508.eng
dcterms.referencesFang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology 2020, 200432, doi:10.1148/radiol.2020200432eng
dcterms.referencesLi, W.; Yang, Y.; Liu, Z.H.; Zhao, Y.J.; Zhang, Q.; Zhang, L.; Cheung, T.; Xiang, Y.-T. Progression of Mental Health Services during the COVID-19 Outbreak in China. Int. J. Biol. Sci. 2020, 16, 1732–1738.eng
dcterms.referencesWorld Health Organization. Operational Considerations for COVID-19 Surveillance Using GISRS: Interim Guidance, 26 March 2020 (No. WHO/2019-nCoV/Leveraging_GISRS/2020.1); World Health Organization: Geneva, Switzerland, 2020.eng
dcterms.referencesSrivastava, N.; Baxi, P.; Ratho, R.K.; Saxena, S.K. Global Trends in Epidemiology of Coronavirus Disease 2019 (COVID-19). In Coronavirus Disease 2019 (COVID-19); Springer: Singapore, 2020, doi: 10.1007/978-981- 15-4814-7_2.eng
dcterms.referencesPeng, F.; Tu, L.; Yang, Y.; Hu, P.; Wang, R.; Hu, Q.; Cao, F.; Jiang, T.; Sun, J.; Xu, G.; et al. Management and Treatment of COVID-19: The Chinese Experience. Can. J. Cardiol. 2020, doi:10.1016/j.cjca.2020.04.010eng
dcterms.referencesLi, L.; Qin, L.; Xu, Z.; Yin, Y.; Wang, X.; Kong, B.; Bai, J.; Lu, Y.; Fang, Z.; Song, Q.; et al. Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct. Radiology 2020, 200905.eng
dcterms.referencesBiswas, M.H.A.; Paiva, L.T.; De Pinho, M.D.R. A SEIR model for control of infectious diseases with constraints. Math. Biosci. Eng. 2014, 11, 761–784.eng
dcterms.referencesHerrmann, H.A.; Schwartz, J.M. Using network science to propose strategies for effectively dealing with pandemics: The COVID-19 example. medRxiv 2020, doi:10.1101/2020.04.02.20050468eng
dcterms.referencesFresnadillo-Martínez, M.J.; Garcia-Sanchez, E.; Garcia-Merino, E.; García-Sánchez, J.E. Mathematical modelling of the propagation of infectious diseases: Where we came from, and where we are going. Rev. Esp. Quim. 2013, 26, 81–91.eng
dcterms.referencesSambala, E.Z.; Manderson, L. Policy perspectives on post pandemic influenza vaccination in Ghana and Malawi. BMC Public Health 2017, 17, 227.eng
dcterms.referencesGarnett, G.P. Role of herd immunity in determining the effect of vaccines against sexually transmitted disease. J. Infect. Dis. 2005, 191 (Suppl. 1), S97–S106.eng
dcterms.referencesZhan, C.; Chi, K.T.; Lai, Z.; Chen, X.; Mo, M. General Model for COVID-19 Spreading with Consideration of Intercity Migration, Insufficient Testing and Active Intervention: Application to Study of Pandemic Progression in Japan and USA. medRxiv 2020, doi:10.1101/2020.03.25.20043380.eng
dcterms.referencesFlaxman, S.; Mishra, S.; Gandy, A.; Unwin, H.; Coupland, H.; Mellan, T.; Zhu, H.; Berah, T.; Eaton, J.; Perez Guzman, P.; et al. Report 13: Estimating the Number of Infections and the Impact of Non-Pharmaceutical Interventions on COVID-19 in 11 European Countries; Imperial College London: London, UK, 2020.eng
dcterms.referencesKarin, O.; Bar-On, Y.M.; Milo, T.; Katzir, I.; Mayo, A.; Korem, Y.; Dudovich, B.; Yashiv, E.; Zehavi, A.J.; Davidovich, N.; et al. Adaptive cyclic exit strategies from lockdown to suppress COVID-19 and allow economic activity. medRxiv 2020, doi:10.1101/2020.04.04.20053579eng
dcterms.referencesCasadevall, A.; Pirofski, L.A. The convalescent sera option for containing COVID-19. J. Clin. Investig. 2020, 130, 1545–1548.eng
dcterms.referencesWalker, P.G.; Whittaker, C.; Watson, O.; Baguelin, M.; Ainslie, K.E.C.; Bhatia, S.; Boonyasiri, A.; Boyd, O.; Cattarino, L. The Global Impact of covid-19 and Strategies for Mitigation and Suppression; Imperial College of London: London, UK, 2020.eng
dcterms.referencesThe Coalition for Epidemic Preparedness Innovations. CEPI welcomes UK Government’s funding and highlights need for $2 billion to develop a vaccine against COVID-19. 2020. Available online: https://cepi.net/news_cepi/2-billion-required-to-develop-a-vaccine- against-the-covid-19-virus/ (accessed on 16/04/2020).eng
dcterms.referencesJames, A.; Hendy, S.C.; Plank, M.J.; Steyn, N. Suppression and Mitigation Strategies for Control of COVID- 19 in New Zealand. medRxiv 2020, doi:10.1101/2020.03.26.20044677eng
dcterms.referencesAnderson, R.M.; Heesterbeek, H.; Klinkenberg, D.; Hollingsworth, T.D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet 2020, 395, 931–934.eng
dcterms.referencesColson, P.; Rolain, J.M.; Lagier, J.C.; Brouqui, P.; Raoult, D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int. J. Antimicrob. Agents 2020, 55, 105932eng
dcterms.referencesZhang, W.; Zhao, Y.; Zhang, F.; Wang, Q.; Li, T.; Liu, Z.; Wang, J.; Qin, Y.; Zhang, X.; Yan, X.; et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clin. Immunol. 2020, 214, 108393.eng
dcterms.referencesCortegiani, A.; Ingoglia, G.; Ippolito, M.; Giarratano, A.; Einav, S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care 2020, 57, 279–283eng
dcterms.referencesCOVID-19 reinfection becoming an issue in China, strategist says. Available online: https://www.cnbc.com/video/2020/03/16/covid-19-reinfection-becoming-an-issue-in-china-strategistsays. html (accessed on 7 of April 2020).eng
dcterms.referencesSanche, S.; Lin, Y.T.; Xu, C.; Romero-Severson, E.; Hengartner, N.; Ke, R. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 2020, doi:10.3201/eid2607.200282eng
dcterms.referencesArmocida, B.; Formenti, B.; Ussai, S.; Palestra, F.; Missoni, E. The Italian health system and the COVID-19 challenge. Lancet Public Health 2020, doi:10.1016/S2468-2667(20)30074-8eng
dcterms.referencesWorst-Case Estimates for U.S. Coronavirus Deaths, Available online: https://www.nytimes.com/2020/03/13/us/coronavirus-deaths-estimate.html (accessed on 7 of April 2020).eng
dcterms.referencesVerity, R.; Okell, L.C.; Dorigatti, I.; Winskill, P.; Whittaker, C.; Imai, N.; Cuomo-Dannenburg, G.; Thompson, H.; Walker, P.G.T.; Fu, H.; et al. Estimates of the severity of coronavirus disease 2019: A modelbased analysis. Lancet Infect Dis. 2020, doi: 10.1016/S1473-3099(20)30243-7eng
dcterms.referencesKissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 though the postpandemic period. Science 2020, doi:10.1126/science.abb5793eng
dcterms.referencesFang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020, 8, e21.eng
dcterms.referencesRothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433.eng
dcterms.referencesNasiri, M.J.; Haddadi, S.; Tahvildari, A.; Farsi, Y.; Arbabi, M.; Hasanzadeh, S.; Jamshidi, P.; Murthi, M.; Mirsaeidi, M. COVID-19 clinical characteristics, and sex-specific risk of mortality: Systematic review and meta-analysis. medRxiv 2020, doi:10.1101/2020.03.24.20042903eng
dcterms.referencesBao, L.; Deng, W.; Gao, H.; Xiao, C.; Liu, J.; Xue, J.; Lv, Q.; Liu, J.; Yu, P.; Xu, Y.; et al. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. bioRxiv 2020, doi:10.1101/2020.03.13.990226eng
dcterms.referencesAndre, F.E.; Booy, R.; Bock, H.L. Bulletin of the World Health Organization Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull. World Health Organ. 2008, 86, 140–146eng
dcterms.referencesJohn, T.J.; Samuel, R. Herd immunity and herd effect: New insights and definitions. Eur. J. Epidemiol. 2000, 16, 601–606.eng
dcterms.referencesAnderson, R.M.; May, R.M. Vaccination and herd immunity to infectious diseases. Nature 1985 318, 323- 329.eng
dcterms.referencesAdegbola, R.; Secka, O.; Lahai, G.; Lloyd-Evans, N.; Njie, A.; Usen, S.; Oluwalana, C.; Obaro, S.; Weber, M.; Corrah, T.; et al. Elimination of Haemophilus influenzae type b (Hib) disease from the Gambia after introduction of a Hib conjugate vaccine: A prospective study. Lancet 2005, 366, 144–150.eng
dcterms.referencesMoulton, L.H.; Chung, S.; Croll, J.; Reid, R.; Weatherholtz, R.C.; Santosham, M. Estimation of the indirect effect of Haemophilus influenzae type b conjugate vaccine in an American Indian population. Int. J. Epidemiol. 2000, 29, 753–756.eng
dcterms.referencesSchlenker, T.L.; Bain, C.; Baughman, A.L.; Hadler, S.C. Measles herd immunity: The association of attack rates with immunization rates in preschool children. JAMA 1992, 267, 823–826.eng
dcterms.referencesHochberg, M.E. Importance of suppression and mitigation measures in managing COVID-19 outbreaks. medRxiv 2020, doi:10.1101/2020.03.31.20048835eng
dcterms.referencesGautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 105949, doi:10.1016/j.ijantimicag.2020.105949eng
dcterms.referencesStebbing, J.; Phelan, A.; Griffin, I.; Tucker, C.; Oechsle, O.; Smith, D.; Richardson, P. COVID-19: Combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis. 2020, 20, 400-402eng
dcterms.referencesDong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther. 2020, 14, 58–60.eng
dcterms.referencesKatul, G.G.; Mrad, A.; Bonetti, S.; Manoli, G.; Parolari, A.J. Global convergence of COVID-19 basic reproduction number and estimation from early-time SIR dynamics. medRxiv 2020, doi:10.1101/2020.04.10.20060954eng
dcterms.referencesBrodin, P. Why is COVID‐19 so mild in children? Acta Paediatr. 2020, 109, 1082–1083eng
dcterms.referencesPang, J.; Wang, M.X.; Ang, I.Y.; Tan, S.H.; Lewis, R.F.; Chen, J.I.; Gutierrez, R.A.; Gwee, S.X.; Chua, P.E.; Yang, Q.; Ng, X.Y. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019- nCoV): A systematic review. J. Clin. Med. 2020, 9, 623.eng
dcterms.referencesGraham, R.L.; Donaldson, E.F.; Baric, R.S. A decade after SARS: Strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 2013, 11, 836–848.eng
dcterms.referencesZhang, J.; Zeng, H.; Gu, J.; Li, H.; Zheng, L.; Zou, Q. Progress and Prospects on Vaccine Development against SARS-CoV-2. Vaccines 2020, 8, 153.eng
dcterms.referencesBenjamin-Chung, J.; Abedin, J.; Berger, D.; Clark, A.; Jimenez, V.; Konagaya, E.; Tran, D.; Arnold, B.F.; Hubbard, A.E.; Luby, S.P.; et al. Spillover effects on health outcomes in low-and middle-income countries: A systematic review. Int. J. Epidemol. 2017, 46, 1251–1276.eng
dcterms.referencesAli, M.; Qadri, F.; Kim, D.R.; Islam, T.; Im, J.; Ahmmed, F.; Chon, Y.; Islam Khan, A.; Zaman, K.; Marks, F.; et al. Unmasking herd protection by an oral cholera vaccine in a cluster-randomized trial. Int. J. Epidemol. 2019, 48, 1252–1261.eng
dcterms.referencesCallaway, E. Should scientists infect healthy people with the coronavirus to test vaccines? Nature 2020, 580, 17eng
dcterms.referencesPlotkin, S.A.; Plotkin, S.A. Correlates of vaccine-induced immunity. Clin. Infect. Dis. 2008, 47, 401–409.eng
dcterms.referencesCallaway, E. The race for coronavirus vaccines: A graphical guide. Nature 2020, 580, 576.eng
dcterms.referencesLang, P.O.; Aspinall, R. Immunosenescence and herd immunity: With an ever-increasing aging population do we need to rethink vaccine schedules? Expert Rev. Vaccines 2012, 11, 167–176.eng
dcterms.referencesNicola, D.; Vito, M.; Linda, J.S.; Canio, B. COVID-19 from veterinary medicine and one health perspectives: What animal coronaviruses have taught us. Res. Vet. Sci. 2020, 131, 21–23.eng
dcterms.referencesDel Giudice, G.; Goronzy, J.J.; Grubeck-Loebenstein, B.; Lambert, P.H.; Mrkvan, T.; Stoddard, J.J.; Doherty, T.M. Fighting against a protean enemy: Immunosenescence, vaccines, and healthy aging. NPJ Aging Mech. Dis. 2017, 4, 1.eng
dcterms.referencesJin, Y.; Yang, H.; Ji, W.; Wu, W.; Chen, S.; Zhang, W.; Duan, G. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 2020, 12, 372.eng
dcterms.referencesRobson, B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput. Biol. Med. 2020, 26, 103670.eng
dcterms.referencesAhmed, S.F.; Quadeer, A.A.; McKay, M.R. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 2020, 12, 254.eng
dcterms.referencesColgrove, J. Vaccine refusal revisited the limits of public health persuasion and coercion. N. Eng. J. Med. 2016, 375, 1316–1317.eng
dcterms.referencesDudley, M.Z.; Halsey, N.A.; Omer, S.B.; Orenstein, W.A.; TO’Leary, S.; Limaye, R.J.; Salmon, D.A. The state of vaccine safety science: Systematic reviews of the evidence. Lancet Infect. Dis. 2020, 20, e80–e89eng
dcterms.referencesMetcalf, C.J.; Ferrari, M.; Graham, A.L.; Grenfell, B.T. Understanding herd immunity. Trends Immunol. 2015, 36, 753–755.eng
dcterms.referencesBetsch, C.; Böhm, R.; Korn, L.; Holtmann, C. On the benefits of explaining herd immunity in vaccine advocacy. Nature Hum. Behav. 2017, 1, 0056.eng
oaire.versioninfo:eu-repo/semantics/publishedVersionspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Dynamics_Population_Immunity_Due.pdf
Tamaño:
1015.53 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones