Estimation of PQ distance dispersion for atrial fibrillation detection

datacite.rightshttp://purl.org/coar/access_right/c_abf2eng
dc.contributor.authorGiraldo-Guzmán, Jader
dc.contributor.authorKotas, Marian
dc.contributor.authorCastells, Francisco
dc.contributor.authorContreras-Ortiz, Sonia H.
dc.contributor.authorUrina-Triana, Miguel
dc.date.accessioned2021-06-09T20:00:20Z
dc.date.available2021-06-09T20:00:20Z
dc.date.issued2021
dc.description.abstractBackground and objective: Atrial fibrillation (AF) is the most common cardiac arrhythmia in the world. It is associated with significantly increased morbidity and mortality. Diagnosis of the disease can be based on the analysis of the electrical atrial activity, on quantification of the heart rate irregularity or on a mixture of the both approaches. Since the amplitude of the atrial waves is small, their analysis can lead to false results. On the other hand, the heart rate based analysis usually leads to many unnecessary warnings. Therefore, our goal is to develop a new method for effective AF detection based on the analysis of the electrical atrial waves. Methods: The proposed method employs the fact that there is a lack of repeatable P waves preceding QRS complexes during AF. We apply the operation of spatio-temporal filtering (STF) to magnify and detect the prominent spatio-temporal patterns (STP) within the P waves in multi-channel ECG recordings. Later we measure their distances (PQ) to the succeeding QRS complexes, and we estimate dispersion of the ob- tained PQ series. For signals with normal sinus rhythm, this dispersion is usually very low, and contrary, for AF it is much raised. This allows for effective discrimination of this cardiologic disorder. Results: Tested on an ECG database consisting of AF cases, normal rhythm cases and cases with normal rhythm restored by the use of cardioversion, the method proposed allowed for AF detection with the accuracy of 98 . 75% on the basis of both 8–channel and 2–channel signals of 12 s length. When the signals length was decreased to 6 s, the accuracy varied in the range of 95% −97 . 5% depending on the number of channels and the dispersion measure applied. Conclusions: Our approach allows for high accuracy of atrial fibrillation detection using the analysis of electrical atrial activity. The method can be applied to an early detection of the desease and can advanta- geously be used to decrease the number of false warnings in systems based on the analysis of the heart rate.eng
dc.format.mimetypepdfspa
dc.identifier.doihttps://doi.org/10.1016/j.cmpb.2021.106167
dc.identifier.issn01692607
dc.identifier.urihttps://hdl.handle.net/20.500.12442/7896
dc.identifier.urlhttps://www.sciencedirect.com/science/article/abs/pii/S0169260721002418
dc.language.isoengeng
dc.publisherElsevierspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceComputer Methods and Programs in Biomedicineeng
dc.sourceVol. 208, (2021)
dc.subjectECG processingeng
dc.subjectAtrial fibrillationeng
dc.subjectPQ dispersioneng
dc.subjectSpatio–temporal filteringeng
dc.subjectSpatio–temporal patternseng
dc.titleEstimation of PQ distance dispersion for atrial fibrillation detectioneng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesW. H. Organization, Cardiovascular diseases, 2017, ( http://www.who.int/ mediacentre/factsheets/fs317/en/ ).eng
dcterms.referencesH. Kamel , P.M. Okin , M.S. Elkind , C. Iadecola , Atrial fibrillation and mechanisms of stroke: time for a new model, Stroke 47 (3) (2016) 895–900 .eng
dcterms.referencesL. Sörnmo , Atrial Fibrillation from an Engineering Perspective, Springer, 2018 .eng
dcterms.referencesX. Zhou , H. Ding , W. Wu , Y. Zhang , A real-time atrial fibrillation detection al- gorithm based on the instantaneous state of heart rate, PloS one 10 (9) (2015) e0136544 .eng
dcterms.referencesM.S. Islam , N. Ammour , N. Alajlan , H. Aboalsamh , Rhythm-based heartbeat duration normalization for atrial fibrillation detection, Comput. Biol. Med. 72 (2016) 160–169 .eng
dcterms.referencesR. Czabanski , K. Horoba , J. Wrobel , A. Matonia , R. Martinek , T. Kupka , M. Jezewski , R. Kahankova , J. Jezewski , J.M. Leski , Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine, Sensors 20 (3) (2020) 765 .eng
dcterms.referencesA.M. Climent, M. de la Salud Guillem, D. Husser, F. Castells, J. Millet, A. Boll- mann, Poincarésurface profiles of RR intervals: a novel noninvasive method for the evaluation of preferential AV nodal conduction during atrial fibrilla- tion, IEEE Trans. Biomed. Eng. 56 (2) (2009) 433–442, doi: 10.1109/TBME.2008. 2003273 .eng
dcterms.referencesE. Ebrahimzadeh , M. Kalantari , M. Joulani , R.S. Shahraki , F. Fayaz , F. Ahmadi , Prediction of paroxysmal atrial fibrillation: a machine learning based approach using combined feature vector and mixture of expert classification on HRV sig- nal, Comput. Methods. Programs Biomed. 165 (2018) 53–67 .eng
dcterms.referencesP.M. Buscema , E. Grossi , G. Massini , M. Breda , F. Della Torre , Computer aided diagnosis for atrial fibrillation based on new artificial adaptive systems, Com- put. Methods Programs Biomed. 191 (2020) 105401 .eng
dcterms.referencesR. Alcaraz , A. Martínez , J.J. Rieta , Role of the P-wave high frequency energy and duration as noninvasive cardiovascular predictors of paroxysmal atrial fibrilla- tion, Comput. Methods Programs Biomed. 119 (2) (2015) 110–119 .eng
dcterms.referencesM. Stridh , L. Sörnmo , Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation, IEEE Trans. Biomed. Eng. 48 (2001) 105–111 .eng
dcterms.referencesF. Castells , J.J. Rieta , J. Millet , V. Zarzoso , Spatiotemporal blind source sepa- ration approach to atrial activity estimation in atrial tachyarrhythmias, IEEE Trans. Biomed. Eng. 52 (2) (2005) 258–267 .eng
dcterms.referencesS. Ladavich , B. Ghoraani , Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity, Biomed. Signal Process. Control 18 (2015) 274–281 .eng
dcterms.referencesH. Pürerfellner , E. Pokushalov , S. Sarkar , J. Koehler , R. Zhou , L. Urban , G. Hin- dricks , P-wave evidence as a method for improving algorithm to detect atrial fibrillation in insertable cardiac monitors, Heart Rhythm 11 (9) (2014) 1575–1583 .eng
dcterms.referencesS. Babaeizadeh , R.E. Gregg , E.D. Helfenbein , J.M. Lindauer , S.H. Zhou , Improve- ments in atrial fibrillation detection for real-time monitoring, J. Electrocardiol. 42 (6) (2009) 522–526 .eng
dcterms.referencesR. Couceiro, P. Carvalho, J. Henriques, M. Antunes, M. Harris, J. Habetha, Detec- tion of atrial fibrillation using model-based ECG analysis (2008) 1–5.eng
dcterms.referencesR. He , K. Wang , N. Zhao , Y. Liu , Y. Yuan , Q. Li , H. Zhang , Automatic detection of atrial fibrillation based on continuous wavelet transform and 2D convolutional neural networks, Front. Physiol. 9 (2018) 1206 .eng
dcterms.referencesY. Xia , N. Wulan , K. Wang , H. Zhang , Detecting atrial fibrillation by deep con- volutional neural networks, Comput. Biol. Med. 93 (2018) 84–92 .eng
dcterms.referencesH. Shi , H. Wang , C. Qin , L. Zhao , C. Liu , An incremental learning system for atrial fibrillation detection based on transfer learning and active learning, Comput. Methods Programs Biomed. 187 (2020) 105219 .eng
dcterms.referencesO. Yildirim , M. Talo , E.J. Ciaccio , R. San Tan , U.R. Acharya , Accurate deep neural network model to detect cardiac arrhythmia on more than 10,0 0 0 individual subject ecg records, Comput. Methods Programs Biomed. 197 (2020) 105740 .eng
dcterms.referencesN.R. Jones, C.J. Taylor, F.D.R. Hobbs, L. Bowman, B. Casadei, Screening for atrial fibrillation: a call for evidence, Eur. Heart J. 41 (10) (2019) 1075–1085, doi: 10. 1093/eurheartj/ehz834 .eng
dcterms.referencesJ. Mandrola , A. Foy , Downsides of detecting atrial fibrillation in asymptomatic patients, Am. Family Physician 99 (2019) 354–355 .eng
dcterms.referencesM. Kotas , J. Jezewski , K. Horoba , A. Matonia , Application of spatio-temporal filtering to fetal electrocardiogram enhancement, Comput. Methods Programs Biomed. 104 (1) (2011) 1–9 .eng
dcterms.referencesF. Castells , Blind source separation with prior source knowledge for the analy- sis of atrial tachyarrhythmias. Signal modelling, estimation and validation, Uni- versitat Politècnica de València, Spain, 2003 Ph.D. thesis .eng
dcterms.referencesA. Goldberger , L. Amaral , L. Glass , J. Hausdorff, P. Ivanov , R. Mark , J. Mietus , G. Moody , C. Peng , H. Stanley , Physiobank, physiotoolkit, and physionet: com- ponents of a new research resource for complex physiologic signals, Circulation 101 (20 0 0) e215–e220 .eng
dcterms.referencesS.M. Kay , Fundamentals of Statistical Signal Processing, Prentice Hall PTR, 1993 .eng
dcterms.referencesB. Yang , H. Li , Q. Wang , Y. Zhang , Subject-based feature extraction by us- ing fisher WPD-CSP in brain–computer interfaces, Comput. Methods Programs Biomed. 129 (2016) 21–28 .eng
dcterms.referencesA. Miladinovi ´c , M. Aj ˇcevi ´c , J. Jarmolowska , U. Marusic , M. Colussi , G. Silveri , P.P. Battaglini , A. Accardo , Effect of power feature covariance shift on BCI spatial-filtering techniques: a comparative study, Comput. Methods Programs Biomed. 198 (2020) 105808 .eng
dcterms.referencesJ. Pan , W.J. Tompkins , A real-time QRS detection algorithm, IEEE Trans. Biomed. Eng. (3) (1985) 230–236 .eng
dcterms.referencesH. Azami, K. Mohammadi, B. Bozorgtabar, An improved signal segmentation using moving average and Savitzky-Golay filter (2012).eng
dcterms.referencesN. Miljkovi ´c , N. Popovi ´c , O. Djordjevi ´c , L. Konstantinovi ´c , T.B. Šekara ,ECG ar- tifact cancellation in surface EMG signals by fractional order calculus applica- tion, Comput. Methods Programs Biomed. 140 (2017) 259–264 .eng
dcterms.referencesC. Croarkin, P. Tobias, J. Filliben, B. Hembree, W. Guthrie, et al., NIST/SEMATECH e-handbook of statistical methods, NIST/SEMATECH, July. Available online: http://www.itl.nist.gov/div898/handbook (2006).eng
dcterms.referencesJ.P. Martínez , R. Almeida , S. Olmos , A.P. Rocha , P. Laguna , A wavelet-based ECG delineator: evaluation on standard databases, IEEE Trans. Biomed. Eng. 51 (4) (2004) 570–581 .eng
dcterms.referencesL.K. Saul , J.B. Allen , Periodic component analysis: an eigenvalue method for representing periodic structure in speech, in: Nips, 20 0 0, pp. 807–813 .eng
dcterms.referencesR. Sameni , C. Jutten , M.B. Shamsollahi , Multichannel electrocardiogram decom- position using periodic component analysis, IEEE Trans. Biomed. Eng. 55 (8) (2008) 1935–1940 .eng
dcterms.referencesV. Monasterio , G.D. Clifford , P. Laguna , J.P. MARTInez , A multilead scheme based on periodic component analysis for T-wave alternans analysis in the ECG, Ann. Biomed. Eng. 38 (8) (2010) 2532–2541 .eng
dcterms.referencesJ.M. Leski , M. Kotas , Hierarchical clustering with planar segments as proto- types, Pattern Recognit. Lett. 54 (2015) 1–10 .eng
dcterms.referencesJ.M. Leski , M. Kotas , On robust fuzzy c-regression models, Fuzzy Sets Syst. 279 (2015) 112–129 .eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones