Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection

dc.contributor.authorPacheco-Lugo, Lisandro
dc.contributor.authorDíaz-Olmos, Yirys
dc.contributor.authorSáenz-García, José
dc.date.accessioned2018-03-20T20:58:15Z
dc.date.available2018-03-20T20:58:15Z
dc.date.issued2017-01
dc.description.abstractNew opportunities have raised to study the gene function approaches of Trypanosoma cruzi after its genome sequencing in 2005. Functional genomic approaches in Trypanosoma cruzi are challenging due to the reduced tools available for genetic manipulation, as well as to the reduced efficiency of the transient transfection conducted through conventional methods. The Amaxa nucleofector device was systematically tested in the present study in order to improve the electroporation conditions in the epimastigote forms of T. cruzi. The transfection efficiency was quantified using the green fluorescent protein (GFP) as reporter gene followed by cell survival assessment. The herein used nucleofection parameters have increased the survival rates (N90%) and the transfection efficiency by approximately 35%. The small amount of epimastigotes and DNA required for the nucleofection can turn the method adopted here into an attractive tool for high throughput screening (HTS) applications, and for gene editing in parasites where genetic manipulation tools remain relatively scarce.eng
dc.identifier.issn13835769
dc.identifier.urihttp://hdl.handle.net/20.500.12442/1877
dc.language.isoengspa
dc.publisherJapanese Society of Parasitologyeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceParasitology Internationaleng
dc.sourceVol. 66, No.3 (2017)spa
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S1383576916304330
dc.subjectTransfectioneng
dc.subjectNucleofectioneng
dc.subjectElectroporationeng
dc.subjectTrypanosoma cruzieng
dc.titleEffective gene delivery to Trypanosoma cruzi epimastigotes through nucleofectioneng
dc.typearticleeng
dcterms.referencesJ.R. Coura, P.A. Viñas, Chagas disease: a new worldwide challenge, Nature 465 (2010) S6–S7, http://dx.doi.org/10.1038/nature09221.eng
dcterms.referencesN.M. El-Sayed, P.J.Myler, D.C. Bartholomeu, D. Nilsson, G. Aggarwal, A.-N. Tran, et al., The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease, Science 309 (2005) 409–415, http://dx.doi.org/10.1126/science.1112631.eng
dcterms.referencesH. Ngô, C. Tschudi, K. Gull, E. Ullu, Double-stranded RNA induces mRNA degradation in Trypanosoma brucei, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 14687–14692, http:// www.ncbi.nlm.nih.gov/pubmed/9843950.eng
dcterms.referencesW.D. DaRocha, K. Otsu, S.M.R. Teixeira, J.E. Donelson, Tests of cytoplasmic RNA interference (RNAi) and construction of a tetracycline-inducible T7 promoter system in Trypanosoma cruzi, Mol. Biochem. Parasitol. 133 (2004) 175–186, http://www. ncbi.nlm.nih.gov/pubmed/14698430.eng
dcterms.referencesC. Subramaniam, P. Veazey, S. Redmond, J. Hayes-Sinclair, E. Chambers, M. Carrington, K. Gull, K. Matthews, D. Horn, M.C. Field, Chromosome-wide analysis of gene function by RNA interference in the African trypanosome, Eukaryot. Cell. 5 (2006) 1539–1549, http://dx.doi.org/10.1128/EC.00141-06.eng
dcterms.referencesJ.C. Morris, Z. Wang, M.E. Drew, P.T. Englund, Glycolysis modulates trypanosome glycoprotein expression as revealed by an RNAi library, EMBO J. 21 (2002) 4429–4438, http://www.ncbi.nlm.nih.gov/pubmed/12198145.eng
dcterms.referencesS. Alsford, D.J. Turner, S.O. Obado, A. Sanchez-Flores, L. Glover, M. Berriman, C. Hertz- Fowler, D. Horn, High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome, Genome Res. 21 (2011) 915–924, http://dx.doi.org/10.1101/gr.115089.110eng
dcterms.referencesS. Alsford, S. Eckert, N. Baker, L. Glover, A. Sanchez-Flores, K.F. Leung, D.J. Turner, M.C. Field, M. Berriman, D. Horn, High-throughput decoding of antitrypanosomal drug efficacy and resistance, Nature 482 (2012) 232–236, http://dx.doi.org/10. 1038/nature10771.eng
dcterms.referencesD. Peng, S.P. Kurup, P.Y. Yao, T.A. Minning, R.L. Tarleton, CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi, MBio 6 (2015) http://dx.doi.org/10.1128/mBio.02097-14 e02097-2014.eng
dcterms.referencesN. Lander, Z.-H. Li, S. Niyogi, R. Docampo, CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment, MBio 6 (2015) e01012–e01015, http://dx.doi.org/10.1128/mBio. 01012-15.eng
dcterms.referencesG. de A. Burle-Caldas, V. Grazielle-Silva, L.A. Laibida, W.D. DaRocha, S.M.R. Teixeira, Expanding the tool box for genetic manipulation of Trypanosoma cruzi, Mol. Biochem. Parasitol. 203 (2015) 25–33, http://dx.doi.org/10.1016/j.molbiopara.2015. 10.004.eng
dcterms.referencesG. Burkard, C.M. Fragoso, I. Roditi, Highly efficient stable transformation of bloodstream forms of Trypanosoma brucei, Mol. Biochem. Parasitol. 153 (2007) 220–223, http://dx.doi.org/10.1016/j.molbiopara.2007.02.008.eng
dcterms.referencesG. Schumann Burkard, P. Jutzi, I. Roditi, Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters, Mol. Biochem. Parasitol. 175 (2011) 91–94, http://dx.doi.org/10.1016/j.molbiopara.2010.09.002.eng
dcterms.referencesP.K. Padmanabhan, R.B. Polidoro, N.S. Barteneva, R.T. Gazzinelli, B.A. Burleigh, Transient transfection and expression of foreign and endogenous genes in the intracellular stages of Trypanosoma cruzi, Mol. Biochem. Parasitol. 198 (2014) 100–103, http://dx.doi.org/10.1016/j.molbiopara.2015.02.001.eng
dcterms.referencesW.D. DaRocha, R.A. Silva, D.C. Bartholomeu, S.F. Pires, J.M. Freitas, A.M.Macedo, M.P. Vazquez, M.J. Levin, S.M.R. Teixeira, Expression of exogenous genes in Trypanosoma cruzi: improving vectors and electroporation protocols, Parasitol. Res. 92 (2004) 113–120, http://dx.doi.org/10.1007/s00436-003-1004-5.eng
dcterms.referencesM.P. Vazquez, M.J. Levin, Functional analysis of the intergenic regions of TcP2beta gene loci allowed the construction of an improved Trypanosoma cruzi expression vector, Gene 239 (1999) 217–225.eng
dcterms.referencesD. Xu, C. Pérez Brandán, M. Basombrío, R.L. Tarleton, Evaluation of high efficiency gene knockout strategies for Trypanosoma cruzi, BMC Microbiol. 9 (2009) 90, http://dx.doi.org/10.1186/1471-2180-9-90.eng
dcterms.referencesS. Su, B. Hu, J. Shao, B. Shen, J. Du, Y. Du, J. Zhou, L. Yu, L. Zhang, F. Chen, H. Sha, L. Cheng, F. Meng, Z. Zou, X. Huang, B. Liu, CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients, Sci. Rep. 6 (2016) 20070, http://dx.doi.org/10.1038/srep20070.eng
dcterms.referencesL. Chicaybam, A.L. Sodre, B.A. Curzio, M.H. Bonamino, An efficient low cost method for gene transfer to T lymphocytes, PLoS One 8 (2013), e60298. http://dx.doi.org/ 10.1371/journal.pone.0060298.eng

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones