Sobreexpresión heteróloga y purificación de TAQ ADN polimerasa en Escherichia coli Rosetta (DE3)
datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.contributor.advisor | Machado Sierra, Elwi Guillermo | |
dc.contributor.author | Jimenez Bilbao, Gabriela | |
dc.contributor.author | Sanjuan Nieto, Saymy Geysay | |
dc.date.accessioned | 2025-06-16T16:13:33Z | |
dc.date.available | 2025-06-16T16:13:33Z | |
dc.date.issued | 2025 | |
dc.description.abstract | La creciente necesidad de desarrollo científico e innovación tecnológica trae consigo una alta demanda de insumos para su ejecución, entre ellos, en la investigación e industria biotecnológica los reactivos y materiales para técnicas de laboratorio y ensayos como la reacción en cadena de la polimerasa (PCR). En épocas de crisis como las emergencias sanitarias provocadas por patógenos emergentes, la PCR se convierte en una herramienta ampliamente utilizada para el diagnóstico de infecciones y/o enfermedades, por ello, se aumenta la demanda de los reactivos necesarios para su realización como primers, ADN polimerasas, nucleótidos o kits de diagnóstico, los cuales son priorizados para los países productores. En Colombia, la producción de insumos biológicos como las vacunas y productos orgánicos era alta, sin embargo, con el cierre de la planta de producción biológica del Instituto Nacional de Salud en la década de 1990, la producción de insumos biológicos y biotecnológicos decayó, por lo cual la dependencia biotecnológica a la importación de reactivos e insumos se convierte en una problemática, principalmente en tiempos de crisis. A pesar de esto, el auge de tecnologías de ADN recombinante como la expresión de proteínas recombinantes surge como una estrategia ideal para mitigar esta problemática, por esta razón la presente investigación busca producir Taq ADN polimerasa mediante un sistema de sobreexpresión heteróloga de proteínas en Escherichia coli Rosetta. Para lograr la producción de Taq polimerasa termoestable, se realizó una revisión de la literatura para identificar las características genéticas y fenotípicas de la cepa seleccionada que favorecen una mayor productividad y eficiencia en la expresión de proteínas. Con base en esta información, se estandarizaron de métodos y protocolos de cultivo y expresión para la producción de Taq ADN polimerasa, partiendo de células de E. coli biotecnológica Rosetta (DE3) transformadas con el vector de expresión pOpen_taq. El proceso experimental contempló la evaluación de distintas condiciones experimentales con el objetivo de optimizar la concentración de IPTG (isopropilo-β-D-1-tiogalactopiranósido) como molécula inductora, el tiempo de incubación y la temperatura del cultivo. | spa |
dc.description.abstract | The growing need for scientific development and technological innovation brings with it a high demand for supplies for its execution, including reagents and materials for laboratory techniques and tests such as the polymerase chain reaction (PCR) in research and the biotechnology industry. In times of crisis, such as health emergencies caused by emerging pathogens, PCR becomes a widely used tool for diagnosing infections and/or diseases. Therefore, the demand for the reagents necessary for its implementation, such as primers, DNA polymerases, nucleotides, and diagnostic kits, increases, and these are prioritized for producing countries. In Colombia, the production of biological supplies such as vaccines and organic products was high; however, with the closure of the National Institute of Health's biological production plant in the 1990s, the production of biological and biotechnological supplies declined, making biotechnology's dependence on imported reagents and supplies a problem, especially in times of crisis. Despite this, the rise of recombinant DNA technologies such as recombinant protein expression emerges as an ideal strategy to mitigate this problem. The present research seeks to produce Taq DNA polymerase through a heterologous protein overexpression system in Escherichia coli Rosetta (DE3). To achieve the production of thermostable Taq polymerase, a literature review was conducted to identify the genetic and phenotypic characteristics of the selected strain that favor greater productivity and efficiency in protein expression. Based on this information, culture and expression methods and protocols were standardized for the production of Taq DNA polymerase, starting from the biotechnological strain E. coli Rosetta (DE3) cells transformed with the pOpen_taq expression vector. The experimental process contemplated the evaluation of different experimental conditions with the aim of optimizing the concentration of IPTG (isopropyl-βD-1-thiogalactopyranoside) as an inducing molecule, the incubation time and the culture temperature. | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/16681 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | eng |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | ADN polimerasa | spa |
dc.subject | Sobreexpresión de proteínas | spa |
dc.subject | PCR | spa |
dc.subject.keywords | DNA polymerase | eng |
dc.subject.keywords | Protein overexpression | eng |
dc.title | Sobreexpresión heteróloga y purificación de TAQ ADN polimerasa en Escherichia coli Rosetta (DE3) | spa |
dc.type.driver | info:eu-repo/semantics/other | |
dc.type.spa | Trabajo de grado - pregrado | |
dcterms.references | Amariles-Muñoz, P., Salamanca-Mejía, C. H., Moreno-Romero, C. E., Gutiérrez-Clavijo, J. C., & Machado-Beltrán, M. A. (2023). Política industrial farmacéutica, un requisito clave para la autonomía sanitaria de Colombia. Salud UIS, 55(1). https://doi.org/10.18273/saluduis.55.e:23022 | spa |
dcterms.references | Aposhian, H. V., & Kornberg, A. (1962). Enzymatic Synthesis of Deoxyribonucleic Acid: IX. The polymerase formed after T2 bacteriophage infection of Escherichia coli: A new enzime. Journal of Biological Chemistry, 237(2), 519–525. https://doi.org/10.1016/S0021-9258(18)93954-2 | eng |
dcterms.references | Assenberg, R., Wan, P. T., Geisse, S., & Mayr, L. M. (2013). Advances in recombinant protein expression for use in pharmaceutical research. Current Opinion in Structural Biology, 23(3), 393–402. https://doi.org/10.1016/j.sbi.2013.03.008 | eng |
dcterms.references | Avery, O. T., Macleod, C. M., & Mccarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid fraction isolated from Pneumococcus Trype III. Journal of Experimental Medicine, 79(2), 137–158. https://doi.org/10.1084/jem.79.2.137 | eng |
dcterms.references | Bervoets, I., Van Brempt, M., Van Nerom, K., Van Hove, B., Maertens, J., De Mey, M., & Charlier, D. (2018). A sigma factor toolbox for orthogonal gene expression in Escherichia coli. Nucleic Acids Research, 46(4), 2133–2144. https://doi.org/10.1093/nar/gky010 | eng |
dcterms.references | Brock, T. D. (1997). The Value of Basic Research: Discovery of Thermus aquaticus and Other Extreme Thermophiles. Historical And Critical Commentaries on Genetics, 146(4), 1207–1210. https://doi.org/10.1093/genetics/146.4.1207 | eng |
dcterms.references | Cerna Cortes, J., Cerna Cortés, J. F., & Bernabé Guapillo Vargas, M. R. (2014). Taq polimerasa: De los geiseres a la ciencia. Temas de Ciencia y Tecnología, 18(54), 52–57. https://www.utm.mx/edi_anteriores/temas54/T54_2Notas2-Taq%20polimerasa%20- %20De%20los%20geisers%20a%20la%20ciencia.pdf | spa |
dcterms.references | Chen, S., Zheng, X., Cao, H., Jiang, L., Liu, F., & Sun, X. (2015). A simple and efficient method for extraction of taq dna polymerase. Electronic Journal of Biotechnology, 18(5), 355–358. https://doi.org/10.1016/j.ejbt.2015.08.001 | eng |
dcterms.references | Chien, A., Edgar, D. B., & Trela, J. M. (1976). Deoxyribonucleic Acid Polymerase from the Extreme Thermophile Thermus aquaticus. Journal of Bacteriology, 127(3), 1550– 1557. https://journals.asm.org/journal/jb | eng |
dcterms.references | Dahm, R. (2010). From discovering to understanding: Friedrich Miescher’s attemps to uncover the function of DNA. EMBO Reports, 11(3), 153–160. https://doi.org/10.1038/embor.2010.14 | eng |
dcterms.references | Din, R. U., Khan, M. I., Jan, A., Khan, S. A., & Ali, I. (2020). A novel approach for highlevel expression and purification of GST-fused highly thermostable Taq DNA polymerase in Escherichia coli. Archives of Microbiology, 202(6), 1449–1458. https://doi.org/10.1007/s00203-020-01860-9 | eng |
dcterms.references | Du, F., Liu, Y. Q., Xu, Y. S., Li, Z. J., Wang, Y. Z., Zhang, Z. X., & Sun, X. M. (2021). Regulating the T7 RNA polymerase expression in E. coli BL21 (DE3) to provide more host options for recombinant protein production. Microbial Cell Factories, 20(1). https://doi.org/10.1186/s12934-021-01680-6 | eng |
dcterms.references | EcoliWiki. (2024, October 28). BL21(DE3)PLysE. https://ecoliwiki.org/colipedia/index.php/BL21(DE3)pLysE | spa |
dcterms.references | Eskandari, A., Nezhad, N. G., Leow, T. C., Abdul Rahman, M. B., & Oslan, S. N. (2024). Essential factors, advanced strategies, challenges, and approaches involved for efficient expression of recombinant proteins in Escherichia coli. Archives of Microbiology, 206(152). https://doi.org/https://doi.org/10.1007/s00203-024-03871-2 | eng |
dcterms.references | Falak, S., Sajed, M., & Rashid, N. (2022). Strategies to enhance soluble production of heterologous proteins in Escherichia coli. In Biologia (Vol. 77, Issue 3, pp. 893–905). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s11756-021-00994-5 | eng |
dcterms.references | Freeze, H., & Brock, T. D. (1970). Thermostable Aldolase from Thermus aquaticus. Journal of Bacteriology, 101(2), 541–550. https://doi.org/10.1128/jb.101.2.541- 550.1970 | eng |
dcterms.references | García Reyes, B., Montes Horcasitas, M. del C., Ramos Ramírez, E. G., Ariza Castolo, A., Pérez Vargas, J., Gómez Guzmán, O., & Calva Calva, G. (2010). Clonación del cDNA del gen de la insulina humana en raíces aéreas de Brassica oleracea var italica (brócoli). Revista CENIC. Ciencias Biológicas, 41, 1–9. https://www.redalyc.org/pdf/1812/181220509063.pdf | spa |
dcterms.references | Garcia-Diaz, M., & Bebenek, K. (2007). Multiple functions of DNA polymerases. Critical Reviews in Plant Science, 26(2), 105–122. https://doi.org/10.1080/07352680701252817 | eng |
dcterms.references | Gomez, A. R., Byregowda, S. M., Veeregowda, B. M., & Balamurugan, V. (2016). An Overview of Heterologous Expression Host Systems for the Production of Recombinant Proteins. Advances in Animal and Veterinary Sciences, 4(4), 346–356. https://doi.org/10.14737/JOURNAL.AAVS/2016/4.7.346.356 | eng |
dcterms.references | Gomez-Marin, J. E. (2020). Autonomous pharmaceutical and biotechnological capabilities during sanitary emergencies. Infectio, 24(4), 199–200. https://doi.org/10.22354/in.v24i4.875 | eng |
dcterms.references | Gómez-Rivas, G. N., Cárdenas-Guevara, L. F., Riascos-Torres, P. D., & Arenas, N. E. (2021). El aporte de los biofertilizantes y su potencial en Colombia. Revista Ciencias Agropecuarias, 7(2), 3–6. | spa |
dcterms.references | González, A., & Fillat, M. F. (2018). Aspectos metodológicos de la expresión de proteínas recombinantes en E. coli. Revista de Educación Bioquímica, 37(1), 14–27. https://www.medigraphic.com/pdfs/revedubio/reb-2018/reb181c.pdf | spa |
dcterms.references | Gopal, G. J., & Kumar, A. (2013). Strategies for the production of recombinant protein in escherichia coli. Protein Journal, 32(6), 419–425. https://doi.org/10.1007/s10930- 013-9502-5 | eng |
dcterms.references | Grunberg-Manago, M., Ortiz, P. J., & Ochoa, S. (1955). Enzymatic Synthesis of Nucleic Acidlike Polynucleotides. Science, 122(3176), 907–910. https://doi.org/10.1126/science.122.3176.907 | eng |
dcterms.references | Guevara-Hernández, E., López-Zavala, A., Jiménez-Gutiérrez, L., & Sotelo-Mundo, R. (2013). Perspectivas actuales del uso de proteínas recombinantes y su importancia en la investigación científica e industrial. Biotecnia, 15(3), 8–17. https://doi.org/doi.org/10.18633/bt.v15i3.152 | spa |
dcterms.references | Guzman T., C., Máttar, S., Alvis-Guzmán, N., & De la Hoz, F. (2023). The high price that Colombia has paid for its lack of biotechnological sovereignty. In The Lancet (Vol. 24). MDPI. https://doi.org/https://doi.org/10. 1016/j.lana.2023. 100560 | eng |
dcterms.references | Hernández-Alcántara, G., García-Torres, I., Alba-Martínez, Z., & Ramírez-Silva, L. (2021). Expresión de proteínas recombinantes en un sistema heterólogo. Mensaje Bioquímico, 45, 109–120. http://bq.facmed.unam.mx/tab | spa |
dcterms.references | Herráez, Á. (2012). Replicación del ADN. In BIOLOGÍA MOLECULAR e INGENIERÍA GENETICA (2nd ed., pp. 145–160). Elsevier Health Sciences. | spa |
dcterms.references | Instituto Nacional de Salud INS. (2023, June 7). COVID-19 en Colombia. | spa |
dcterms.references | Ishino, S., & Ishino, Y. (2014). DNA polymerases as useful reagents for biotechnology - The history of developmental research in the field. Frontiers in Microbiology, 5(AUG). https://doi.org/10.3389/fmicb.2014.00465 | eng |
dcterms.references | Joshi, M., & Deshpande, J. D. (2010). POLYMERASE CHAIN REACTION: METHODS, PRINCIPLES AND APPLICATION. International Journal of Biomedical Research, 5, 81–97. www.ssjournals.com | eng |
dcterms.references | Kornberg, T., & Gefter, M. L. (1970). Biochemical and Biophysical research communications ADN synthesisi in cell-free extracts of a DNA polymerase-defective mutant. Biochemical and Biophysical Research Communications, 40(6), 1348–1355. https://doi.org/10.1016/0006-291x(70)90014-8 | eng |
dcterms.references | Kuipers, G., Karyolaimos, A., Zhang, Z., Ismail, N., Trinco, G., Vikström, D., Slotboom, D. J., & de Gier, J. W. (2017). The tunable pReX expression vector enables optimizing the T7-based production of membrane and secretory proteins in E. coli. Microbial Cell Factories, 16(1). https://doi.org/10.1186/s12934-017-0840-4 | eng |
dcterms.references | Kulkarni, N. A. (2023, August 3). pUC vector- Definition, Structure, Sites, Applications. Microbe Notes. | eng |
dcterms.references | Laksmi, F. A., Dewi, K. S., Nuryana, I., Yulianti, S. E., Ramadhan, K. P., Hadi, M. I., & Nugraha, Y. (2024). High-level expression of codon-optimized Taq DNA polymerase under the control of rhaBAD promoter. Analytical Biochemistry, 692. https://doi.org/https://doi.org/10.1016/j.ab.2024.115581 | eng |
dcterms.references | Lara, A. R. (2011). Producción de proteínas recombinantes en Escherichia coli. Revista Mexicana de Ingeniería Química, 10(2), 209–223. https://www.scielo.org.mx/pdf/rmiq/v10n2/v10n2a6.pdf | spa |
dcterms.references | Lennarz, W., & Lane, M. D. (2004). Encyclopedia of Biological Chemistry. Elsevier Inc. | eng |
dcterms.references | Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., Amon, A., & Scott, M. P. (2016). Protein Structure and Function. In Molecular Cell Biology (8th ed., pp. 67–128). W. H. Freeman. | eng |
dcterms.references | Maguiña Vargas, C., Gastelo Acosta, R., & Tequen Bernilla, A. (2020). El nuevo Coronavirus y la pandemia del Covid-19. Revista Médica Herediana, 31(2), 125–131. https://doi.org/10.20453/rmh.v31i2.3776 | spa |
dcterms.references | Mares, M. A. (2023, August 28). Biotecnología, dependencia o autosuficiencia. El Economista. | spa |
dcterms.references | Ministerio de Sanidad. (2020). Actualización n°13. Neumonía por nuevo coronavirus (2019-nCoV) en Wuhan, provincia de Hubei (China). https://www.sanidad.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/docu mentos/Actualizacion_13_2019-nCoV_China.pdf | spa |
dcterms.references | Moazen, F., Rastegari, A., Hoseini, S., Panjehpour, M., Miroliaei, M., & Sadeghi, H. M. (2012). Optimization of Taq DNA polymerase enzyme expression in Escherichia coli. Advanced Biomedical Research, 1(1), 82. https://doi.org/10.4103/2277-9175.103004 | eng |
dcterms.references | Mullis, K. B. (1990). The Unusual Origin of the Polymerase Chain Reaction. Scientific American, 262(4), 56–65. https://doi.org/10.1038/scientificamerican0490-56. | eng |
dcterms.references | Ojeda-Fernández, C. (2022). ADN Polimerasa. Colección de ESMOS. https://doi.org/10.5281/zenodo.7247865 | spa |
dcterms.references | Oliveira, C., & Domingues, L. (2018). Guidelines to reach high-quality purified recombinant proteins. In Applied Microbiology and Biotechnology (Vol. 102, Issue 1, pp. 81–92). Springer Verlag. https://doi.org/10.1007/s00253-017-8623-8 | eng |
dcterms.references | Ospina Ramírez, M. L. (2020). Covid-19: need for technological independence. Colombia Medica (Cali, Colombia), 51(2). https://doi.org/10.25100/cm.v51i2.4334 | eng |
dcterms.references | Pouresmaeil, M., & Azizi-Dargahlou, S. (2023). Factors involved in heterologous expression of proteins in E. coli host. Archives of Microbiology, 205(212). https://doi.org/https://doi.org/10.1007/s00203-023-03541-9 | eng |
dcterms.references | Rodríguez, E., Martínez, G. L., & Mora-Delgado, J. (2015). La crisis del sector agropecuario colombiano: ¿Cuál es la responsabilidad de las políticas públicas? Revista de La Facultad de Ciencias Económicas y Administrativas. Universidad de Nariño, XVI(1), 159–174. https://doi.org/https://doi.org/10.22267/rtend.151601.38 | spa |
dcterms.references | . Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., & Erlich, H. A. (1988). Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase. Science, 239(4839), 487–491. https://doi.org/10.1126/science.2448875 | eng |
dcterms.references | Sambrook, J., & Russell, D. W. (2012). Molecular Cloning. A Laboratory Manual (3rd ed., Vol. 1). Cold Spring Harbor Laboratory Press. | eng |
dcterms.references | Samman, N., Al-Muhalhil, K., & Nehdi, A. (2023). A simple and efficient method for Taq DNA polymerase purification based on heat denaturation and affinity chromatography. Journal of King Saud University - Science, 35(3). https://doi.org/10.1016/j.jksus.2023.102565 | eng |
dcterms.references | Schuster, L. A., & Reisch, C. R. (2022). Plasmids for Controlled and Tunable High-Level Expression in E. coli. Applied and Environmental Microbiology, 88(22). https://doi.org/10.1128/aem.00939-22 | eng |
dcterms.references | Studier, F. W. (1991). Use of Bacteriophage T7 Lysozyme to Improve an Inducible T7 Expression System. In J. Mol. BioE (Vol. 219). | eng |
dcterms.references | Studier, F. W. (2005). Protein production by auto-induction in high density shaking cultures. Protein Expression and Purification, 41(1), 207–234. https://doi.org/10.1016/j.pep.2005.01.016 | eng |
dcterms.references | Tapia Clemente, F. G. (2023). Taq polimerasa: historia, características y aplicaciones. Colección de ESMOS. https://doi.org/10.5281/zenodo.7689901 | eng |
dcterms.references | Teng, X. C., Ang, S. Y., Citartan, M., Tang, T. H., & Ahmed, S. A. (2023). Simple approach for expression and rapid purification of Taq DNA polymerase in three Escherichia coli strains. Asia-Pacific Journal of Molecular Biology and Biotechnology, 31(1), 45–52. https://doi.org/10.35118/apjmbb.2023.031.1.05 | eng |
dcterms.references | Terpe, K. (2006). Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. In Applied Microbiology and Biotechnology (Vol. 72, Issue 2, pp. 211–222). https://doi.org/10.1007/s00253-006-0465-8 | eng |
dcterms.references | Ullmann, A., Jacob, F., & Monod, J. (1967). Characterization by in vitro Complementation of a Peptide corresponding to an Operator-proximal Segment of the fiGalactosidase Structural Gene of Escherichia coli. Journal of Molecular Biology, 24(2), 339–343. https://doi.org/doi.org/10.1016/0022-2836(67)90341-5 | eng |
dcterms.references | Universidad Abierta y a Distancia de México. (n.d.). Genética molecular bacteriana. U2 Obtención de BGM. https://doi.org/https://dmd.unadmexico.mx/contenidos/DCSBA/BLOQUE2/BI/06/BGM B/unidad_02/descargables/BGMB_U2_Contenido.pdf | spa |
dcterms.references | Vethanayagan, J. G. G., & Flower, A. M. (2005). Decreased gene expression from T7 promoters may due to impaired production of active T7 RNA polymerase. Microbial Cell Factories, 4. https://doi.org/10.1186/1475-2859-4-3 | eng |
dcterms.references | Vieira, J., & Messing, J. (1982). The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers (Recombinant DNA; multiple cloning sites; restriction sites mobilizing element; dideoxy sequencing). Gene, 19, 259–268. | eng |
dcterms.references | Watson, J. D., & Crick, F. H. C. (1953). Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature, 171, 737–738. https://doi.org/10.1038/171737a0 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.programa | Microbiología | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: