Lamin A expression in circulating osteoprogenitors as a potential biomarker for frailty: The Nepean Osteoporosis and Frailty (NOF) Study

dc.contributor.authorAl Saedi⁠, Ahmed
dc.contributor.authorGunawardene, Piumali
dc.contributor.authorBermeo, Sandra
dc.contributor.authorVogrin, Sara
dc.contributor.authorBoersma, Derek
dc.contributor.authorPhu, Steven
dc.contributor.authorSingh⁠, Lakshman
dc.contributor.authorSuriyaarachchi, Pushpa
dc.contributor.authorDuque, Gustavo
dc.date.accessioned2018-03-07T22:37:28Z
dc.date.available2018-03-07T22:37:28Z
dc.date.issued2018-02
dc.description.abstractLamin A is a protein of the nuclear lamina. Low levels of lamin A expression are associated with osteosarcopenia in mice. In this study, we hypothesized that low lamin A expression is also associated with frailty in humans. We aimed to develop a non-invasive method to quantify lamin A expression in epithelial and circulating osteoprogenitor (COP) cells, and to determine the relationship between lamin A expression and frailty in older individuals. COP cells and buccal swabs were obtained from 66 subjects (median age 74; 60% female; 26 non-frail, 23 pre-frail, and 17 frail) participating at the Nepean Osteoporosis and Frailty (NOF) Study. We quantified physical performance and disability, and stratified frailty in this population. Lamin A expression in epithelial and COP cells was quantified by flow cytometry. Linear regression models estimated the relationship between lamin A expression in buccal and COP cells, and prevalent disability and frailty. Lamin A expression in buccal cells showed no association with either disability or frailty. Low lamin A expression values in COP cells were associated with frailty. Frail individuals showed 60% lower levels of lamin A compared to non-frail (95% CI − 36 to − 74%, p < 0.001) and 62% lower levels compared to pre-frail (95%CI − 40 to − 76%, p < 0.001). In summary, we have identified lamin A expression in COP cells as a strong indicator of frailty. Further work is needed to understand lamin A expression as a risk stratifier, biomarker, or therapeutic target in frail older persons.eng
dc.identifier.issn05315565
dc.identifier.urihttp://hdl.handle.net/20.500.12442/1808
dc.language.isoengspa
dc.publisherElseviereng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceExperimental Gerontologyeng
dc.sourceVol. 102 (2018)eng
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S0531556517307428?via%3Dihub
dc.subjectLamin Aeng
dc.subjectAgingeng
dc.subjectFrailtyeng
dc.subjectCOP cellseng
dc.subjectCirculating osteoprogenitorseng
dc.subjectFlow cytometryeng
dc.titleLamin A expression in circulating osteoprogenitors as a potential biomarker for frailty: The Nepean Osteoporosis and Frailty (NOF) Studyeng
dc.typearticlespa
dcterms.referencesAhmed, N., Mandel, R., Fain, M.J., 2007. Frailty: an emerging geriatric syndrome. Am. J. Med. 120, 748–753.eng
dcterms.referencesAkter, R., Rivas, D., Geneau, G., Drissi, H., Duque, G., 2009. Effect of lamin A/C knockdown on osteoblast differentiation and function. J. Bone Miner. Res. 24, 283–293.eng
dcterms.referencesBermeo, S., Vidal, C., Zhou, H., Duque, G., 2015. Lamin A/C acts as an essential factor in mesenchymal stem cell differentiation through the regulation of the dynamics of the Wnt/β-catenin pathway. J. Cell. Biochem. 116, 2344–2353.eng
dcterms.referencesCalvani, R., Marini, F., Cesari, M., Tosato, M., Picca, A., Anker, S.D., von Haehling, S., Miller, R.R., Bernabei, R., Landi, F., Marzetti, E., SPRINTT Consortium, 2017. Biomarkers for physical frailty and sarcopenia. Aging Clin. Exp. Res. 29, 29–34.eng
dcterms.referencesCharlson, M.E., Pompei, P., Ales, K.L., MacKenzie, C.R., 1987. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 40, 373–383.eng
dcterms.referencesClegg, A., Young, J., Iliffe, S., Rikkert, M.O., Rockwood, K., 2013. Frailty in elderly people. Lancet 381, 752–762.eng
dcterms.referencesDe Martinis, M., Franceschi, C., Monti, D., Ginaldi, L., 2006. Inflammation markers predicting frailty and mortality in the elderly. Exp. Mol. Pathol. 80, 219–227.eng
dcterms.referencesDe Sandre-Giovannoli, A., Bernard, R., Cau, P., Navarro, C., Amiel, J., Boccaccio, I., Lyonnet, S., Stewart, C.L., Munnich, A., Le Merrer, M., Lévy, N., 2003. Lamin A truncation in Hutchinson-Gilford progeria. Science 300, 2055.eng
dcterms.referencesDuque, G., Rivas, D., 2006. Age-related changes in lamin A/C expression in the osteoarticular system: laminopathies as a potential new aging mechanism. Mech. Ageing Dev. 127, 378–383.eng
dcterms.referencesDuque, G., Li, W., Yeo, L.S., Vidal, C., Fatkin, D., 2011. Attenuated anabolic response to exercise in lamin A/C haploinsufficient mice. Bone 49, 412–418.eng
dcterms.referencesEgan, K.P., Kim, J.H., Mohler 3rd, E.R., Pignolo, R.J., 2011. Role for circulating osteogenic precursor cells in aortic valvular disease. Arterioscler. Thromb. Vasc. Biol. 31, 2965–2971.eng
dcterms.referencesFillenbaum, G.G., Smyer, M.A., 1981. The development, validity, and reliability of the OARS multidimensional functional assessment questionnaire. J. Gerontol. 36, 428–434.eng
dcterms.referencesFougère, B., Boulanger, E., Nourhashémi, F., Guyonnet, S., Cesari, M., 2016. Chronic inflammation: accelerator of biological aging. J. Gerontol. A Biol. Sci. Med. Sci. (Dec 21).eng
dcterms.referencesFried, L.P., Ferrucci, L., Darer, J., Williamson, J.D., Anderson, G., 2004. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J. Gerontol. A Biol. Sci. Med. Sci. 59, 255–263.eng
dcterms.referencesGolpanian, S., DiFede, D.L., Pujol, M.V., Lowery, M.H., Levis-Dusseau, S., Goldstein, B.J., Schulman, I.H., Longsomboon, B., Wolf, A., Khan, A., Heldman, A.W., Goldschmidt- Clermont, P.J., Hare, J.M., 2016. Rationale and design of the allogeneiC human mesenchymal stem cells (hMSC) in patients with aging fRAilTy via intravenoUS delivery (CRATUS) study: a phase I/II, randomized, blinded and placebo controlled trial to evaluate the safety and potential efficacy of allogeneic human mesenchymal stem cell infusion in patients with aging frailty. Oncotarget 7, 11899–11912.eng
dcterms.referencesGonzalo, S., Kreienkamp, R., Askjaer, P., 2017. Hutchinson-Gilford progeria syndrome: a premature aging disease caused by LMNA gene mutations. Ageing Res. Rev. 33, 18–29.eng
dcterms.referencesGruenbaum, Y., Margalit, A., Goldman, R.D., Shumaker, D.K., Wilson, K.L., 2005. The nuclear lamina comes of age. Nat. Rev. Mol. Cell Biol. 6, 21–31.eng
dcterms.referencesGunawardene, P., Bermeo, S., Vidal, C., Al-Saedi, A., Chung, P., Boersma, D., Phu, S., Pokorski, I., Suriyaarachchi, P., Demontiero, O., Duque, G., 2016. Association between circulating osteogenic progenitor cells and disability and frailty in older persons: the Nepean osteoporosis and frailty study. J. Gerontol. A Biol. Sci. Med. Sci. 71, 1124–1130.eng
dcterms.referencesGunawardene, P., Al Saedi, A., Singh, L., Bermeo, S., Vogrin, S., Phu, S., Suriyaarachchi, P., Pignolo, R.J., Duque, G., 2017. Age, gender, and percentage of circulating osteoprogenitor (COP) cells: the COP study. Exp. Gerontol. 96, 68–72.eng
dcterms.referencesHorvath, A.R., Kis, E., Dobos, E., 2010. Guidelines for the use of biomarkers: principles, processes and practical considerations. Scand. J. Clin. Lab. Investig. Suppl. 242, 109–111.eng
dcterms.referencesHuang, W., Sowa, G., 2011. Biomarker development for musculoskeletal diseases. PM R. 3 (6 Suppl 1), S39–44.eng
dcterms.referencesHutchison, C.J., Worman, H.J., 2004. A-type lamins: guardians of the soma. Nat. Cell Biol. 6, 1062–1067.eng
dcterms.referencesJoseph, C., Kenny, A.M., Taxel, P., Lorenzo, J.A., Duque, G., Kuchel, G.A., 2005. Role of endocrine-immune dysregulation in osteoporosis, sarcopenia, frailty and fracture risk. Mol. Asp. Med. 26, 181–201.eng
dcterms.referencesKorf, B., 2008. Hutchinson-Gilford progeria syndrome, aging, and the nuclear lamina. N. Engl. J. Med. 358, 552–555.eng
dcterms.referencesLi, W., Yeo, L.S., Vidal, C., McCorquodale, T., Herrmann, M., Fatkin, D., Duque, G., 2011. Decreased bone formation and osteopenia in lamin a/c-deficient mice. PLoS One 6, e19313.eng
dcterms.referencesMahoney, F., Barthel, D., 1965. Functional evaluation: the Barthel index. Md Med. J. 14, 61–65.eng
dcterms.referencesMorley, J.E., Haren, M.T., Rolland, Y., Kim, M.J., 2006. Frailty. Med. Clin. North Am. 90, 837–847.eng
dcterms.referencesPajerowski, J.D., Dahl, K.N., Zhong, F.L., Sammak, P.J., Discher, D.E., 2007. Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl. Acad. Sci. U. S. A. 104, 15619–15624.eng
dcterms.referencesde Paula Rodrigues, G.H., das Eiras Tamega, I., Duque, G., Spinola Dias Neto, V., 2002. Severe bone changes in a case of Hutchinson-Gilford syndrome. Ann. Genet. 45, 151–155.eng
dcterms.referencesPignolo, R.J., Kassem, M., 2011. Circulating osteogenic cells: implications for injury, repair, and regeneration. J. Bone Miner. Res. 26, 1685–1693.eng
dcterms.referencesRitt, M., Rádi, K.H., Schwarz, C., Bollheimer, L.C., Sieber, C.C., Gaßmann, K.G., 2016. A comparison of frailty indexes based on a comprehensive geriatric assessment for the prediction of adverse outcomes. J. Nutr. Health Aging 20, 760–767.eng
dcterms.referencesRodríguez-Mañas, L., Féart, C., Mann, G., Viña, J., Chatterji, S., Chodzko-Zajko, W., Gonzalez- Colaço Harmand, M., Bergman, H., Carcaillon, L., Nicholson, C., Scuteri, A., Sinclair, A., Pelaez, M., Van der Cammen, T., Beland, F., Bickenbach, J., Delamarche, P., Ferrucci, L., Fried, L.P., Gutiérrez-Robledo, L.M., Rockwood, K., Rodríguez Artalejo, F., Serviddio, G., Vega, E., FOD-CC group, 2013. Searching for an operational definition of frailty: a Delphi method based consensus statement: the frailty operative definition- consensus conference project. J. Gerontol. A Biol. Sci. Med. Sci. 68, 62–67.eng
dcterms.referencesSearle, S.D., Mitnitski, A., Gahbauer, E.A., Gill, T.M., Rockwood, K., 2008. A standard procedure for creating a frailty index. BMC Geriatr. 8, 24.eng
dcterms.referencesSoysal, P., Stubbs, B., Lucato, P., Luchini, C., Solmi, M., Peluso, R., Sergi, G., Isik, A.T., Manzato, E., Maggi, S., Maggio, M., Prina, A.M., Cosco, T.D., YT, Wu, Veronese, N., 2016. Inflammation and frailty in the elderly: a systematic review and meta-analysis. Ageing Res. Rev. 31, 1–8.eng
dcterms.referencesTong, J., Li, W., Vidal, C., Yeo, L.S., Fatkin, D., Duque, G., 2011. Lamin A/C deficiency is associated with fat infiltration of muscle and bone. Mech. Ageing Dev. 132, 552–559.eng
dcterms.referencesVidal, C., Bermeo, S., Fatkin, D., Duque, G., 2012. Role of the nuclear envelope in the pathogenesis of age-related bone loss and osteoporosis. Bonekey Rep. 2 (1), 62.eng
dcterms.referencesde Vries, N.M., Staal, J.B., van Ravensberg, C.D., Hobbelen, J.S., Olde Rikkert, M.G., Nijhuis- van der Sanden, M.W., 2010. Outcome instruments to measure frailty: a systematic review. Ageing Res. Rev. 10, 104–114.eng
dcterms.referencesWalston, J., Hadley, E.C., Ferrucci, L., Guralnik, J.M., Newman, A.B., Studenski, S.A., Ershler, W.B., Harris, T., Fried, L.P., 2006. Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on frailty in older adults. J. Am. Geriatr. Soc. 54, 991–1001.eng
dcterms.referencesWilson, D., Jackson, T., Sapey, E., Lord, J.M., 2017. Frailty and sarcopenia: the potential role of an aged immune system. Ageing Res. Rev. 36, 1–10.eng
dcterms.referencesXue, Q.L., 2011. The frailty syndrome: definition and natural history. Clin. Geriatr. Med. 27, 1–15.eng

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones