Space-occupying lesions identification in mammary glands using a mixed computational strategy

dc.contributor.authorVargas, S
dc.contributor.authorVera, M I
dc.contributor.authorVera, M
dc.contributor.authorSalazar-Torres, J
dc.contributor.authorHuérfano, Y
dc.contributor.authorValbuena, O
dc.contributor.authorGelvez-Almeida, E
dc.date.accessioned2020-03-26T22:28:12Z
dc.date.available2020-03-26T22:28:12Z
dc.date.issued2019
dc.description.abstractAbstract. The mammary pathology can manifest itself in multiple ways and originates spaceoccupying lesions. The breast cancer is a space-occupying lesion, which is highly prevalent, especially in women, and worldwide it is one of the leading causes of morbidity and mortality in this population. The main image modality for breast cancer detection is the magnetic resonance but this kind of image modality introduces several imperfections that affect the image quality. Some of these imperfections or problems are: inhomogeneity in the anatomical structures, riccian noise and artifacts. These problems make the analysis of the image information a real challenge. To address these problems, in this paper, we propose a computational technique able to extract a space-occupying lesion linked to breast cancer, present in magnetic resonance images. For this, the original image is processed with statisticalarithmetic filters and segmentation algorithms based on thresholding and multi-seed region growing techniques. The results, based on Dice score, show that the proposed technique is suitable for segmenting the breast cancer due high correlation between semi-automatic and manual segmentations. This technique can be useful in the detection, characterization and monitoring of this type of cancer and it can let to medical doctors to realize their work more efficiently.eng
dc.format.mimetypepdfeng
dc.identifier.issn17426596
dc.identifier.urihttps://hdl.handle.net/20.500.12442/5072
dc.language.isoengeng
dc.publisherIOP Publishingeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceJournal of Physics: Conference Serieseng
dc.sourceVol. 1414 (2019)eng
dc.source.urihttps://iopscience.iop.org/article/10.1088/1742-6596/1414/1/012016eng
dc.subjectMammary pathologyeng
dc.subjectBreast cancereng
dc.subjectMagnetic resonance imageseng
dc.titleSpace-occupying lesions identification in mammary glands using a mixed computational strategyeng
dc.typearticleeng
dc.type.driverarticleeng
dcterms.referencesLatarjet M and Ruiz A 2004 Anatomía humana (Barcelona: Médica Panamericana)spa
dcterms.referencesBland K and Copeland E 2007 La mama: manejo multidisciplinario de las enfermedades benignas y malignas (Barcelona: Panamericana)spa
dcterms.referencesSiegel R, Miller K and Jemal A 2017 Cancer statistics CA: A Cancer Journal for Clinicians 67(1) 7eng
dcterms.referencesScholefield J, Duncan J and Rogers K 2014 Review of hospital experience of breast abscesses British Journal of Surgery 74 469eng
dcterms.referencesSing A and Gupta B 2015 A novel approach for breast cancer detection and segmentation in a mammogram Procedia Computer Science 54 676eng
dcterms.referencesSingh V, Romani S, Rashwan H, Akram F, Pandey N, Sarker M 2018 Conditional generative adversarial and convolutional networks for x-ray breast mass segmentation and shape classification 21st International Conference on Medical Image Computing and Computer Assisted Intervention MICCAI 2018 (Granada) vol 11071 (Cham: Springer) p 833eng
dcterms.referencesDhungel N, Carneiro G and Bradley A 2015 Tree re-weighted belief propagation using deep learning potentials for mass segmentation from mammograms 12th International Symposium on Biomedical Imaging (ISBI) (New York: IEEE) p 760eng
dcterms.referencesZhu W, Xiang X, Tran T, Hager G and Xie X 2018 Adversarial deep structured nets for mass segmentation from mammograms 15th International Symposium on Biomedical Imaging (ISBI) (Washington: IEEE) p 847eng
dcterms.referencesSu H, Liu F, Xie Y, Xing F, Meyyappan S and Yang L 2015 Region segmentation in histopathological breast cancer images using deep convolutional neural network. 12th International Symposium on Biomedical Imaging (ISBI) (New York: IEEE) p 55eng
dcterms.referencesPratt W 2007 Digital image processing (New York: John Wiley & Sons Inc)eng
dcterms.referencesHuérfano Y, Vera M, Mar A and Bravo A 2019 Integrating a gradient–based difference operator with machine learning techniques in right heart segmentation Journal of Physics: Conference Series 1160 012003eng
dcterms.referencesDice L 1945 Measures of the amount of ecologic association between species Ecology 26(3) 29eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
556.67 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones