Búsqueda de biomarcadores de daño renal en pacientes con lupus eritematoso sistémico a través un abordaje metabolómico no dirigido
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
dc.contributor.advisor | Pacheco Lugo, Lisandro | |
dc.contributor.author | Rojo Sánchez, Alejandra | |
dc.date.accessioned | 2023-12-13T15:26:51Z | |
dc.date.available | 2023-12-13T15:26:51Z | |
dc.date.issued | 2023 | |
dc.description.abstract | El lupus eritematoso sistémico (LES) es la enfermedad autoinmune multiorgánica prototípica, que se relaciona con una alta morbilidad y muerte temprana de personas en edad productiva. La nefritis lúpica (NL) es una de las mayores complicaciones del LES ya que se presenta en el 50% de los pacientes diagnosticados con esta enfermedad. El diagnóstico y la clasificación de la NL se basa en los resultados histopatológicos de la biopsia renal, sin embargo, a pesar de ser el estándar de oro, la biopsia sigue siendo un método altamente invasivo y poco práctico para el monitoreo en tiempo real del estadio de la NL. El presente estudio se diseñó para encontrar nuevos biomarcadores en muestras de orina que pudieran diferenciar entre los pacientes con LES y aquellos con NL utilizando un método de metabolómica no dirigida basado en cromatografía líquida acoplada a espectrometría de masas (CL-QTOF-EM). Se recolectaron muestras de orina de 50 sujetos que acudieron a consulta externa de nefrología en la Clínica de la Costa, incluyendo controles sanos, sujetos con LES y con LN clase III y clase IV. Las muestras se analizaron posteriormente mediante LC-QTOF-MS, por medio de lo cual se identificaron 38 metabolitos con diferencia significativa entre los grupos de LES y de NL. Luego, estos metabolitos se correlacionaron a vías metabólicas que podrían estar implicadas en la progresión del LN. Adicionalmente, tres metabolitos, el monopalmitin, el ácido glutámico y el ácido glicocólico, demostraron un alto poder predictivo como posibles biomarcadores para el diagnóstico de la NL. Estos hallazgos no solo proporcionan nuevos conocimientos sobre la firma metabólica urinaria del SLE y la NL; también proponen una alternativa diagnostica para la discriminación de la NL en sujetos con LES. | spa |
dc.description.abstract | Systemic lupus erythematous (SLE) is the prototypical multiorgan autoimmune disease, which is associated with high morbidity and early death of young and productive people. Lupus nephritis (LN) is one of the major complications of SLE since it occurs in 50% of patients diagnosed with this disease. The diagnosis and classification of the LN is based on the histopathological results of the renal biopsy, however, despite being the gold standard, the biopsy is a highly invasive method that is impractical for real-time monitoring of LN progression. The present study was designed to find new signatures in urine samples that could differentiate between patients with SLE and those with NL using non-targeted metabolomics based on liquid chromatography coupled to mass spectrometry (LC-QTOF-MS). Urine samples were collected from 50 subjects who attended an outpatient nephrology consult at Clínica de la Costa, including healthy controls, subjects with SLE and LN class III and class IV. The samples were subsequently analysed through LC-QTOF-MS, which identified 38 metabolites with a significant difference between the SLE and LN groups. These metabolites were then correlated to metabolic pathways that could be involved in the progression of the LN. In addition, three metabolites, monopalmitin, glutamic acid and glychocolic acid, demonstrated high predictive power as possible biomarkers for the diagnosis of NL. These findings not only provide new knowledge about the urinary metabolic profiles of the SLE and the NL; they also propose a diagnostic alternative for the discrimination of LN in subjects with SLE. | eng |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/13615 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Lupus eritematoso sistémico | spa |
dc.subject | Nefritis lúpica | spa |
dc.subject | Metabolómica | spa |
dc.subject | Espectrometría de masas | spa |
dc.subject | Cromatografía líquida | spa |
dc.subject | Biomarcadores | spa |
dc.subject | Systemic Lupus Erythematous | eng |
dc.subject | Lupus Nephritis | eng |
dc.subject | Metabolomics | eng |
dc.subject | Mass Spectrometry | eng |
dc.subject | Liquid Chromatography | eng |
dc.subject | Biomarkers | eng |
dc.title | Búsqueda de biomarcadores de daño renal en pacientes con lupus eritematoso sistémico a través un abordaje metabolómico no dirigido | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.spa | Trabajo de grado máster | spa |
dcterms.references | Tsokos GC. Mechanisms of disease: Systemic lupus erythematosus. N Engl J Med. 2011;365(22). | eng |
dcterms.references | Mok CC, Mohan C. Urinary Biomarkers in Lupus Nephritis: Are We There Yet? Vol. 73, Arthritis and Rheumatology. 2021. | eng |
dcterms.references | Parikh S V., Almaani S, Brodsky S, Rovin BH. Update on Lupus Nephritis: Core Curriculum 2020. Vol. 76, American Journal of Kidney Diseases. 2020. | eng |
dcterms.references | Maria NI, Davidson A. Protecting the kidney in systemic lupus erythematosus: from diagnosis to therapy. Vol. 16, Nature Reviews Rheumatology. 2020. | eng |
dcterms.references | Aragón CC, Tafúr RA, Suárez-Avellaneda A, Martínez MT, Salas A de las, Tobón GJ. Urinary biomarkers in lupus nephritis. Vol. 3, Journal of Translational Autoimmunity. Elsevier B.V.; 2020. | eng |
dcterms.references | Polanco Flores NA, Soto Abraham MV, Rodríguez Castellanos FE. Biopsia renal seriada en nefropatía lúpica: ¿es necesaria? Dial y Traspl. 2014;35(3). | spa |
dcterms.references | Wen Y, Parikh CR. Current concepts and advances in biomarkers of acute kidney injury. Vol. 58, Critical Reviews in Clinical Laboratory Sciences. 2021. | eng |
dcterms.references | Clish CB. Metabolomics: an emerging but powerful tool for precision medicine. 2015; Available from: http://www.ebi.ac.uk/metabolights | eng |
dcterms.references | Di Minno A, Gelzo M, Stornaiuolo M, Ruoppolo M, Castaldo G. The evolving landscape of untargeted metabolomics. Vol. 31, Nutrition, Metabolism and Cardiovascular Diseases. 2021. | eng |
dcterms.references | Cui L, Lu H, Lee YH. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Vol. 37, Mass Spectrometry Reviews. 2018. | eng |
dcterms.references | Mak A, Cheung MWL, Chiew HJ, Liu Y, Ho RC man. Global Trend of Survival and Damage of Systemic Lupus Erythematosus: Meta-Analysis and Meta-Regression of Observational Studies from the 1950s to 2000s. Semin Arthritis Rheum. 2012;41(6). | eng |
dcterms.references | Gasparotto M, Gatto M, Binda V, Doria A, Moroni G. Lupus nephritis: Clinical presentations and outcomes in the 21st century. Rheumatol (United Kingdom). 2020;59. | eng |
dcterms.references | Haladyj E, Mejía JC, Cervera R. Is the renal biopsy still necessary in lupus nephropathy? Rev Colomb Reumatol. 2016;23(2). | eng |
dcterms.references | Rovin BH, Parikh S V., Alvarado A. The kidney biopsy in lupus nephritis: Is it still relevant? Vol. 40, Rheumatic Disease Clinics of North America. 2014. | eng |
dcterms.references | Dias R, Hasparyk UG, Lopes MP, de Barros JLVM, Simões e Silva AC. Novel Biomarkers for Lupus Nephritis in the “OMICS” Era. Curr Med Chem. 2021;28(29) | eng |
dcterms.references | Price E, Walker E. Diagnostic vertigo: The journey to diagnosis in systemic lupus erythematosus. Health (Irvine Calif). 2014;18(3):223–39. | eng |
dcterms.references | Parodis I, Tamirou F, Houssiau FA. Prediction of prognosis and renal outcome in lupus nephritis. Vol. 7, Lupus Science and Medicine. 2020. | eng |
dcterms.references | Francisco Rivera Hernándeza AMRPVPS-ESAFLGLIRCVP. Lupus Eritematoso Sistémico. Nefropatía Lupica. Nefrología al Día. 2020. | spa |
dcterms.references | Vasquez-Canizares N, Wahezi D, Putterman C. Diagnostic and Prognostic Tests in Systemic Lupus Erythematosus. | eng |
dcterms.references | Poggio ED, McClelland RL, Blank KN, Hansen S, Bansal S, Bomback AS, et al. Systematic review and meta-analysis of native kidney biopsy complications. Clin J Am Soc Nephrol. 2020;15(11). | eng |
dcterms.references | Fava A, Petri M. Systemic lupus erythematosus: Diagnosis and clinical management. Vol. 96, Journal of Autoimmunity. 2019. | eng |
dcterms.references | Dall’Era M. Chapter 21. Systemic Lupus Erythematosus. In: Imboden JB, Hellmann DB, Stone JH, editors. CURRENT Diagnosis & Treatment: Rheumatology, 3e [Internet]. New York, NY: The McGraw-Hill Companies; 2013. Available from: http://accessmedicine.mhmedical.com/content.aspx?aid=57272268 | eng |
dcterms.references | Oku K, Atsumi T. Systemic lupus erythematosus: nothing stale her infinite variety. Vol. 28, Modern Rheumatology. 2018. | eng |
dcterms.references | Yu F, Haas M, Glassock R, Zhao MH. Redefining lupus nephritis: Clinical implications of pathophysiologic subtypes. Vol. 13, Nature Reviews Nephrology. 2017. | eng |
dcterms.references | Viero RM, dos Santos DC. Lupus Nephritis: Renal Biopsy Guiding the Clinician. In: Mohammed RHA, editor. Lupus [Internet]. Rijeka: IntechOpen; 2021. Available from: https://doi.org/10.5772/intechopen.97169 | eng |
dcterms.references | Martínez Ávila MC, Almanza Hurtado AJ, Rodríguez Blanco JD, Rodríguez Yánez T, Daza Arnedo R, Aroca Martínez G. Nefropatía lúpica: una puesta al día. Rev Colomb Reumatol [Internet]. Available from: https://www.elsevier.es/es-revista-revista-colombiana-reumatologia-374-avance-resumen-nefropatia-lupica-una-puesta-al-S0121812321001274 | spa |
dcterms.references | Califf RM. Minireview Biomarker definitions and their applications. Exp Biol Med. 2018;243:213–21. | eng |
dcterms.references | Bennett MR, Devarajan P. Characteristics of an Ideal Biomarker of Kidney Diseases. In: Biomarkers of Kidney Disease. 2011. | eng |
dcterms.references | Aronson JK, Ferner RE. Biomarkers-A General Review. Curr Protoc Pharmacol. 2017 Mar;76:9.23.1-9.23.17. | eng |
dcterms.references | Gomase VS, Changbhale SS, Patil SA, Kale K V. Metabolomics. Curr Drug Metab. 2008 Jan;9(1):89–98. | eng |
dcterms.references | Gao Y. Urine is a better biomarker source than blood especially for kidney diseases. Adv Exp Med Biol. 2015;845:3–12. | eng |
dcterms.references | Rhee EP. A Systems-Level View of Renal Metabolomics HHS Public Access. Semin Nephrol. 2018;38(2):142–50. | eng |
dcterms.references | Chebotareva N, Vinogradov A, Mcdonnell V, Zakharova N V, Indeykina MI, Moiseev S, et al. Molecular Sciences Urinary Protein and Peptide Markers in Chronic Kidney Disease. J Mol Sci [Internet]. 2021;22. Available from: https://doi.org/10.3390/ijms222212123 | eng |
dcterms.references | Medicine. C on the R of O-BT for PPO in CTB on HCSB on HSPI of. Evolution of Translational Omics: Lessons Learned and the Path Forward [Internet]. Christine M. Micheel, Sharly J. Nass and GSO, editor. Washington D.C.: National Academies Press (US); 2012. Available from: https://www.ncbi.nlm.nih.gov/books/NBK202165/ | eng |
dcterms.references | Quezada H, Guzmán-Ortiz AL, Díaz-Sánchez H, Valle-Rios R, Aguirre-Hernández J. Omics-based biomarkers: current status and potential use in the clinic. Vol. 74, Boletin Medico del Hospital Infantil de Mexico. 2017. | eng |
dcterms.references | Khamis MM, Adamko DJ, El-Aneed A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Vol. 36, Mass Spectrometry Reviews. 2017. | eng |
dcterms.references | Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998;16(9). | eng |
dcterms.references | Nicholson JK, Lindon JC, Holmes E. “Metabonomics”: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Vol. 29, Xenobiotica. 1999. | eng |
dcterms.references | Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Vol. 2, Comparative and Functional Genomics. 2001. | eng |
dcterms.references | Sussulini A. Erratum to: Chapters 1 and 11 of Metabolomics: From Fundamentals to Clinical Applications. Vol. 965, Advances in experimental medicine and biology. 2017. | eng |
dcterms.references | Van QN, Veenstra TD, Issaq HJ. Metabolic profiling for the detection of bladder cancer. Curr Urol Rep. 2011;12(1). | eng |
dcterms.references | Roberts LD, Souza AL, Gerszten RE, Clish CB. Targeted Metabolomics. | eng |
dcterms.references | Wiedmer SK, Hyötyläinen T. Selection of Analytical Methodology for Metabolomics. In: RSC Chromatography Monographs. 2013. | eng |
dcterms.references | Carneiro G, AL R, Evaristo J, Monnerat G. Novel strategies for clinical investigation and biomarker discovery: a guide to applied metabolomics. Horm Mol Biol Clin Investig. 2019 Jan 24; | eng |
dcterms.references | Nalbantoglu S. Metabolomics: Basic Principles and Strategies. In: Molecular Medicine. 2019. | eng |
dcterms.references | Wang JH, Byun J, Pennathur S. Analytical approaches to metabolomics and applications to systems biology. Semin Nephrol. 2010;30(5). | eng |
dcterms.references | Ellis DI, Goodacre R. Metabolic fingerprinting in disease diagnosis: Biomedical applications of infrared and Raman spectroscopy. Vol. 131, Analyst. 2006. | eng |
dcterms.references | Belhaj MR, Lawler NG, Hoffman NJ. metabolites H OH OH Metabolomics and Lipidomics: Expanding the Molecular Landscape of Exercise Biology. 2021; Available from: https://doi.org/10.3390/metabo11030151 | eng |
dcterms.references | Han X, Gross RW. The foundations and development of lipidomics. Vol. 63, Journal of Lipid Research. 2022. | eng |
dcterms.references | Dettmer K, Aronov PA, Hammock BD. MASS SPECTROMETRY-BASED METABOLOMICS. | eng |
dcterms.references | Jenkins H, Hardy N, Beckmann M, Draper J, Smith AR, Taylor J, et al. A proposed framework for the description of plant metabolomics experiments and their results. Vol. 22, Nature Biotechnology. 2004. | eng |
dcterms.references | González-Domínguez R, González-Domínguez Á, Sayago A, Fernández-Recamales Á. Recommendations and best practices for standardizing the pre-analytical processing of blood and urine samples in metabolomics. Vol. 10, Metabolites. 2020. | eng |
dcterms.references | Álvarez-Sánchez B, Priego-Capote F, Luque de Castro MD. Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. Vol. 29, TrAC - Trends in Analytical Chemistry. 2010. | eng |
dcterms.references | Čuperlović-Culf M, Barnett DA, Culf AS, Chute I. Cell culture metabolomics: Applications and future directions. Vol. 15, Drug Discovery Today. 2010. | eng |
dcterms.references | Fernández-Peralbo MA, Luque de Castro MD. Preparation of urine samples prior to targeted or untargeted metabolomics mass-spectrometry analysis. TrAC Trends Anal Chem. 2012 Dec 1;41:75–85. | eng |
dcterms.references | Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc. 2010;5(6). | eng |
dcterms.references | Udert KM, Larsen TA, Biebow M, Gujer W. Urea hydrolysis and precipitation dynamics in a urine-collecting system. Water Res. 2003;37(11). | eng |
dcterms.references | Saude EJ, Adamko D, Rowe BH, Marrie T, Sykes BD. Variation of metabolites in normal human urine. Metabolomics. 2007;3(4). | eng |
dcterms.references | Lauridsen M, Hansen SH, Jaroszewski JW, Cornett C. Human urine as test material in 1H NMR-based metabonomics: Recommendations for sample preparation and storage. Anal Chem. 2007;79(3). | eng |
dcterms.references | Vuckovic D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Vol. 403, Analytical and Bioanalytical Chemistry. 2012. | eng |
dcterms.references | Alseekh S, Aharoni A, Brotman Y, Contrepois K, D’auria J, Ewald J, et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods [Internet]. Available from: https://doi.org/10.1038/s41592-021-01197-1 | eng |
dcterms.references | Souza AL, Patti GJ. A Protocol for Untargeted Metabolomic Analysis: From Sample Preparation to Data Processing. Methods Mol Biol. 2021;2276:357–82. | eng |
dcterms.references | Yagües GV. Cromatografía de gases. Cromatografía. 2008; | spa |
dcterms.references | Jiye A, Trygg J, Gullberg J, Johansson AI, Jonsson P, Antti H, et al. Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem. 2005;77(24). | eng |
dcterms.references | Oliver Fiehn. Metabolomics by Gas Chromatography-Mass Spectrometry: the combination of targeted and untargeted profiling. Vol. 7, Curr Protoc Mol Biol. 2017. | eng |
dcterms.references | Qiu Y, Reed D. Gas Chromatography in Metabolomics Study. In: Guo X, editor. Advances in Gas Chromatography [Internet]. Rijeka: IntechOpen; 2014. Available from: https://doi.org/10.5772/57397 | eng |
dcterms.references | Baloch S, Yang Y. Review on Methods and Applications of High-Performance Liquid Chromatography. J Food Process Technol. 2021;12(1). | eng |
dcterms.references | Dailey AL. LC-mass spectrometry for metabolomics. In: Methods in Molecular Biology. 2017. | eng |
dcterms.references | El-Aneed A, Cohen A, Banoub J. Mass spectrometry, review of the basics: Electrospray, MALDI, and commonly used mass analyzers. Vol. 44, Applied Spectroscopy Reviews. 2009. | eng |
dcterms.references | Juo CG, Chiu DTY, Shiao MS. Liquid chromatography-mass spectrometry in metabolite profiling. Vol. 34, BioFactors. 2008. | eng |
dcterms.references | Nagana Gowda GA, Raftery D. Overview of NMR Spectroscopy-Based Metabolomics: Opportunities and Challenges. In: Methods in Molecular Biology. 2019. | eng |
dcterms.references | Medhe S. Ionization Techniques in Mass Spectrometry: A Review. Mass Spectrom Purif Tech. 2018;04(01). | eng |
dcterms.references | Gomis Yagües V. Tema 5. Espectrometría de masas. 2008 [cited 2022 May 30]; Available from: http://rua.ua.es/dspace/handle/10045/8249 | spa |
dcterms.references | Haag AM. Mass analyzers and mass spectrometers. In: Advances in Experimental Medicine and Biology. 2016. | eng |
dcterms.references | González-Domínguez R, Sayago A, Fernández-Recamales Á. Direct infusion mass spectrometry for metabolomic phenotyping of diseases. Vol. 9, Bioanalysis. 2017. | eng |
dcterms.references | Annesley TM. Ion Suppression in Mass Spectrometry [Internet]. 2003. Available from: https://academic.oup.com/clinchem/article/49/7/1041/5642000 | eng |
dcterms.references | Fiehn O. Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr Protoc Mol Biol. 2016 Apr;114:30.4.1-30.4.32. | eng |
dcterms.references | William Allwood J, Goodacre R, Allwood JW, Choi YH, Kim HK, Verpoorte R. An Introduction to Liquid Chromatography-Mass Spectrometry Instrumentation Applied in Plant Metabolomic Analyses † Untargeted Plant Metabolomics and the Potential of Liquid Chromatography Mass Spectrometry. Phytochem Anal [Internet]. 2010;21:33–47. Available from: www.interscience.wiley.com | eng |
dcterms.references | Gomis Yagües V. Tema 4. Cromatografía de líquidos de alta resolución. 2008 [cited 2022 May 24]; Available from: http://rua.ua.es/dspace/handle/10045/8248 | spa |
dcterms.references | Mauer L, Reuhs BL. High-Performance Liquid Chromatography Bradley. In: Food Analysis. 2017. | eng |
dcterms.references | Baker JK. Practical HPLC Methodology and Applications, Brian A. Bidlingmeyer, Wiley, New York, 1992. 452 pp. $54.95. Anal Biochem. 1994;217(2). | eng |
dcterms.references | Malviya R, Bansal V, Pal OP, Sharma PK. High performance liquid chromatography: A short review. Vol. 2, Journal of Global Pharma Technology. 2010. | eng |
dcterms.references | García-Alvarez-Coque MC, Baeza-Baeza JJ, Ramis-Ramos G. Reversed Phase Liquid Chromatography. In: Analytical Separation Science [Internet]. John Wiley & Sons, Ltd; 2015. p. 159–98. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527678129.assep008 | eng |
dcterms.references | Lam MPY, Lau E, Liu X, Li J, Chu IK. 3.15 - Sample Preparation for Glycoproteins. In: Pawliszyn JBT-CS and SP, editor. Oxford: Academic Press; 2012. p. 307–22. Available https://www.sciencedirect.com/science/article/pii/B9780123813732000855 | eng |
dcterms.references | Bradley Reuhs MAR. High-Performance Liquid Chromatography Title. In: Food Analysis. Springer Science+Business Media, LLC; 2010. p. 499–512. | eng |
dcterms.references | Flanagan RJ. W. J. Lough and I. W. Wainer (Eds.). High performance liquid chromatography-fundamental principles and practice London: Blaclue Academic and Professional, 1995, Softback, 276 pp., £22.50. ISBN 0751400769. Biomed Chromatogr. 1996;10(4). | eng |
dcterms.references | Ho CS, Lam CWK, Chan MHM, Cheung RCK, Law LK, Lit LCW, et al. Electrospray ionisation mass spectrometry: principles and clinical applications. Clin Biochem Rev. 2003;24(1):3–12. | eng |
dcterms.references | Müller C, Schäfer P, Störtzel M, Vogt S, Weinmann W. Ion suppression effects in liquid chromatography-electrospray-ionisation transport-region collision induced dissociation mass spectrometry with different serum extraction methods for systematic toxicological analysis with mass spectra libraries. J Chromatogr B, Anal Technol Biomed life Sci. 2002 Jun;773(1):47–52. | eng |
dcterms.references | Beger RD, Dunn WB, Bandukwala A, Bethan B, Broadhurst D, Clish CB, et al. Towards quality assurance and quality control in untargeted metabolomics studies. Metabolomics. 2019 Jan;15(1):4. | eng |
dcterms.references | Bowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP, Abdullah L, et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma. J Lipid Res. 2017 Dec;58(12):2275–88. | eng |
dcterms.references | Dunn WB, Wilson ID, Nicholls AW, Broadhurst D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis [Internet]. 2012;4(18):2249–64. Available from: https://doi.org/10.4155/bio.12.204 | eng |
dcterms.references | Kirwan JA, Gika H, Beger RD, Bearden D, Dunn WB, Goodacre R, et al. Quality assurance and quality control reporting in untargeted metabolic phenotyping: mQACC recommendations for analytical quality management. Metabolomics [Internet]. 2022;18(9):70. Available from: https://doi.org/10.1007/s11306-022-01926-3 | eng |
dcterms.references | Godzien J, Alonso-Herranz V, Barbas C, Armitage EG. Controlling the quality of metabolomics data: new strategies to get the best out of the QC sample. Metabolomics. 2015;11(3). | eng |
dcterms.references | Karaman I. Preprocessing and Pretreatment of Metabolomics Data for Statistical Analysis. Adv Exp Med Biol. 2017;965:145–61. | eng |
dcterms.references | Zamora Obando HR, Duarte GHB, Simionato AVC. Metabolomics Data Treatment: Basic Directions of the Full Process. Adv Exp Med Biol. 2021;1336:243–64. | eng |
dcterms.references | Liu Q, Walker D, Uppal K, Liu Z, Ma C, Tran V, et al. Addressing the batch effect issue for LC/MS metabolomics data in data preprocessing. Sci Rep. 2020 Aug;10(1):13856. | eng |
dcterms.references | Godzien J, Ciborowski M, Angulo S, Barbas C. From numbers to a biological sense: How the strategy chosen for metabolomics data treatment may affect final results. A practical example based on urine fingerprints obtained by LC-MS. Electrophoresis. 2013 Oct;34(19):2812–26. | eng |
dcterms.references | Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc [Internet]. 2011;6(7):1060–83. Available from: https://doi.org/10.1038/nprot.2011.335 | eng |
dcterms.references | Ivanisevic J, Want EJ. metabolites From Samples to Insights into Metabolism: Uncovering Biologically Relevant Information in LC-HRMS Metabolomics Data. 2019; Available from: www.mdpi.com/journal/metabolites | eng |
dcterms.references | Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007 Sep;3(3):211–21. | eng |
dcterms.references | Watson DG. A ROUGH GUIDE TO METABOLITE IDENTIFICATION USING HIGH RESOLUTION LIQUID CHROMATOGRAPHY MASS SPECTROMETRY IN METABOLOMIC PROFILING IN METAZOANS. Comput Struct Biotechnol J [Internet]. 2013;4(5):e201301005. Available from: https://www.sciencedirect.com/science/article/pii/S2001037014600489 | eng |
dcterms.references | Weckwerth W, Morgenthal K. Metabolomics: from pattern recognition to biological interpretation. Drug Discov Today. 2005 Nov;10(22):1551–8. | eng |
dcterms.references | Zhang T, Mohan C. Caution in studying and interpreting the lupus metabolome. Arthritis Res Ther [Internet]. 2020;22(1):172. Available from: https://doi.org/10.1186/s13075-020-02264-2 | eng |
dcterms.references | Wu T, Xie C, Han J, Ye Y, Weiel J, Li Q, et al. Metabolic disturbances associated with systemic lupus erythematosus. PLoS One. 2012;7(6). | eng |
dcterms.references | Bengtsson AA, Trygg J, Wuttge DM, Sturfelt G, Theander E, Donten M, et al. Metabolic Profiling of Systemic Lupus Erythematosus and Comparison with Primary Sjögren’s Syndrome and Systemic Sclerosis. PLoS One. 2016;11(7):e0159384 | eng |
dcterms.references | Li Y, Liang L, Deng X, Zhong L. Lipidomic and metabolomic profiling reveals novel candidate biomarkers in active systemic lupus erythematosus. Int J Clin Exp Pathol. 2019;12(3). | eng |
dcterms.references | Sun W, Li P, Cai J, Ma J, Zhang X, Song Y, et al. Lipid Metabolism: Immune Regulation and Therapeutic Prospectives in Systemic Lupus Erythematosus. Available from: www.frontiersin.org | eng |
dcterms.references | Frostegård J, Svenungsson E, Wu R, Gunnarsson I, Lundberg IE, Klareskog L, et al. Lipid peroxidation is enhanced in patients with systemic lupus erythematosus and is associated with arterial and renal disease manifestations. Arthritis Rheum. 2005 Jan;52(1):192–200. | eng |
dcterms.references | Hu C, Du Y, Xu X, Li H, Duan Q, Xie Z, et al. Lipidomics Revealed Aberrant Metabolism of Lipids Including FAHFAs in Renal Tissue in the Progression of Lupus Nephritis in a Murine Model. Metabolites. 2021 Feb;11(3). | eng |
dcterms.references | Frostegård J. SLE, atherosclerosis and cardiovascular disease. Vol. 257, Journal of Internal Medicine. 2005. | eng |
dcterms.references | Yoon N, Jang AK, Seo Y, Jung BH. Metabolomics in autoimmune diseases: Focus on rheumatoid arthritis, systemic lupus erythematous, and multiple sclerosis. Vol. 11, Metabolites. 2021. | eng |
dcterms.references | Chiang JYL. Bile Acid Metabolism and Signaling. | eng |
dcterms.references | Godlewska U, Bulanda E, Wypych TP. Bile acids in immunity: Bidirectional mediators between the host and the microbiota. 2022; | eng |
dcterms.references | Ozen S, Hu F, Marie Cuda C, Liu D, Dai Y, He J, et al. Microbiome and Metabolome Analyses Reveal the Disruption of Lipid Metabolism in Systemic Lupus Erythematosus. Front Immunol | www.frontiersin.org [Internet]. 2020;1:1703. Available from: www.frontiersin.org | eng |
dcterms.references | Sarkissian T, Beyene J, Feldman B, Mccrindle B, Silverman ED. Longitudinal Examination of Lipid Profiles in Pediatric Systemic Lupus Erythematosus. ARTHRITIS Rheum. 2007;56(2):631–8. | eng |
dcterms.references | Anthony Robinson G, Ll Wilkinson MG, Wincup C. The Role of Immunometabolism in the Pathogenesis of Systemic Lupus Erythematosus. Available from: www.frontiersin.org | eng |
dcterms.references | Lian F, Wang Y, Chen J, Xu H, Yang X, Liang L, et al. Activation of farnesoid X receptor attenuates liver injury in systemic lupus erythematosus. Rheumatol Int. 2012 Jun;32(6):1705–10. | eng |
dcterms.references | Zhang L, Qing P, Yang H, Wu Y, Liu Y, Luo Y. Gut Microbiome and Metabolites in Systemic Lupus Erythematosus: Link, Mechanisms and Intervention. Available from: www.frontiersin.org | eng |
dcterms.references | Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 2019 Dec;576(7785):143–8. | eng |
dcterms.references | Tselios K, Koumaras C, Gladman DD, Urowitz MB. Dyslipidemia in systemic lupus erythematosus: just another comorbidity? Semin Arthritis Rheum. 2016 Apr;45(5):604–10. | eng |
dcterms.references | Ruan XZ, Varghese Z, Moorhead JF. An update on the lipid nephrotoxicity hypothesis. Nat Rev Nephrol [Internet]. 2009;5(12):713–21. Available from: https://doi.org/10.1038/nrneph.2009.184 | eng |
dcterms.references | Kato H, Perl A. Mechanistic target of rapamycin complex 1 expands Th17 and IL-4+ CD4-CD8- double-negative T cells and contracts regulatory T cells in systemic lupus erythematosus. J Immunol. 2014 May;192(9):4134–44. | eng |
dcterms.references | Zheng Y, Delgoffe GM, Meyer CF, Chan W, Powell JD. Anergic T cells are metabolically anergic. J Immunol. 2009 Nov;183(10):6095–101. | eng |
dcterms.references | Shi H, Chapman NM, Wen J, Guy C, Long L, Dhungana Y, et al. Amino Acids License Kinase mTORC1 Activity and Treg Cell Function via Small G Proteins Rag and Rheb. Immunity. 2019 Dec;51(6):1012-1027.e7. | eng |
dcterms.references | Ananieva EA, Patel CH, Drake CH, Powell JD, Hutson SM. Cytosolic branched chain aminotransferase (BCATc) regulates mTORC1 signaling and glycolytic metabolism in CD4+ T cells. J Biol Chem. 2014 Jul;289(27):18793–804. | eng |
dcterms.references | Papathanassiu AE, Ko J-H, Imprialou M, Bagnati M, Srivastava PK, Vu HA, et al. BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. Nat Commun. 2017 Jul;8:16040. | eng |
dcterms.references | Alexander JJ, Zwingmann C, Jacob A, Quigg R. Alteration in kidney glucose and amino acids are implicated in renal pathology in MRL/lpr mice. Biochim Biophys Acta - Mol Basis Dis. 2007;1772(10). | eng |
dcterms.references | Ma T, Liu T, Xie P, Jiang S, Yi W, Dai P, et al. UPLC-MS-based urine nontargeted metabolic profiling identifies dysregulation of pantothenate and CoA biosynthesis pathway in diabetic kidney disease. Life Sci. 2020 Oct 1;258:118160. | eng |
dcterms.references | Gheita AA, Gheita TA, Kenawy SA. The potential role of B5: A stitch in time and switch in cytokine. Vol. 34, Phytotherapy Research. 2020. | eng |
dcterms.references | van Diepen JA, Jansen PA, Ballak DB, Hijmans A, Rutjes FPJT, Tack CJ, et al. Genetic and pharmacological inhibition of vanin-1 activity in animal models of type 2 diabetes. Sci Rep. 2016 Mar;6:21906. | eng |
dcterms.references | Bartucci R, Salvati A, Olinga P, Boersma YL. Molecular Sciences Vanin 1: Its Physiological Function and Role in Diseases. Available from: www.mdpi.com/journal/ijms | eng |
dcterms.references | Hölscher C, D MM, Prakash H, Ma L, X-p Z, He W, et al. Vitamin B5 Reduces Bacterial Growth via Regulating Innate Immunity and Adaptive Immunity in Mice Infected with Mycobacterium tuberculosis. Front Immunol [Internet]. 2018;9:365. Available from: www.frontiersin.org | eng |
dcterms.references | Frieri M, Patel R, Celestin J. Mast cell activation syndrome: a review. Curr Allergy Asthma Rep. 2013 Feb;13(1):27–32. | eng |
dcterms.references | GOLDMAN L. Intensive panthenol therapy of lupus erythematosus. J Invest Dermatol. 1950 Oct;15(4):291–3. | eng |
dcterms.references | Leung L-H. Systemic lupus erythematosus: a combined deficiency disease. Med Hypotheses. 2004;62(6):922–4. | eng |
dcterms.references | Brown J, Abboud G, Ma L, Choi S-C, Kanda N, Zeumer-Spataro L, et al. Microbiota-mediated skewing of tryptophan catabolism modulates CD4(+) T cells in lupus-prone mice. iScience. 2022 May;25(5):104241. | eng |
dcterms.references | Perl A, Hanczko R, Lai Z-W, Oaks Z, Kelly R, Borsuk R, et al. Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: implications for activation of the mechanistic target of rapamycin. Metabolomics. 2015;11(5):1157–74. | eng |
dcterms.references | Oaks Z, Winans T, Huang N, Banki K, Perl A. Activation of the Mechanistic Target of Rapamycin in SLE: Explosion of Evidence in the Last Five Years. Curr Rheumatol Rep. 2016 Dec;18(12):73. | eng |
dcterms.references | Tzeng HT, Chyuan IT. Immunometabolism in systemic lupus erythematosus: Relevant pathogenetic mechanisms and potential clinical applications. J Formos Med Assoc. 2021 Sep 1;120(9):1667–75. | eng |
dcterms.references | Mo Y, Lu Z, Wang L, Ji C, Zou C, Liu X. The Aryl Hydrocarbon Receptor in Chronic Kidney Disease: Friend or Foe? Front cell Dev Biol. 2020;8:589752. | eng |
dcterms.references | Mo Y, Lu Z, Wang L, Ji C, Zou C, Liu X. The Aryl Hydrocarbon Receptor in Chronic Kidney Disease: Friend or Foe? Front cell Dev Biol. 2020;8:589752. | eng |
dcterms.references | Anekthanakul K, Manocheewa S, Chienwichai K, Poungsombat P, Limjiasahapong S, Wanichthanarak K, et al. Predicting lupus membranous nephritis using reduced picolinic acid to tryptophan ratio as a urinary biomarker. iScience [Internet]. 2021;24(11):103355. Available from: https://www.sciencedirect.com/science/article/pii/S2589004221013249 | eng |
dcterms.references | Pawlak K, Kowalewska A, Mysliwiec M, Pawlak D. 3-hydroxyanthranilic acid is independently associated with monocyte chemoattractant protein-1 (CCL2) and macrophage inflammatory protein-1β (CCL4) in patients with chronic kidney disease. Clin Biochem. 2010 Sep 1;43(13–14):1101–6. | eng |
dcterms.references | Ferrara D, Montecucco F, Dallegri F, Carbone F. Impact of different ectopic fat depots on cardiovascular and metabolic diseases. J Cell Physiol. 2019 Dec;234(12):21630–41. | eng |
dcterms.references | Roubicek T, Bartlova M, Krajickova J, Haluzikova D, Mraz M, Lacinova Z, et al. Increased production of proinflammatory cytokines in adipose tissue of patients with end-stage renal disease. Nutrition. 2009;25(7–8):762–8. | eng |
dcterms.references | Yan Q, Song Y, Zhang L, Chen Z, Yang C, Liu S, et al. Autophagy activation contributes to lipid accumulation in tubular epithelial cells during kidney fibrosis. Celldeath Discov. 2018;4:2. | eng |
dcterms.references | Kono M, Yoshida N, Tsokos GC. Amino Acid Metabolism in Lupus. Available from: www.frontiersin.org | eng |
dcterms.references | Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009 Jun;30(6):832–44. | eng |
dcterms.references | Ardawi MS. Glutamine and glucose metabolism in human peripheral lymphocytes. Metabolism. 1988 Jan;37(1):99–103. | eng |
dcterms.references | Nakaya M, Xiao Y, Zhou X, Chang J-H, Chang M, Cheng X, et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity. 2014 May;40(5):692–705. | eng |
dcterms.references | Yang Z, Matteson EL, Goronzy JJ, Weyand CM. T-cell metabolism in autoimmune disease. Vol. 17, Arthritis Research and Therapy. 2015. | eng |
dcterms.references | DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007 Dec;104(49):19345–50. | eng |
dcterms.references | Yoshida N, Comte D, Mizui M, Otomo K, Rosetti F, Mayadas TN, et al. ICER is requisite for Th17 differentiation. Nat Commun. 2016 Sep;7:12993. | eng |
dcterms.references | Kono M, Yoshida N, Maeda K, Tsokos GC. Transcriptional factor ICER promotes glutaminolysis and the generation of Th17 cells. Proc Natl Acad Sci U S A. 2018 Mar;115(10):2478–83. | eng |
dcterms.references | Kono M, Yoshida N, Maeda K, Suárez-Fueyo A, Kyttaris VC, Tsokos GC. Glutaminase 1 Inhibition Reduces Glycolysis and Ameliorates Lupus-like Disease in MRL/lpr Mice and Experimental Autoimmune Encephalomyelitis. Arthritis Rheumatol (Hoboken, NJ). 2019 Nov;71(11):1869–78. | eng |
dcterms.references | Xu T, Stewart KM, Wang X, Liu K, Xie M, Ryu JK, et al. Metabolic control of T(H)17 and induced T(reg) cell balance by an epigenetic mechanism. Nature. 2017 Aug;548(7666):228–33. | eng |
dcterms.references | Li R, Zeng L, Xie S, Chen J, Yu Y, Zhong L. Targeted metabolomics study of serum bile acid profile in patients with end-stage renal disease undergoing hemodialysis. PeerJ. 2019;7:e7145. | eng |
dcterms.references | Wang YN, Hu HH, Zhang DD, Wu XQ, Liu JL, Guo Y, et al. The dysregulation of eicosanoids and bile acids correlates with impaired kidney function and renal fibrosis in chronic renal failure. Metabolites. 2021;11(2). | eng |
dcterms.references | Chu L, Zhang K, Zhang Y, Jin X, Jiang H. Mechanism underlying an elevated serum bile acid level in chronic renal failure patients. Int Urol Nephrol. 2015;47(2). | eng |
dcterms.references | Erlinger S. Bile acids in cholestasis: Bad for the liver, not so good for the kidney. Clin Res Hepatol Gastroenterol. 2014;38(4). | eng |
dcterms.references | Ouyang X, Dai Y, Wen JL, Wang LX. 1H NMR-based metabolomic study of metabolic profiling for systemic lupus erythematosus. Lupus. 2011;20(13). | eng |
dcterms.references | Yan B, Huang J, Zhang C, Hu X, Gao M, Shi A, et al. Serum metabolomic profiling in patients with systemic lupus erythematosus by GC/MS. Mod Rheumatol. 2016;26(6). | eng |
dcterms.references | Duarte-Delgado NP, Cala MP, Barreto A, Rodríguez C LS. Metabolites and metabolic pathways associated with rheumatoid arthritis and systemic lupus erythematosus. J Transl Autoimmun. 2022;5 | eng |
dcterms.references | Guleria A, Pratap A, Dubey D, Rawat A, Chaurasia S, Sukesh E, et al. NMR based serum metabolomics reveals a distinctive signature in patients with Lupus Nephritis. Sci Rep. 2016;6. | eng |
dcterms.references | Shin TH, Kim HA, Jung JY, Baek WY, Lee HS, Park HJ, et al. Analysis of the free fatty acid metabolome in the plasma of patients with systemic lupus erythematosus and fever. Metabolomics. 2018;14(1). | eng |
dcterms.references | Zhang Q, Yin X, Wang H, Wu X, Li X, Li Y, et al. Fecal metabolomics and potential biomarkers for systemic lupus erythematosus. Front Immunol. 2019;10(MAY). | eng |
dcterms.references | Kalantari S, Nafar M. An update of urine and blood metabolomics in chronic kidney disease. Biomark Med. 2019;13(7). | eng |
dcterms.references | Yan R, Jiang H, Gu S, Feng N, Zhang N, Lv L, et al. Fecal Metabolites Were Altered, Identified as Biomarkers and Correlated With Disease Activity in Patients With Systemic Lupus Erythematosus in a GC-MS-Based Metabolomics Study. Front Immunol. 2020;11. | eng |
dcterms.references | Zhang Q, Li X, Yin X, Wang H, Fu C, Wang H, et al. Metabolomic profiling reveals serum L-pyroglutamic acid as a potential diagnostic biomarker for systemic lupus erythematosus. Rheumatol (United Kingdom). 2021;60(2). | eng |
dcterms.references | Zhang Y, Gan L, Tang J, Liu D, Chen G, Xu B. Metabolic profiling reveals new serum signatures to discriminate lupus nephritis from systemic lupus erythematosus. Front Immunol. 2022;13:967371. | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | spa |
sb.programa | Maestría en Genética | spa |
sb.sede | Sede Barranquilla | spa |