Búsqueda de biomarcadores de daño renal en pacientes con lupus eritematoso sistémico a través un abordaje metabolómico no dirigido

datacite.rightshttp://purl.org/coar/access_right/c_16ecspa
dc.contributor.advisorPacheco Lugo, Lisandro
dc.contributor.authorRojo Sánchez, Alejandra
dc.date.accessioned2023-12-13T15:26:51Z
dc.date.available2023-12-13T15:26:51Z
dc.date.issued2023
dc.description.abstractEl lupus eritematoso sistémico (LES) es la enfermedad autoinmune multiorgánica prototípica, que se relaciona con una alta morbilidad y muerte temprana de personas en edad productiva. La nefritis lúpica (NL) es una de las mayores complicaciones del LES ya que se presenta en el 50% de los pacientes diagnosticados con esta enfermedad. El diagnóstico y la clasificación de la NL se basa en los resultados histopatológicos de la biopsia renal, sin embargo, a pesar de ser el estándar de oro, la biopsia sigue siendo un método altamente invasivo y poco práctico para el monitoreo en tiempo real del estadio de la NL. El presente estudio se diseñó para encontrar nuevos biomarcadores en muestras de orina que pudieran diferenciar entre los pacientes con LES y aquellos con NL utilizando un método de metabolómica no dirigida basado en cromatografía líquida acoplada a espectrometría de masas (CL-QTOF-EM). Se recolectaron muestras de orina de 50 sujetos que acudieron a consulta externa de nefrología en la Clínica de la Costa, incluyendo controles sanos, sujetos con LES y con LN clase III y clase IV. Las muestras se analizaron posteriormente mediante LC-QTOF-MS, por medio de lo cual se identificaron 38 metabolitos con diferencia significativa entre los grupos de LES y de NL. Luego, estos metabolitos se correlacionaron a vías metabólicas que podrían estar implicadas en la progresión del LN. Adicionalmente, tres metabolitos, el monopalmitin, el ácido glutámico y el ácido glicocólico, demostraron un alto poder predictivo como posibles biomarcadores para el diagnóstico de la NL. Estos hallazgos no solo proporcionan nuevos conocimientos sobre la firma metabólica urinaria del SLE y la NL; también proponen una alternativa diagnostica para la discriminación de la NL en sujetos con LES.spa
dc.description.abstractSystemic lupus erythematous (SLE) is the prototypical multiorgan autoimmune disease, which is associated with high morbidity and early death of young and productive people. Lupus nephritis (LN) is one of the major complications of SLE since it occurs in 50% of patients diagnosed with this disease. The diagnosis and classification of the LN is based on the histopathological results of the renal biopsy, however, despite being the gold standard, the biopsy is a highly invasive method that is impractical for real-time monitoring of LN progression. The present study was designed to find new signatures in urine samples that could differentiate between patients with SLE and those with NL using non-targeted metabolomics based on liquid chromatography coupled to mass spectrometry (LC-QTOF-MS). Urine samples were collected from 50 subjects who attended an outpatient nephrology consult at Clínica de la Costa, including healthy controls, subjects with SLE and LN class III and class IV. The samples were subsequently analysed through LC-QTOF-MS, which identified 38 metabolites with a significant difference between the SLE and LN groups. These metabolites were then correlated to metabolic pathways that could be involved in the progression of the LN. In addition, three metabolites, monopalmitin, glutamic acid and glychocolic acid, demonstrated high predictive power as possible biomarkers for the diagnosis of NL. These findings not only provide new knowledge about the urinary metabolic profiles of the SLE and the NL; they also propose a diagnostic alternative for the discrimination of LN in subjects with SLE.eng
dc.format.mimetypepdfspa
dc.identifier.urihttps://hdl.handle.net/20.500.12442/13615
dc.language.isospaspa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias Básicas y Biomédicasspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectLupus eritematoso sistémicospa
dc.subjectNefritis lúpicaspa
dc.subjectMetabolómicaspa
dc.subjectEspectrometría de masasspa
dc.subjectCromatografía líquidaspa
dc.subjectBiomarcadoresspa
dc.subjectSystemic Lupus Erythematouseng
dc.subjectLupus Nephritiseng
dc.subjectMetabolomicseng
dc.subjectMass Spectrometryeng
dc.subjectLiquid Chromatographyeng
dc.subjectBiomarkerseng
dc.titleBúsqueda de biomarcadores de daño renal en pacientes con lupus eritematoso sistémico a través un abordaje metabolómico no dirigidospa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.spaTrabajo de grado másterspa
dcterms.referencesTsokos GC. Mechanisms of disease: Systemic lupus erythematosus. N Engl J Med. 2011;365(22).eng
dcterms.referencesMok CC, Mohan C. Urinary Biomarkers in Lupus Nephritis: Are We There Yet? Vol. 73, Arthritis and Rheumatology. 2021.eng
dcterms.referencesParikh S V., Almaani S, Brodsky S, Rovin BH. Update on Lupus Nephritis: Core Curriculum 2020. Vol. 76, American Journal of Kidney Diseases. 2020.eng
dcterms.referencesMaria NI, Davidson A. Protecting the kidney in systemic lupus erythematosus: from diagnosis to therapy. Vol. 16, Nature Reviews Rheumatology. 2020.eng
dcterms.referencesAragón CC, Tafúr RA, Suárez-Avellaneda A, Martínez MT, Salas A de las, Tobón GJ. Urinary biomarkers in lupus nephritis. Vol. 3, Journal of Translational Autoimmunity. Elsevier B.V.; 2020.eng
dcterms.referencesPolanco Flores NA, Soto Abraham MV, Rodríguez Castellanos FE. Biopsia renal seriada en nefropatía lúpica: ¿es necesaria? Dial y Traspl. 2014;35(3).spa
dcterms.referencesWen Y, Parikh CR. Current concepts and advances in biomarkers of acute kidney injury. Vol. 58, Critical Reviews in Clinical Laboratory Sciences. 2021.eng
dcterms.referencesClish CB. Metabolomics: an emerging but powerful tool for precision medicine. 2015; Available from: http://www.ebi.ac.uk/metabolightseng
dcterms.referencesDi Minno A, Gelzo M, Stornaiuolo M, Ruoppolo M, Castaldo G. The evolving landscape of untargeted metabolomics. Vol. 31, Nutrition, Metabolism and Cardiovascular Diseases. 2021.eng
dcterms.referencesCui L, Lu H, Lee YH. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Vol. 37, Mass Spectrometry Reviews. 2018.eng
dcterms.referencesMak A, Cheung MWL, Chiew HJ, Liu Y, Ho RC man. Global Trend of Survival and Damage of Systemic Lupus Erythematosus: Meta-Analysis and Meta-Regression of Observational Studies from the 1950s to 2000s. Semin Arthritis Rheum. 2012;41(6).eng
dcterms.referencesGasparotto M, Gatto M, Binda V, Doria A, Moroni G. Lupus nephritis: Clinical presentations and outcomes in the 21st century. Rheumatol (United Kingdom). 2020;59.eng
dcterms.referencesHaladyj E, Mejía JC, Cervera R. Is the renal biopsy still necessary in lupus nephropathy? Rev Colomb Reumatol. 2016;23(2).eng
dcterms.referencesRovin BH, Parikh S V., Alvarado A. The kidney biopsy in lupus nephritis: Is it still relevant? Vol. 40, Rheumatic Disease Clinics of North America. 2014.eng
dcterms.referencesDias R, Hasparyk UG, Lopes MP, de Barros JLVM, Simões e Silva AC. Novel Biomarkers for Lupus Nephritis in the “OMICS” Era. Curr Med Chem. 2021;28(29)eng
dcterms.referencesPrice E, Walker E. Diagnostic vertigo: The journey to diagnosis in systemic lupus erythematosus. Health (Irvine Calif). 2014;18(3):223–39.eng
dcterms.referencesParodis I, Tamirou F, Houssiau FA. Prediction of prognosis and renal outcome in lupus nephritis. Vol. 7, Lupus Science and Medicine. 2020.eng
dcterms.referencesFrancisco Rivera Hernándeza AMRPVPS-ESAFLGLIRCVP. Lupus Eritematoso Sistémico. Nefropatía Lupica. Nefrología al Día. 2020.spa
dcterms.referencesVasquez-Canizares N, Wahezi D, Putterman C. Diagnostic and Prognostic Tests in Systemic Lupus Erythematosus.eng
dcterms.referencesPoggio ED, McClelland RL, Blank KN, Hansen S, Bansal S, Bomback AS, et al. Systematic review and meta-analysis of native kidney biopsy complications. Clin J Am Soc Nephrol. 2020;15(11).eng
dcterms.referencesFava A, Petri M. Systemic lupus erythematosus: Diagnosis and clinical management. Vol. 96, Journal of Autoimmunity. 2019.eng
dcterms.referencesDall’Era M. Chapter 21. Systemic Lupus Erythematosus. In: Imboden JB, Hellmann DB, Stone JH, editors. CURRENT Diagnosis & Treatment: Rheumatology, 3e [Internet]. New York, NY: The McGraw-Hill Companies; 2013. Available from: http://accessmedicine.mhmedical.com/content.aspx?aid=57272268eng
dcterms.referencesOku K, Atsumi T. Systemic lupus erythematosus: nothing stale her infinite variety. Vol. 28, Modern Rheumatology. 2018.eng
dcterms.referencesYu F, Haas M, Glassock R, Zhao MH. Redefining lupus nephritis: Clinical implications of pathophysiologic subtypes. Vol. 13, Nature Reviews Nephrology. 2017.eng
dcterms.referencesViero RM, dos Santos DC. Lupus Nephritis: Renal Biopsy Guiding the Clinician. In: Mohammed RHA, editor. Lupus [Internet]. Rijeka: IntechOpen; 2021. Available from: https://doi.org/10.5772/intechopen.97169eng
dcterms.referencesMartínez Ávila MC, Almanza Hurtado AJ, Rodríguez Blanco JD, Rodríguez Yánez T, Daza Arnedo R, Aroca Martínez G. Nefropatía lúpica: una puesta al día. Rev Colomb Reumatol [Internet]. Available from: https://www.elsevier.es/es-revista-revista-colombiana-reumatologia-374-avance-resumen-nefropatia-lupica-una-puesta-al-S0121812321001274spa
dcterms.referencesCaliff RM. Minireview Biomarker definitions and their applications. Exp Biol Med. 2018;243:213–21.eng
dcterms.referencesBennett MR, Devarajan P. Characteristics of an Ideal Biomarker of Kidney Diseases. In: Biomarkers of Kidney Disease. 2011.eng
dcterms.referencesAronson JK, Ferner RE. Biomarkers-A General Review. Curr Protoc Pharmacol. 2017 Mar;76:9.23.1-9.23.17.eng
dcterms.referencesGomase VS, Changbhale SS, Patil SA, Kale K V. Metabolomics. Curr Drug Metab. 2008 Jan;9(1):89–98.eng
dcterms.referencesGao Y. Urine is a better biomarker source than blood especially for kidney diseases. Adv Exp Med Biol. 2015;845:3–12.eng
dcterms.referencesRhee EP. A Systems-Level View of Renal Metabolomics HHS Public Access. Semin Nephrol. 2018;38(2):142–50.eng
dcterms.referencesChebotareva N, Vinogradov A, Mcdonnell V, Zakharova N V, Indeykina MI, Moiseev S, et al. Molecular Sciences Urinary Protein and Peptide Markers in Chronic Kidney Disease. J Mol Sci [Internet]. 2021;22. Available from: https://doi.org/10.3390/ijms222212123eng
dcterms.referencesMedicine. C on the R of O-BT for PPO in CTB on HCSB on HSPI of. Evolution of Translational Omics: Lessons Learned and the Path Forward [Internet]. Christine M. Micheel, Sharly J. Nass and GSO, editor. Washington D.C.: National Academies Press (US); 2012. Available from: https://www.ncbi.nlm.nih.gov/books/NBK202165/eng
dcterms.referencesQuezada H, Guzmán-Ortiz AL, Díaz-Sánchez H, Valle-Rios R, Aguirre-Hernández J. Omics-based biomarkers: current status and potential use in the clinic. Vol. 74, Boletin Medico del Hospital Infantil de Mexico. 2017.eng
dcterms.referencesKhamis MM, Adamko DJ, El-Aneed A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Vol. 36, Mass Spectrometry Reviews. 2017.eng
dcterms.referencesOliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998;16(9).eng
dcterms.referencesNicholson JK, Lindon JC, Holmes E. “Metabonomics”: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Vol. 29, Xenobiotica. 1999.eng
dcterms.referencesFiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Vol. 2, Comparative and Functional Genomics. 2001.eng
dcterms.referencesSussulini A. Erratum to: Chapters 1 and 11 of Metabolomics: From Fundamentals to Clinical Applications. Vol. 965, Advances in experimental medicine and biology. 2017.eng
dcterms.referencesVan QN, Veenstra TD, Issaq HJ. Metabolic profiling for the detection of bladder cancer. Curr Urol Rep. 2011;12(1).eng
dcterms.referencesRoberts LD, Souza AL, Gerszten RE, Clish CB. Targeted Metabolomics.eng
dcterms.referencesWiedmer SK, Hyötyläinen T. Selection of Analytical Methodology for Metabolomics. In: RSC Chromatography Monographs. 2013.eng
dcterms.referencesCarneiro G, AL R, Evaristo J, Monnerat G. Novel strategies for clinical investigation and biomarker discovery: a guide to applied metabolomics. Horm Mol Biol Clin Investig. 2019 Jan 24;eng
dcterms.referencesNalbantoglu S. Metabolomics: Basic Principles and Strategies. In: Molecular Medicine. 2019.eng
dcterms.referencesWang JH, Byun J, Pennathur S. Analytical approaches to metabolomics and applications to systems biology. Semin Nephrol. 2010;30(5).eng
dcterms.referencesEllis DI, Goodacre R. Metabolic fingerprinting in disease diagnosis: Biomedical applications of infrared and Raman spectroscopy. Vol. 131, Analyst. 2006.eng
dcterms.referencesBelhaj MR, Lawler NG, Hoffman NJ. metabolites H OH OH Metabolomics and Lipidomics: Expanding the Molecular Landscape of Exercise Biology. 2021; Available from: https://doi.org/10.3390/metabo11030151eng
dcterms.referencesHan X, Gross RW. The foundations and development of lipidomics. Vol. 63, Journal of Lipid Research. 2022.eng
dcterms.referencesDettmer K, Aronov PA, Hammock BD. MASS SPECTROMETRY-BASED METABOLOMICS.eng
dcterms.referencesJenkins H, Hardy N, Beckmann M, Draper J, Smith AR, Taylor J, et al. A proposed framework for the description of plant metabolomics experiments and their results. Vol. 22, Nature Biotechnology. 2004.eng
dcterms.referencesGonzález-Domínguez R, González-Domínguez Á, Sayago A, Fernández-Recamales Á. Recommendations and best practices for standardizing the pre-analytical processing of blood and urine samples in metabolomics. Vol. 10, Metabolites. 2020.eng
dcterms.referencesÁlvarez-Sánchez B, Priego-Capote F, Luque de Castro MD. Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. Vol. 29, TrAC - Trends in Analytical Chemistry. 2010.eng
dcterms.referencesČuperlović-Culf M, Barnett DA, Culf AS, Chute I. Cell culture metabolomics: Applications and future directions. Vol. 15, Drug Discovery Today. 2010.eng
dcterms.referencesFernández-Peralbo MA, Luque de Castro MD. Preparation of urine samples prior to targeted or untargeted metabolomics mass-spectrometry analysis. TrAC Trends Anal Chem. 2012 Dec 1;41:75–85.eng
dcterms.referencesWant EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc. 2010;5(6).eng
dcterms.referencesUdert KM, Larsen TA, Biebow M, Gujer W. Urea hydrolysis and precipitation dynamics in a urine-collecting system. Water Res. 2003;37(11).eng
dcterms.referencesSaude EJ, Adamko D, Rowe BH, Marrie T, Sykes BD. Variation of metabolites in normal human urine. Metabolomics. 2007;3(4).eng
dcterms.referencesLauridsen M, Hansen SH, Jaroszewski JW, Cornett C. Human urine as test material in 1H NMR-based metabonomics: Recommendations for sample preparation and storage. Anal Chem. 2007;79(3).eng
dcterms.referencesVuckovic D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Vol. 403, Analytical and Bioanalytical Chemistry. 2012.eng
dcterms.referencesAlseekh S, Aharoni A, Brotman Y, Contrepois K, D’auria J, Ewald J, et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods [Internet]. Available from: https://doi.org/10.1038/s41592-021-01197-1eng
dcterms.referencesSouza AL, Patti GJ. A Protocol for Untargeted Metabolomic Analysis: From Sample Preparation to Data Processing. Methods Mol Biol. 2021;2276:357–82.eng
dcterms.referencesYagües GV. Cromatografía de gases. Cromatografía. 2008;spa
dcterms.referencesJiye A, Trygg J, Gullberg J, Johansson AI, Jonsson P, Antti H, et al. Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem. 2005;77(24).eng
dcterms.referencesOliver Fiehn. Metabolomics by Gas Chromatography-Mass Spectrometry: the combination of targeted and untargeted profiling. Vol. 7, Curr Protoc Mol Biol. 2017.eng
dcterms.referencesQiu Y, Reed D. Gas Chromatography in Metabolomics Study. In: Guo X, editor. Advances in Gas Chromatography [Internet]. Rijeka: IntechOpen; 2014. Available from: https://doi.org/10.5772/57397eng
dcterms.referencesBaloch S, Yang Y. Review on Methods and Applications of High-Performance Liquid Chromatography. J Food Process Technol. 2021;12(1).eng
dcterms.referencesDailey AL. LC-mass spectrometry for metabolomics. In: Methods in Molecular Biology. 2017.eng
dcterms.referencesEl-Aneed A, Cohen A, Banoub J. Mass spectrometry, review of the basics: Electrospray, MALDI, and commonly used mass analyzers. Vol. 44, Applied Spectroscopy Reviews. 2009.eng
dcterms.referencesJuo CG, Chiu DTY, Shiao MS. Liquid chromatography-mass spectrometry in metabolite profiling. Vol. 34, BioFactors. 2008.eng
dcterms.referencesNagana Gowda GA, Raftery D. Overview of NMR Spectroscopy-Based Metabolomics: Opportunities and Challenges. In: Methods in Molecular Biology. 2019.eng
dcterms.referencesMedhe S. Ionization Techniques in Mass Spectrometry: A Review. Mass Spectrom Purif Tech. 2018;04(01).eng
dcterms.referencesGomis Yagües V. Tema 5. Espectrometría de masas. 2008 [cited 2022 May 30]; Available from: http://rua.ua.es/dspace/handle/10045/8249spa
dcterms.referencesHaag AM. Mass analyzers and mass spectrometers. In: Advances in Experimental Medicine and Biology. 2016.eng
dcterms.referencesGonzález-Domínguez R, Sayago A, Fernández-Recamales Á. Direct infusion mass spectrometry for metabolomic phenotyping of diseases. Vol. 9, Bioanalysis. 2017.eng
dcterms.referencesAnnesley TM. Ion Suppression in Mass Spectrometry [Internet]. 2003. Available from: https://academic.oup.com/clinchem/article/49/7/1041/5642000eng
dcterms.referencesFiehn O. Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr Protoc Mol Biol. 2016 Apr;114:30.4.1-30.4.32.eng
dcterms.referencesWilliam Allwood J, Goodacre R, Allwood JW, Choi YH, Kim HK, Verpoorte R. An Introduction to Liquid Chromatography-Mass Spectrometry Instrumentation Applied in Plant Metabolomic Analyses † Untargeted Plant Metabolomics and the Potential of Liquid Chromatography Mass Spectrometry. Phytochem Anal [Internet]. 2010;21:33–47. Available from: www.interscience.wiley.comeng
dcterms.referencesGomis Yagües V. Tema 4. Cromatografía de líquidos de alta resolución. 2008 [cited 2022 May 24]; Available from: http://rua.ua.es/dspace/handle/10045/8248spa
dcterms.referencesMauer L, Reuhs BL. High-Performance Liquid Chromatography Bradley. In: Food Analysis. 2017.eng
dcterms.referencesBaker JK. Practical HPLC Methodology and Applications, Brian A. Bidlingmeyer, Wiley, New York, 1992. 452 pp. $54.95. Anal Biochem. 1994;217(2).eng
dcterms.referencesMalviya R, Bansal V, Pal OP, Sharma PK. High performance liquid chromatography: A short review. Vol. 2, Journal of Global Pharma Technology. 2010.eng
dcterms.referencesGarcía-Alvarez-Coque MC, Baeza-Baeza JJ, Ramis-Ramos G. Reversed Phase Liquid Chromatography. In: Analytical Separation Science [Internet]. John Wiley & Sons, Ltd; 2015. p. 159–98. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527678129.assep008eng
dcterms.referencesLam MPY, Lau E, Liu X, Li J, Chu IK. 3.15 - Sample Preparation for Glycoproteins. In: Pawliszyn JBT-CS and SP, editor. Oxford: Academic Press; 2012. p. 307–22. Available https://www.sciencedirect.com/science/article/pii/B9780123813732000855eng
dcterms.referencesBradley Reuhs MAR. High-Performance Liquid Chromatography Title. In: Food Analysis. Springer Science+Business Media, LLC; 2010. p. 499–512.eng
dcterms.referencesFlanagan RJ. W. J. Lough and I. W. Wainer (Eds.). High performance liquid chromatography-fundamental principles and practice London: Blaclue Academic and Professional, 1995, Softback, 276 pp., £22.50. ISBN 0751400769. Biomed Chromatogr. 1996;10(4).eng
dcterms.referencesHo CS, Lam CWK, Chan MHM, Cheung RCK, Law LK, Lit LCW, et al. Electrospray ionisation mass spectrometry: principles and clinical applications. Clin Biochem Rev. 2003;24(1):3–12.eng
dcterms.referencesMüller C, Schäfer P, Störtzel M, Vogt S, Weinmann W. Ion suppression effects in liquid chromatography-electrospray-ionisation transport-region collision induced dissociation mass spectrometry with different serum extraction methods for systematic toxicological analysis with mass spectra libraries. J Chromatogr B, Anal Technol Biomed life Sci. 2002 Jun;773(1):47–52.eng
dcterms.referencesBeger RD, Dunn WB, Bandukwala A, Bethan B, Broadhurst D, Clish CB, et al. Towards quality assurance and quality control in untargeted metabolomics studies. Metabolomics. 2019 Jan;15(1):4.eng
dcterms.referencesBowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP, Abdullah L, et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma. J Lipid Res. 2017 Dec;58(12):2275–88.eng
dcterms.referencesDunn WB, Wilson ID, Nicholls AW, Broadhurst D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis [Internet]. 2012;4(18):2249–64. Available from: https://doi.org/10.4155/bio.12.204eng
dcterms.referencesKirwan JA, Gika H, Beger RD, Bearden D, Dunn WB, Goodacre R, et al. Quality assurance and quality control reporting in untargeted metabolic phenotyping: mQACC recommendations for analytical quality management. Metabolomics [Internet]. 2022;18(9):70. Available from: https://doi.org/10.1007/s11306-022-01926-3eng
dcterms.referencesGodzien J, Alonso-Herranz V, Barbas C, Armitage EG. Controlling the quality of metabolomics data: new strategies to get the best out of the QC sample. Metabolomics. 2015;11(3).eng
dcterms.referencesKaraman I. Preprocessing and Pretreatment of Metabolomics Data for Statistical Analysis. Adv Exp Med Biol. 2017;965:145–61.eng
dcterms.referencesZamora Obando HR, Duarte GHB, Simionato AVC. Metabolomics Data Treatment: Basic Directions of the Full Process. Adv Exp Med Biol. 2021;1336:243–64.eng
dcterms.referencesLiu Q, Walker D, Uppal K, Liu Z, Ma C, Tran V, et al. Addressing the batch effect issue for LC/MS metabolomics data in data preprocessing. Sci Rep. 2020 Aug;10(1):13856.eng
dcterms.referencesGodzien J, Ciborowski M, Angulo S, Barbas C. From numbers to a biological sense: How the strategy chosen for metabolomics data treatment may affect final results. A practical example based on urine fingerprints obtained by LC-MS. Electrophoresis. 2013 Oct;34(19):2812–26.eng
dcterms.referencesDunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc [Internet]. 2011;6(7):1060–83. Available from: https://doi.org/10.1038/nprot.2011.335eng
dcterms.referencesIvanisevic J, Want EJ. metabolites From Samples to Insights into Metabolism: Uncovering Biologically Relevant Information in LC-HRMS Metabolomics Data. 2019; Available from: www.mdpi.com/journal/metaboliteseng
dcterms.referencesSumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007 Sep;3(3):211–21.eng
dcterms.referencesWatson DG. A ROUGH GUIDE TO METABOLITE IDENTIFICATION USING HIGH RESOLUTION LIQUID CHROMATOGRAPHY MASS SPECTROMETRY IN METABOLOMIC PROFILING IN METAZOANS. Comput Struct Biotechnol J [Internet]. 2013;4(5):e201301005. Available from: https://www.sciencedirect.com/science/article/pii/S2001037014600489eng
dcterms.referencesWeckwerth W, Morgenthal K. Metabolomics: from pattern recognition to biological interpretation. Drug Discov Today. 2005 Nov;10(22):1551–8.eng
dcterms.referencesZhang T, Mohan C. Caution in studying and interpreting the lupus metabolome. Arthritis Res Ther [Internet]. 2020;22(1):172. Available from: https://doi.org/10.1186/s13075-020-02264-2eng
dcterms.referencesWu T, Xie C, Han J, Ye Y, Weiel J, Li Q, et al. Metabolic disturbances associated with systemic lupus erythematosus. PLoS One. 2012;7(6).eng
dcterms.referencesBengtsson AA, Trygg J, Wuttge DM, Sturfelt G, Theander E, Donten M, et al. Metabolic Profiling of Systemic Lupus Erythematosus and Comparison with Primary Sjögren’s Syndrome and Systemic Sclerosis. PLoS One. 2016;11(7):e0159384eng
dcterms.referencesLi Y, Liang L, Deng X, Zhong L. Lipidomic and metabolomic profiling reveals novel candidate biomarkers in active systemic lupus erythematosus. Int J Clin Exp Pathol. 2019;12(3).eng
dcterms.referencesSun W, Li P, Cai J, Ma J, Zhang X, Song Y, et al. Lipid Metabolism: Immune Regulation and Therapeutic Prospectives in Systemic Lupus Erythematosus. Available from: www.frontiersin.orgeng
dcterms.referencesFrostegård J, Svenungsson E, Wu R, Gunnarsson I, Lundberg IE, Klareskog L, et al. Lipid peroxidation is enhanced in patients with systemic lupus erythematosus and is associated with arterial and renal disease manifestations. Arthritis Rheum. 2005 Jan;52(1):192–200.eng
dcterms.referencesHu C, Du Y, Xu X, Li H, Duan Q, Xie Z, et al. Lipidomics Revealed Aberrant Metabolism of Lipids Including FAHFAs in Renal Tissue in the Progression of Lupus Nephritis in a Murine Model. Metabolites. 2021 Feb;11(3).eng
dcterms.referencesFrostegård J. SLE, atherosclerosis and cardiovascular disease. Vol. 257, Journal of Internal Medicine. 2005.eng
dcterms.referencesYoon N, Jang AK, Seo Y, Jung BH. Metabolomics in autoimmune diseases: Focus on rheumatoid arthritis, systemic lupus erythematous, and multiple sclerosis. Vol. 11, Metabolites. 2021.eng
dcterms.referencesChiang JYL. Bile Acid Metabolism and Signaling.eng
dcterms.referencesGodlewska U, Bulanda E, Wypych TP. Bile acids in immunity: Bidirectional mediators between the host and the microbiota. 2022;eng
dcterms.referencesOzen S, Hu F, Marie Cuda C, Liu D, Dai Y, He J, et al. Microbiome and Metabolome Analyses Reveal the Disruption of Lipid Metabolism in Systemic Lupus Erythematosus. Front Immunol | www.frontiersin.org [Internet]. 2020;1:1703. Available from: www.frontiersin.orgeng
dcterms.referencesSarkissian T, Beyene J, Feldman B, Mccrindle B, Silverman ED. Longitudinal Examination of Lipid Profiles in Pediatric Systemic Lupus Erythematosus. ARTHRITIS Rheum. 2007;56(2):631–8.eng
dcterms.referencesAnthony Robinson G, Ll Wilkinson MG, Wincup C. The Role of Immunometabolism in the Pathogenesis of Systemic Lupus Erythematosus. Available from: www.frontiersin.orgeng
dcterms.referencesLian F, Wang Y, Chen J, Xu H, Yang X, Liang L, et al. Activation of farnesoid X receptor attenuates liver injury in systemic lupus erythematosus. Rheumatol Int. 2012 Jun;32(6):1705–10.eng
dcterms.referencesZhang L, Qing P, Yang H, Wu Y, Liu Y, Luo Y. Gut Microbiome and Metabolites in Systemic Lupus Erythematosus: Link, Mechanisms and Intervention. Available from: www.frontiersin.orgeng
dcterms.referencesHang S, Paik D, Yao L, Kim E, Trinath J, Lu J, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 2019 Dec;576(7785):143–8.eng
dcterms.referencesTselios K, Koumaras C, Gladman DD, Urowitz MB. Dyslipidemia in systemic lupus erythematosus: just another comorbidity? Semin Arthritis Rheum. 2016 Apr;45(5):604–10.eng
dcterms.referencesRuan XZ, Varghese Z, Moorhead JF. An update on the lipid nephrotoxicity hypothesis. Nat Rev Nephrol [Internet]. 2009;5(12):713–21. Available from: https://doi.org/10.1038/nrneph.2009.184eng
dcterms.referencesKato H, Perl A. Mechanistic target of rapamycin complex 1 expands Th17 and IL-4+ CD4-CD8- double-negative T cells and contracts regulatory T cells in systemic lupus erythematosus. J Immunol. 2014 May;192(9):4134–44.eng
dcterms.referencesZheng Y, Delgoffe GM, Meyer CF, Chan W, Powell JD. Anergic T cells are metabolically anergic. J Immunol. 2009 Nov;183(10):6095–101.eng
dcterms.referencesShi H, Chapman NM, Wen J, Guy C, Long L, Dhungana Y, et al. Amino Acids License Kinase mTORC1 Activity and Treg Cell Function via Small G Proteins Rag and Rheb. Immunity. 2019 Dec;51(6):1012-1027.e7.eng
dcterms.referencesAnanieva EA, Patel CH, Drake CH, Powell JD, Hutson SM. Cytosolic branched chain aminotransferase (BCATc) regulates mTORC1 signaling and glycolytic metabolism in CD4+ T cells. J Biol Chem. 2014 Jul;289(27):18793–804.eng
dcterms.referencesPapathanassiu AE, Ko J-H, Imprialou M, Bagnati M, Srivastava PK, Vu HA, et al. BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. Nat Commun. 2017 Jul;8:16040.eng
dcterms.referencesAlexander JJ, Zwingmann C, Jacob A, Quigg R. Alteration in kidney glucose and amino acids are implicated in renal pathology in MRL/lpr mice. Biochim Biophys Acta - Mol Basis Dis. 2007;1772(10).eng
dcterms.referencesMa T, Liu T, Xie P, Jiang S, Yi W, Dai P, et al. UPLC-MS-based urine nontargeted metabolic profiling identifies dysregulation of pantothenate and CoA biosynthesis pathway in diabetic kidney disease. Life Sci. 2020 Oct 1;258:118160.eng
dcterms.referencesGheita AA, Gheita TA, Kenawy SA. The potential role of B5: A stitch in time and switch in cytokine. Vol. 34, Phytotherapy Research. 2020.eng
dcterms.referencesvan Diepen JA, Jansen PA, Ballak DB, Hijmans A, Rutjes FPJT, Tack CJ, et al. Genetic and pharmacological inhibition of vanin-1 activity in animal models of type 2 diabetes. Sci Rep. 2016 Mar;6:21906.eng
dcterms.referencesBartucci R, Salvati A, Olinga P, Boersma YL. Molecular Sciences Vanin 1: Its Physiological Function and Role in Diseases. Available from: www.mdpi.com/journal/ijmseng
dcterms.referencesHölscher C, D MM, Prakash H, Ma L, X-p Z, He W, et al. Vitamin B5 Reduces Bacterial Growth via Regulating Innate Immunity and Adaptive Immunity in Mice Infected with Mycobacterium tuberculosis. Front Immunol [Internet]. 2018;9:365. Available from: www.frontiersin.orgeng
dcterms.referencesFrieri M, Patel R, Celestin J. Mast cell activation syndrome: a review. Curr Allergy Asthma Rep. 2013 Feb;13(1):27–32.eng
dcterms.referencesGOLDMAN L. Intensive panthenol therapy of lupus erythematosus. J Invest Dermatol. 1950 Oct;15(4):291–3.eng
dcterms.referencesLeung L-H. Systemic lupus erythematosus: a combined deficiency disease. Med Hypotheses. 2004;62(6):922–4.eng
dcterms.referencesBrown J, Abboud G, Ma L, Choi S-C, Kanda N, Zeumer-Spataro L, et al. Microbiota-mediated skewing of tryptophan catabolism modulates CD4(+) T cells in lupus-prone mice. iScience. 2022 May;25(5):104241.eng
dcterms.referencesPerl A, Hanczko R, Lai Z-W, Oaks Z, Kelly R, Borsuk R, et al. Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: implications for activation of the mechanistic target of rapamycin. Metabolomics. 2015;11(5):1157–74.eng
dcterms.referencesOaks Z, Winans T, Huang N, Banki K, Perl A. Activation of the Mechanistic Target of Rapamycin in SLE: Explosion of Evidence in the Last Five Years. Curr Rheumatol Rep. 2016 Dec;18(12):73.eng
dcterms.referencesTzeng HT, Chyuan IT. Immunometabolism in systemic lupus erythematosus: Relevant pathogenetic mechanisms and potential clinical applications. J Formos Med Assoc. 2021 Sep 1;120(9):1667–75.eng
dcterms.referencesMo Y, Lu Z, Wang L, Ji C, Zou C, Liu X. The Aryl Hydrocarbon Receptor in Chronic Kidney Disease: Friend or Foe? Front cell Dev Biol. 2020;8:589752.eng
dcterms.referencesMo Y, Lu Z, Wang L, Ji C, Zou C, Liu X. The Aryl Hydrocarbon Receptor in Chronic Kidney Disease: Friend or Foe? Front cell Dev Biol. 2020;8:589752.eng
dcterms.referencesAnekthanakul K, Manocheewa S, Chienwichai K, Poungsombat P, Limjiasahapong S, Wanichthanarak K, et al. Predicting lupus membranous nephritis using reduced picolinic acid to tryptophan ratio as a urinary biomarker. iScience [Internet]. 2021;24(11):103355. Available from: https://www.sciencedirect.com/science/article/pii/S2589004221013249eng
dcterms.referencesPawlak K, Kowalewska A, Mysliwiec M, Pawlak D. 3-hydroxyanthranilic acid is independently associated with monocyte chemoattractant protein-1 (CCL2) and macrophage inflammatory protein-1β (CCL4) in patients with chronic kidney disease. Clin Biochem. 2010 Sep 1;43(13–14):1101–6.eng
dcterms.referencesFerrara D, Montecucco F, Dallegri F, Carbone F. Impact of different ectopic fat depots on cardiovascular and metabolic diseases. J Cell Physiol. 2019 Dec;234(12):21630–41.eng
dcterms.referencesRoubicek T, Bartlova M, Krajickova J, Haluzikova D, Mraz M, Lacinova Z, et al. Increased production of proinflammatory cytokines in adipose tissue of patients with end-stage renal disease. Nutrition. 2009;25(7–8):762–8.eng
dcterms.referencesYan Q, Song Y, Zhang L, Chen Z, Yang C, Liu S, et al. Autophagy activation contributes to lipid accumulation in tubular epithelial cells during kidney fibrosis. Celldeath Discov. 2018;4:2.eng
dcterms.referencesKono M, Yoshida N, Tsokos GC. Amino Acid Metabolism in Lupus. Available from: www.frontiersin.orgeng
dcterms.referencesDelgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009 Jun;30(6):832–44.eng
dcterms.referencesArdawi MS. Glutamine and glucose metabolism in human peripheral lymphocytes. Metabolism. 1988 Jan;37(1):99–103.eng
dcterms.referencesNakaya M, Xiao Y, Zhou X, Chang J-H, Chang M, Cheng X, et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity. 2014 May;40(5):692–705.eng
dcterms.referencesYang Z, Matteson EL, Goronzy JJ, Weyand CM. T-cell metabolism in autoimmune disease. Vol. 17, Arthritis Research and Therapy. 2015.eng
dcterms.referencesDeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007 Dec;104(49):19345–50.eng
dcterms.referencesYoshida N, Comte D, Mizui M, Otomo K, Rosetti F, Mayadas TN, et al. ICER is requisite for Th17 differentiation. Nat Commun. 2016 Sep;7:12993.eng
dcterms.referencesKono M, Yoshida N, Maeda K, Tsokos GC. Transcriptional factor ICER promotes glutaminolysis and the generation of Th17 cells. Proc Natl Acad Sci U S A. 2018 Mar;115(10):2478–83.eng
dcterms.referencesKono M, Yoshida N, Maeda K, Suárez-Fueyo A, Kyttaris VC, Tsokos GC. Glutaminase 1 Inhibition Reduces Glycolysis and Ameliorates Lupus-like Disease in MRL/lpr Mice and Experimental Autoimmune Encephalomyelitis. Arthritis Rheumatol (Hoboken, NJ). 2019 Nov;71(11):1869–78.eng
dcterms.referencesXu T, Stewart KM, Wang X, Liu K, Xie M, Ryu JK, et al. Metabolic control of T(H)17 and induced T(reg) cell balance by an epigenetic mechanism. Nature. 2017 Aug;548(7666):228–33.eng
dcterms.referencesLi R, Zeng L, Xie S, Chen J, Yu Y, Zhong L. Targeted metabolomics study of serum bile acid profile in patients with end-stage renal disease undergoing hemodialysis. PeerJ. 2019;7:e7145.eng
dcterms.referencesWang YN, Hu HH, Zhang DD, Wu XQ, Liu JL, Guo Y, et al. The dysregulation of eicosanoids and bile acids correlates with impaired kidney function and renal fibrosis in chronic renal failure. Metabolites. 2021;11(2).eng
dcterms.referencesChu L, Zhang K, Zhang Y, Jin X, Jiang H. Mechanism underlying an elevated serum bile acid level in chronic renal failure patients. Int Urol Nephrol. 2015;47(2).eng
dcterms.referencesErlinger S. Bile acids in cholestasis: Bad for the liver, not so good for the kidney. Clin Res Hepatol Gastroenterol. 2014;38(4).eng
dcterms.referencesOuyang X, Dai Y, Wen JL, Wang LX. 1H NMR-based metabolomic study of metabolic profiling for systemic lupus erythematosus. Lupus. 2011;20(13).eng
dcterms.referencesYan B, Huang J, Zhang C, Hu X, Gao M, Shi A, et al. Serum metabolomic profiling in patients with systemic lupus erythematosus by GC/MS. Mod Rheumatol. 2016;26(6).eng
dcterms.referencesDuarte-Delgado NP, Cala MP, Barreto A, Rodríguez C LS. Metabolites and metabolic pathways associated with rheumatoid arthritis and systemic lupus erythematosus. J Transl Autoimmun. 2022;5eng
dcterms.referencesGuleria A, Pratap A, Dubey D, Rawat A, Chaurasia S, Sukesh E, et al. NMR based serum metabolomics reveals a distinctive signature in patients with Lupus Nephritis. Sci Rep. 2016;6.eng
dcterms.referencesShin TH, Kim HA, Jung JY, Baek WY, Lee HS, Park HJ, et al. Analysis of the free fatty acid metabolome in the plasma of patients with systemic lupus erythematosus and fever. Metabolomics. 2018;14(1).eng
dcterms.referencesZhang Q, Yin X, Wang H, Wu X, Li X, Li Y, et al. Fecal metabolomics and potential biomarkers for systemic lupus erythematosus. Front Immunol. 2019;10(MAY).eng
dcterms.referencesKalantari S, Nafar M. An update of urine and blood metabolomics in chronic kidney disease. Biomark Med. 2019;13(7).eng
dcterms.referencesYan R, Jiang H, Gu S, Feng N, Zhang N, Lv L, et al. Fecal Metabolites Were Altered, Identified as Biomarkers and Correlated With Disease Activity in Patients With Systemic Lupus Erythematosus in a GC-MS-Based Metabolomics Study. Front Immunol. 2020;11.eng
dcterms.referencesZhang Q, Li X, Yin X, Wang H, Fu C, Wang H, et al. Metabolomic profiling reveals serum L-pyroglutamic acid as a potential diagnostic biomarker for systemic lupus erythematosus. Rheumatol (United Kingdom). 2021;60(2).eng
dcterms.referencesZhang Y, Gan L, Tang J, Liu D, Chen G, Xu B. Metabolic profiling reveals new serum signatures to discriminate lupus nephritis from systemic lupus erythematosus. Front Immunol. 2022;13:967371.eng
oaire.versioninfo:eu-repo/semantics/acceptedVersionspa
sb.programaMaestría en Genéticaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PDF_Resumen.pdf
Tamaño:
195.34 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
3.89 MB
Formato:
Adobe Portable Document Format

Colecciones