Actividad antibacteriana de extractos etanólicos obtenidos de la especie Senna alata (L.) Roxb contra Staphylococcus aureus y Klebsiella pneumoniae

datacite.rightshttp://purl.org/coar/access_right/c_f1cf
dc.contributor.advisorEspitia Almeida, Fabián
dc.contributor.advisorCabrera Barraza, Julián
dc.contributor.advisorValle Molinares, Roger
dc.contributor.authorEspitia Parodi, Emer Jesus
dc.contributor.authorMateus Balmaceda, Andrea Loraine
dc.date.accessioned2024-06-20T20:37:26Z
dc.date.available2024-06-20T20:37:26Z
dc.date.issued2024
dc.description.abstractLa resistencia bacteriana ha dejado obsoleto el uso de algunos antibióticos. Por lo tanto, se hace imperativo la búsqueda de nuevas moléculas o farmacóforos con propiedades antibacterianas. Los productos naturales son una fuente promisoria de nuevas sustancias, considerándose de alto valor agregado para la comunidad científica en el conocimiento etnofarmacológico de especies vegetales del Caribe colombiano. EL objetivo de este trabajo fue evaluar la actividad antibacteriana de extractos etanólicos obtenidos de la hoja, tallo y raíz de Senna alata, contra Staphylococcus aureus y Klebsiella pneumoniae mediante los métodos se microdilución en caldo establecido por el CLSI 2022 y Kirby-Bauer, ambos métodos estandarizados previamente por nuestro equipo de trabajo. La caracterización fitoquímica mostró la presencia de alcaloides, cumarinas, flavonoides, triterpenos, esteroles, saponinas y taninos en todo el extracto obtenido de las hojas, raíz y tallo de S. alata (L.) Roxb. Los resultados de actividad antibacteriana mostraron porcentajes de inhibición leve y nula. De los tres extractos estudiados, el extracto de tallo presentó leve actividad antibacteriana con 22.1 ± 9.4 y 13.1 ± 7.4 %, frente a S. aureus y K. pneumoniae. respectivamente. A diferencias de los extractos de hojas y raíz que presentaron actividad nula. Estos resultados se contrastaron usando el método Kirby-Bauer mediante el uso de sensidiscos a los cuales se le impregnó 5,000 µg por disco de cada extracto, realizando pruebas por triplicado para cada bacteria. Se evidenció en los ensayos en el extracto de tallo mostraba un halo de inhibición mínimo el cual no se podía ver con gran facilidad, a diferencia de los otros extractos de hoja y raíz que no se observó ningún resultado positivo.spa
dc.description.abstractBacterial resistance has rendered the use of some antibiotics obsolete. Therefore, the search for new molecules or pharmacophores with antibacterial properties is imperative. Natural products are a promising source of new substances and the ethnopharmacological knowledge of Colombian Caribbean plant species is considered of high added value for the scientific community. The objective of this work was to evaluate the antibacterial activity of ethanolic extracts obtained from the leaf, stem and root of Senna alata against Staphylococcus aureus and Klebsiella pneumoniae using the broth microdilution methods established by CLSI 2022 and Kirby-Bauer, both methods previously standardized by our team. Phytochemical characterization showed the presence of alkaloids, coumarins, flavonoids, triterpenes, sterols, saponins and tannins in the whole extract obtained from the leaves, root and stem of S. alata (L.) Roxb. The results of antibacterial activity showed slight and null inhibition percentages. Of the three extracts studied, the stem extract showed mild antibacterial activity with 22.1 ± 9.4 and 13.1 ± 7.4 %, against S. aureus and K. pneumoniae, respectively. In contrast to the leaf and root extracts, which presented null activity. These results were contrasted using the Kirby-Bauer method by means of the use of sensidiscs to which 5,000 µg per disc of each extract was impregnated, performing tests in triplicate for each bacterium. It was evident in the tests that the stem extract showed a minimal inhibition halo which could not be seen very easily, unlike the other extracts of leaf and root which did not show any positive result.eng
dc.format.mimetypepdf
dc.identifier.urihttps://hdl.handle.net/20.500.12442/14753
dc.language.isospa
dc.publisherEdiciones Universidad Simón Bolívar
dc.publisherFacultad de Ciencias Básicas y Biomédicasspa
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateseng
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.subjectActividad antibacterianaspa
dc.subjectSenna alataspa
dc.subjectMetabolitos secundariosspa
dc.subjectExtractos etanolicosspa
dc.subjectResistencia de antibióticosspa
dc.subject.keywordsAntibacterial activityeng
dc.subject.keywordsSenna alataeng
dc.subject.keywordsSecondary metaboliteseng
dc.subject.keywordsEthanolic extractseng
dc.subject.keywordsAntibiotic resistance.eng
dc.titleActividad antibacteriana de extractos etanólicos obtenidos de la especie Senna alata (L.) Roxb contra Staphylococcus aureus y Klebsiella pneumoniaeeng
dc.type.driverinfo:eu-repo/semantics/other
dc.type.spaTrabajo de grado - pregrado
dcterms.referencesAbdallah, E. M., Alhatlani, B. Y., De Paula Menezes, R., & Martins, C. H. G. (2023). Back to Nature: Medicinal Plants as Promising Sources for Antibacterial Drugs in the PostAntibiotic Era. Plants, 12(17), 3077. https://doi.org/10.3390/plants12173077.eng
dcterms.referencesAdedayo, O., Anderson, W., Moo-Young, M., Snieckus, V., Patil, P., & Kolawole, D. (2001). Phytochemistry and Antibacterial Activity of Senna alata Flower. Pharmaceutical Biology, 39(6), 408-412. https://doi.org/10.1076/phbi.39.6.408.5880eng
dcterms.referencesAfzal, I., Habiba, U., & Yasmeen, H. (2023). Review on Therapeutic Potential of Phytochemicals from Medicinal Plants. Journal Of Bioresource Management, 10(4). https://corescholar.libraries.wright.edu/cgi/viewcontent.cgi?article=1589&context=jb m#:~:text=Phytochemicals%20are%20beneficial%20in%20the,Deora%20and%20Ba no%2C%202019).eng
dcterms.referencesAlshehri, M. M., Quispe, C., Herrera-Bravo, J., Sharifi-Rad, J., Tutuncu, S., Aydar, E. F., Topkaya, C., Mertdinc, Z., Ozcelik, B., Aital, M., Kumar, N. V. A., Lapava, N., Rajkovic, J., Ertani, A., Nicola, S., Semwal, P., Painuli, S., González-Contreras, C., Martorell, M., . . . Cho, W. C. (2022). A Review of Recent Studies on the Antioxidant and Anti-Infectious Properties of Senna Plants. Oxidative Medicine And Cellular Longevity, 2022, 1-38. https://doi.org/10.1155/2022/6025900.eng
dcterms.referencesAndersson, D. I., & Hughes, D. (2017). Selection and Transmission of Antibiotic-Resistant Bacteria. Microbiology Spectrum, 5(4). https://doi.org/10.1128/microbiolspec.mtbp0013-2016.eng
dcterms.referencesAung, W. W., Panich, K., Watthanophas, S., Naridsirikul, S., Ponphaiboon, J., Krongrawa, W., Kulpicheswanich, P., Limmatvapirat, S., & Limmatvapirat, C. (2023). Preparation of Bioactive De-Chlorophyll Rhein-Rich Senna alata Extract. Antibiotics, 12(1), 181. https://doi.org/10.3390/antibiotics12010181.eng
dcterms.referencesAtanu, F. O., Rotimi, D., Ilesanmi, O. B., Malki, J. S. A., Batiha, G. E., & Idakwoji, P. A. (2022). Hydroethanolic Extracts ofSenna alataLeaves Possess Antimalarial Effects and Reverses Haematological and Biochemical Pertubation inPlasmodium bergheiinfected Mice. Journal Of Evidence-based Integrative Medicine, 27, 2515690X2211164. https://doi.org/10.1177/2515690x221116407.eng
dcterms.referencesvello M & Cisternas I. (2010). Fitoterapia, sus orígenes, características y situación en Chile. Revista médica de Chile, 138(10), 1288-1293. https://doi.org/10.4067/s0034- 98872010001100014.spa
dcterms.referencesBalogun F & Sabiu S. (2021). A review of the phytochemistry, ethnobotany, toxicology, and pharmacological potentials of Crescentia Cujete L. (Bignoniaceae). Evidence-based complementary and alternative medicine, 2021, 1-15. https://doi.org/10.1155/2021/6683708.eng
dcterms.referencesBorges A, Abreu AC, Dias C, Saavedra M, Borges F & Simões M. (2016). New perspectives 20 on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules, 21(7), 877. https://doi.org/10.3390/molecules21070877.eng
dcterms.referencesCenters for disease control and prevention-CDC (2020). About Antimicrobial Resistance. https://www.cdc.gov/antimicrobial-resistance/about/index.html.eng
dcterms.referencesChen, S., Wang, X., Cheng, Y., Gao, H., & Chen, X. (2023). A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules/Molecules Online/Molecules Annual, 28(13), 4982. https://doi.org/10.3390/molecules28134982.eng
dcterms.referencesChew, Y., Khor, M., Xu, Z., Lee, S., Keng, J., Sang, S., Akowuah, G. A., Goh, K. W., Liew, K. B., & Ming, L. C. (2022). Cassia alata, Coriandrum sativum, Curcuma longa and Azadirachta indica: Food Ingredients as Complementary and Alternative Therapies for Atopic Dermatitis-A Comprehensive Review. Molecules/Molecules Online/Molecules Annual, 27(17), 5475. https://doi.org/10.3390/molecules27175475.eng
dcterms.referencesClinical and Laboratory Standards Institute-CLSI (2022). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth. Information Supplement. https://clsi.org/standards/products/microbiology/documents/m100/.eng
dcterms.referencesDomingo D & López-Brea M. (2003). Plantas con acción antimicrobiana. Rev Esp Quimioterap, 16(4), 385-393. https://www.seq.es/seq/0214-3429/16/4/385.pdfspa
dcterms.referencesDong, S., Yang, X., Zhao, L., Zhang, F., Hou, Z., & Xue, P. (2020). Antibacterial activity and mechanism of action saponins from Chenopodium quinoa Willd. husks against foodborne pathogenic bacteria. Industrial Crops And Products, 149, 112350. https://doi.org/10.1016/j.indcrop.2020.112350eng
dcterms.referencesEjelonu B, Lasisi A, Olaremu A & Ejelonu O. (2011). The chemical constituents of calabash (Crescentia cujete). African Journal of Biotechnology, 10(84), 19631-19636.eng
dcterms.referencesEldemerdash, M. M., El-Sayed, A. S. A., Hussein, H. A., Teleb, S. S., & Shehata, R. S. (2022). Molecular and metabolic traits of some Egyptian species of Cassia L. and Senna Mill (Fabaceae-Caesalpinioideae). BMC Plant Biology, 22(1). https://doi.org/10.1186/s12870-022-03543-7.eng
dcterms.referencesEspinoza Olazabal C & Suyon M. (2023). Actividad antibacteriana del extracto etanólico de las hojas de Crescentia Cujete l.(Totumo) frente a Staphylococcus aureus ATCC 25923. Tesis. https://hdl.handle.net/20.500.12970/1502.spa
dcterms.referencesEspitia-Baena J, Duran-Sandoval H, Fandiño-Franky J, Díaz-Castillo F & Gómez-Estrada H. (2011). Química y biología del extracto etanólico del epicarpio de Crescentia cujete L.(totumo). Revista cubana de plantas medicinales, 16(4), 337. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962011000400005.spa
dcterms.referencesEspitia-Almeida, F., Brito-Tapia, L., Pimienta-Daza, L. A., Barragán-Avilez, C., & FlórezSantiago, J. (2023c). Caracterización fitoquímica preliminar y cuantificación de 21 fenoles totales de extractos etanólicos obtenidos de Hylocereus undatus y Hylocereus megalanthus. Repositorio digital, Bonga. Universidad Simón Bolívar. https://hdl.handle.net/20.500.12442/13539.spa
dcterms.referencesEspitia-Almeida, F., Díaz-Theran, M. E., Nieto-Tomases, A. M., Cabrera-Barraza, J., & Valle-Molinares, R. (2023b). Evaluación de la actividad antibacteriana de extractos etanólicos obtenidos de las flores de Crescentia cujete L. frente a patógenos de importancia clínica. Repositorio digital, Bonga. Universidad Simón Bolívar. https://hdl.handle.net/20.500.12442/13464.spa
dcterms.referencesEspitia-Almeida F, Meléndez-Gómez C, Gómez-Camargo D & Ochoa-Díaz M. (2014). Estudio de la actividad antibacteriana en Pseudomonas aeruginosa d 4-amido-2-alquil tetrahidroquinolinas. Tesis. Disponible en: https://www.researchgate.net/publication/282239643.spa
dcterms.referencesEspitia-Almeida F, Meléndez-Gómez C, Ochoa-Díaz M, Valle-Molinares R., Gutiérrez M & Gómez- Camargo D. (2016). Antimicrobial and degradative bacterial DNA effects of new 2-alkyl (tetrahydroquinoline-4-yl) formamide. Pharmacologyonline. 1, 72. https://www.semanticscholar.org/paper/ANTIMICROBIAL-AND-DEGRADATIVEBACTERIAL-DNA-EFFECTS-Espitia-Almeida-OchoaD%C3%ADaz/43b51842f0fec2b59e7a369a0c6d49e294dae971.eng
dcterms.referencesEspitia-Almeida F, Valle-Molinares R, Navarro Quiroz E, Pacheco-Londoño L.C & GalánFreyle N. J. (2023c). Photodynamic Antimicrobial Activity of a Novel 5, 10, 15, 20- Tetrakis (4- Ethylphenyl) Porphyrin against Clinically Important Bacteria. Pharmaceuticals, 16(8), 1059. https://doi.org/10.3390/ph16081059.eng
dcterms.referencesFatmawati, S., Yuliana, Purnomo, A. S., & Bakar, M. F. A. (2020). Chemical constituents, usage and pharmacological activity of Cassia alata. Heliyon, 6(7), e04396. https://doi.org/10.1016/j.heliyon.2020.e04396.eng
dcterms.referencesFolly, M. L. C., Ferreira, G. F., Salvador, M. R., Sathler, A. A., Da Silva, G. F., Santos, J. C. B., Santos, J. R. A. D., Neto, W. R. N., Rodrigues, J. F. S., Fernandes, E. S., Da Silva, L. C. N., De Freitas, G. J. C., Denadai, Â. M., Rodrigues, I. V., Mendonça, L. M., Monteiro, A. S., Santos, D. A., Cabrera, G. M., Siless, G., & Lang, K. L. (2020). Evaluation of in vitro Antifungal Activity of Xylosma prockia (Turcz.) Turcz. (Salicaceae) Leaves Against Cryptococcus spp. Frontiers In Microbiology, 10. https://doi.org/10.3389/fmicb.2019.03114.eng
dcterms.referencesGarcía Luján C, Martínez R, Ortega S & Castro B.F. (2010). Componentes químicos y su relación con las actividades biológicas de algunos extractos vegetales. Química Viva, 9(2), 86-96. https://www.redalyc.org/pdf/863/86314868005.pdf.spa
dcterms.referencesGenevieve L & Limaye A. (2013). Infections in Transplant Patients. Med. Clin. N. Am, 97, 581–600. https://doi.org/10.1016/j.mcna.2013.03.002.eng
dcterms.referencesGonzález Mendoza, J., Maguiña Vargas, C., & González Ponce, F. D. M. (2019). La resistencia a los antibióticos: un problema muy serio. Acta Médica Peruana, 36 (2), 145-151. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1728- 22 59172019000200011&lng=es&tlng=esspa
dcterms.referencesGuerra Ordoñez, M., Sánchez Govín, E., & Gálvez Blanco, Maria. (2004). Actividad antimicrobiana de Senna alata L. Revista Cubana de Plantas Medicinales, 9(1) http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028- 47962004000100005&lng=es&tlng=es.spa
dcterms.referencesHaroun, M. F., & Al-Kayali, R. S. (2016). Synergistic effect of Thymbra spicata L. extracts with antibiotics against multidrug- resistant Staphylococcus aureus and Klebsiella pneumoniae strains. Iranian journal of basic medical sciences, 19(11), 1193–1200. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5126220/.eng
dcterms.referencesHou J, Long X, Wang X, Li L, Mao D, Luo Y & Ren H. (2023). Global trend of antimicrobial resistance in common bacterial pathogens in response to antibiotic consumption. Journal of Hazardous Materials, 442, 130042. https://doi.org/10.1016/j.jhazmat.2022.130042.eng
dcterms.referencesJogdand, S. (2024). Qualitative phytochemical analysis of Senna alata (L.) Roxb.: an important medicinal shrub. Zenodo. https://doi.org/10.5281/zenodo.10702631.eng
dcterms.referencesKöser C. U, Ellington M, Cartwright E, Gillespie S. H, Brown N. M, Farrington M, Holden M, Dougan G, Bentley S, Parkhill J & Peacock S. J. (2012). Routine Use of Microbial Whole Genome Sequencing in Diagnostic and Public Health Microbiology. PLoS Pathogens, 8 (8), e1002824. https://doi.org/10.1371/journal.ppat.1002824.eng
dcterms.referencesKhadka, D., Dhamala, M. K., Li, F., Aryal, P. C., Magar, P. R., Bhatta, S., Thakur, M. S., Basnet, A., Cui, D., & Shi, S. (2021). The use of medicinal plants to prevent COVID19 in Nepal. Journal Of Ethnobiology And Ethnomedicine, 17(1). https://doi.org/10.1186/s13002-021-00449-w.eng
dcterms.referencesKhandy, M. T., Grigorchuk, V. P., Sofronova, A. K., & Gorpenchenko, T. Y. (2024). The Different Composition of Coumarins and Antibacterial Activity of Phlojodicarpus sibiricus and Phlojodicarpus villosus Root Extracts. Plants, 13(5), 601. https://doi.org/10.3390/plants13050601.eng
dcterms.referencesMasana, M. O. (2015). Factores impulsores de la emergencia de peligros biológicos en los alimentos. Rev Argentina Microbiol, 47(1), 1-3. https://doi.org/10.1016/j.ram.2015.01.004.spa
dcterms.referencesMejía Suarez K. (2022). Revisión bibliográfica frente a un método de conservación para jarabe elaborado a base de totumo (Crescentia cujete), Salvia (Lamiaceae), y Anamú (Petiveria), por la comunidad indígena Zenú. Retrieved November 1, 2023, from https://repository.udca.edu.co/bitstream/handle/11158/4726/1.%20Proyecto%20final %20-%20Katheryn%20Mejia%20PDF.pdf?sequence=1&isAllowed=y.spa
dcterms.referencesMurray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Hamadani, B. H. K., Kumaran, E. A. P., 23 McManigal, B., . . . Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 399(10325), 629-655. https://doi.org/10.1016/s0140-6736(21)02724-0eng
dcterms.referencesMursaliyeva, V. K., Sarsenbek, B. T., Dzhakibaeva, G. T., Mukhanov, T. M., & Mammadov, R. (2023). Total Content of Saponins, Phenols and Flavonoids and Antioxidant and Antimicrobial Activity of In Vitro Culture of Allochrusa gypsophiloides (Regel) Schischk Compared to Wild Plants. Plants, 12(20), 3521. https://doi.org/10.3390/plants12203521.eng
dcterms.referencesNuro, G., Tolossa, K., & Giday, M. (2024). Medicinal Plants Used by Oromo Community in Kofale District, West-Arsi Zone, Oromia Regional State, Ethiopia. Journal Of Experimental Pharmacology, Volume 16, 81-109. https://doi.org/10.2147/jep.s449496eng
dcterms.referencesNzogong, R. T., Ndjateu, F. S. T., Ekom, S. E., Fosso, J. M., Awouafack, M. D., Tene, M., Tane, P., Morita, H., Choudhary, M. I., & Tamokou, J. (2018). Antimicrobial and antioxidant activities of triterpenoid and phenolic derivatives from two Cameroonian Melastomataceae plants: Dissotis senegambiensis and Amphiblemma monticola. BMC Complementary And Alternative Medicine, 18(1). https://doi.org/10.1186/s12906-018- 2229-2eng
dcterms.referencesOladeji, O. S., Adelowo, F. E., Oluyori, A. P., & Bankole, D. T. (2020). Ethnobotanical Description and Biological Activities of Senna alata. Evidence-based Complementary and Alternative Medicine, 2020, 1-12. https://doi.org/10.1155/2020/2580259.eng
dcterms.referencesOrganización Mundial de la Salud-OMS. (2023). Estrategia de la OMS para la medicina tradicional 2012-2023. 2013: 75. https://iris.who.int/bitstream/handle/10665/95008/9789243506098_spa.pdfspa
dcterms.referencesOrganización Mundial de la Salud-OMS. (2023). Resistencia antimicrobiana. Disponible en: https://www.paho.org/es/noticias/6-6-2023-partir-ahora-semana-mundialconcientizacion- sobre-uso-antimicrobianos-waaw-por.spa
dcterms.referencesPachorkar, P., & Patil, S. (2021). Therapeutic potential and characterization of Senna alata: an ethanomedicinal plant. International Journal Of Pharmaceutical Sciences And Research, 12(9). https://doi.org/10.13040/ijpsr.0975-8232.12(9).4985-92.eng
dcterms.referencesPájaro-González Y, Oliveros-Díaz A.F, Cabrera-Barraza J, Cerra-Domínguez J & DíazCastillo F. (2022). A review of medicinal plants used as antimicrobials in Colombia. Elsevier EBooks, 3–57. https://doi.org/10.1016/b978-0-323-90999-0.00005-7eng
dcterms.referencesPrapaiwong, T., Srakaew, W., Wachirapakorn, C., & Jarassaeng, C. (2021). Effects of hydrolyzable tannin extract obtained from sweet chestnut wood (Castanea sativa Mill.) against bacteria causing subclinical mastitis in Thai Friesian dairy cows. Veterinary World/Veterinary World, 2427-2433. https://doi.org/10.14202/vetworld.2021.2427- 2433.eng
dcterms.referencesRamírez L, Castillo Castañeda A & Melo Vargas A. (2013). Evaluación del potencial 24 antibacterial in vitro de Croton lechleri frente a aislamientos bacterianos de pacientes con úlceras cutáneas. Nova, 11(19), 51-63. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794- 24702013000100006&lng=en&tlng=es.spa
dcterms.referencesSaito, S. T., Da Silva Trentin, D., Macedo, A. J., Pungartnik, C., Gosmann, G., De Deos Silveira, J., Guecheva, T. N., Henriques, J. A. P., & Brendel, M. (2012). Bioguided Fractionation ShowsCassia alataExtract to InhibitStaphylococcus epidermidisandPseudomonas aeruginosaGrowth and Biofilm Formation. Evidencebased Complementary And Alternative Medicine, 2012, 1-13. https://doi.org/10.1155/2012/867103.eng
dcterms.referencesSalamatullah, A. M., Subash-Babu, P., Nassrallah, A., Alshatwi, A. A., & Alkaltham, M. S. (2021). Cyclotrisiloxan and β-Sitosterol rich Cassia alata (L.) flower inhibit HT-115 human colon cancer cell growth via mitochondrial dependent apoptotic stimulation. Saudi journal of biological sciences, 28(10), 6009-6016. https://doi.org/10.1016/j.sjbs.2021.06.065.eng
dcterms.referencesSaptarini, N. M., Mustarichie, R., Hasanuddin, S., & Corpuz, M. J. T. (2024). Cassia alata L.: A Study of Antifungal Activity against Malassezia furfur, Identification of Major Compounds, and Molecular Docking to Lanosterol 14-Alpha Demethylase. Pharmaceuticals, 17(3), 380. https://doi.org/10.3390/ph17030380eng
dcterms.referencesSikkema J, de Bont J. A & Poolman B. (1994). Interactions of cyclic hydrocarbons with biological membranes. The Journal of biological chemistry, 269 (11), 8022–8028. https://www.jbc.org/article/S0021-9258(17)37154-5/pdf.eng
dcterms.referencesSuganya, T., Packiavathy, I. A. S. V., Aseervatham, G. S. B., Carmona, A., Rashmi, V., Mariappan, S., Devi, N. R., & Ananth, D. A. (2022). Tackling Multiple-Drug-Resistant Bacteria With Conventional and Complex Phytochemicals. Frontiers In Cellular And Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.883839.eng
dcterms.referencesSyaefudin, N., Nitami, D., Utari, M. D. M., Rafi, M., & Hasanah, U. (2018). Antioxidant and Antibacterial Activities of Several Fractions from Crescentia cujete L. Stem Bark Extract. IOP Conference Series. Earth And Environmental Science, 197, 012004. https://doi.org/10.1088/1755-1315/197/1/012004.eng
dcterms.referencesTadesse, T., & Teka, A. (2023). Ethnobotanical Study on Medicinal Plants Used by the Local Communities of Ameya District, Oromia Regional State, Ethiopia. Evidence-based Complementary And Alternative Medicine, 2023, 1-10. https://doi.org/10.1155/2023/5961067.eng
dcterms.referencesToh, S. C., Lihan, S., Bunya, S. R., & Leong, S. S. (2023). In vitro antimicrobial efficacy of Cassia alata (Linn.) leaves, stem, and root extracts against cellulitis causative agent Staphylococcus aureus. BMC Complementary Medicine And Therapies, 23(1). https://doi.org/10.1186/s12906-023-03914-z.eng
dcterms.referencesUddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. R. M., Mitra, S., Emran, T. B., 25 Dhama, K., Ripon, K. H., Gajdács, M., Sahibzada, M. U. K., Hossain, J., & Koirala, N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal Of Infection And Public Health, 14(12), 1750- 1766. https://doi.org/10.1016/j.jiph.2021.10.020.eng
dcterms.referencesVan Duin, D., & Paterson, D. L. (2020). Multidrug-Resistant Bacteria in the Community. Infectious Disease Clinics Of North America, 34(4), 709-722. https://doi.org/10.1016/j.idc.2020.08.002eng
dcterms.referencesVitolo A. L. (2023). Biodiversidad (Biogeografía en un País Megadiverso). Escuela de Ciencias Básicas Y Aplicadas B-Learning. https://ciencia.lasalle.edu.co/blearning_ciencias_basicas/8spa
dcterms.referencesVivot, E. P., Sánchez, C., Cacik, F., & Sequin, C. (2012). Actividad antibacteriana en plantas medicinales de la flora de Entre Ríos (Argentina). Ciencia, docencia y tecnología, (45), 131-146. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851- 17162012000200008&lng=es&tlng=es.spa
dcterms.referencesXie, J., Liu, F., Jia, X., Zhao, Y., Liu, X., Luo, M., He, Y., Liu, S., & Wu, F. (2022). Ethnobotanical study of the wild edible and healthy functional plant resources of the Gelao people in northern Guizhou, China. Journal Of Ethnobiology and Ethnomedicine, 18(1). https://doi.org/10.1186/s13002-022-00572-2.eng
dcterms.referencesYap, P. S. X., Yusoff, K., Lim, S. E., Chong, C., & Lai, K. (2021). Membrane Disruption Properties of Essential Oils—A Double-Edged Sword? Processes, 9(4), 595. https://doi.org/10.3390/pr9040595.eng
dcterms.referencesZhu, Y., Huang, W. E., & Yang, Q. (2022). Clinical Perspective of Antimicrobial Resistance in Bacteria. Infection And Drug Resistance, Volume 15, 735-746. https://doi.org/10.2147/idr.s345574.eng
oaire.versioninfo:eu-repo/semantics/acceptedVersion
sb.programaMicrobiologíaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PDF_Resumen.pdf
Tamaño:
350.27 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
648.77 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones