Actividad antibacteriana de extractos etanólicos obtenidos de la especie Senna alata (L.) Roxb contra Staphylococcus aureus y Klebsiella pneumoniae
datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.contributor.advisor | Espitia Almeida, Fabián | |
dc.contributor.advisor | Cabrera Barraza, Julián | |
dc.contributor.advisor | Valle Molinares, Roger | |
dc.contributor.author | Espitia Parodi, Emer Jesus | |
dc.contributor.author | Mateus Balmaceda, Andrea Loraine | |
dc.date.accessioned | 2024-06-20T20:37:26Z | |
dc.date.available | 2024-06-20T20:37:26Z | |
dc.date.issued | 2024 | |
dc.description.abstract | La resistencia bacteriana ha dejado obsoleto el uso de algunos antibióticos. Por lo tanto, se hace imperativo la búsqueda de nuevas moléculas o farmacóforos con propiedades antibacterianas. Los productos naturales son una fuente promisoria de nuevas sustancias, considerándose de alto valor agregado para la comunidad científica en el conocimiento etnofarmacológico de especies vegetales del Caribe colombiano. EL objetivo de este trabajo fue evaluar la actividad antibacteriana de extractos etanólicos obtenidos de la hoja, tallo y raíz de Senna alata, contra Staphylococcus aureus y Klebsiella pneumoniae mediante los métodos se microdilución en caldo establecido por el CLSI 2022 y Kirby-Bauer, ambos métodos estandarizados previamente por nuestro equipo de trabajo. La caracterización fitoquímica mostró la presencia de alcaloides, cumarinas, flavonoides, triterpenos, esteroles, saponinas y taninos en todo el extracto obtenido de las hojas, raíz y tallo de S. alata (L.) Roxb. Los resultados de actividad antibacteriana mostraron porcentajes de inhibición leve y nula. De los tres extractos estudiados, el extracto de tallo presentó leve actividad antibacteriana con 22.1 ± 9.4 y 13.1 ± 7.4 %, frente a S. aureus y K. pneumoniae. respectivamente. A diferencias de los extractos de hojas y raíz que presentaron actividad nula. Estos resultados se contrastaron usando el método Kirby-Bauer mediante el uso de sensidiscos a los cuales se le impregnó 5,000 µg por disco de cada extracto, realizando pruebas por triplicado para cada bacteria. Se evidenció en los ensayos en el extracto de tallo mostraba un halo de inhibición mínimo el cual no se podía ver con gran facilidad, a diferencia de los otros extractos de hoja y raíz que no se observó ningún resultado positivo. | spa |
dc.description.abstract | Bacterial resistance has rendered the use of some antibiotics obsolete. Therefore, the search for new molecules or pharmacophores with antibacterial properties is imperative. Natural products are a promising source of new substances and the ethnopharmacological knowledge of Colombian Caribbean plant species is considered of high added value for the scientific community. The objective of this work was to evaluate the antibacterial activity of ethanolic extracts obtained from the leaf, stem and root of Senna alata against Staphylococcus aureus and Klebsiella pneumoniae using the broth microdilution methods established by CLSI 2022 and Kirby-Bauer, both methods previously standardized by our team. Phytochemical characterization showed the presence of alkaloids, coumarins, flavonoids, triterpenes, sterols, saponins and tannins in the whole extract obtained from the leaves, root and stem of S. alata (L.) Roxb. The results of antibacterial activity showed slight and null inhibition percentages. Of the three extracts studied, the stem extract showed mild antibacterial activity with 22.1 ± 9.4 and 13.1 ± 7.4 %, against S. aureus and K. pneumoniae, respectively. In contrast to the leaf and root extracts, which presented null activity. These results were contrasted using the Kirby-Bauer method by means of the use of sensidiscs to which 5,000 µg per disc of each extract was impregnated, performing tests in triplicate for each bacterium. It was evident in the tests that the stem extract showed a minimal inhibition halo which could not be seen very easily, unlike the other extracts of leaf and root which did not show any positive result. | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/14753 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | eng |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.subject | Actividad antibacteriana | spa |
dc.subject | Senna alata | spa |
dc.subject | Metabolitos secundarios | spa |
dc.subject | Extractos etanolicos | spa |
dc.subject | Resistencia de antibióticos | spa |
dc.subject.keywords | Antibacterial activity | eng |
dc.subject.keywords | Senna alata | eng |
dc.subject.keywords | Secondary metabolites | eng |
dc.subject.keywords | Ethanolic extracts | eng |
dc.subject.keywords | Antibiotic resistance. | eng |
dc.title | Actividad antibacteriana de extractos etanólicos obtenidos de la especie Senna alata (L.) Roxb contra Staphylococcus aureus y Klebsiella pneumoniae | eng |
dc.type.driver | info:eu-repo/semantics/other | |
dc.type.spa | Trabajo de grado - pregrado | |
dcterms.references | Abdallah, E. M., Alhatlani, B. Y., De Paula Menezes, R., & Martins, C. H. G. (2023). Back to Nature: Medicinal Plants as Promising Sources for Antibacterial Drugs in the PostAntibiotic Era. Plants, 12(17), 3077. https://doi.org/10.3390/plants12173077. | eng |
dcterms.references | Adedayo, O., Anderson, W., Moo-Young, M., Snieckus, V., Patil, P., & Kolawole, D. (2001). Phytochemistry and Antibacterial Activity of Senna alata Flower. Pharmaceutical Biology, 39(6), 408-412. https://doi.org/10.1076/phbi.39.6.408.5880 | eng |
dcterms.references | Afzal, I., Habiba, U., & Yasmeen, H. (2023). Review on Therapeutic Potential of Phytochemicals from Medicinal Plants. Journal Of Bioresource Management, 10(4). https://corescholar.libraries.wright.edu/cgi/viewcontent.cgi?article=1589&context=jb m#:~:text=Phytochemicals%20are%20beneficial%20in%20the,Deora%20and%20Ba no%2C%202019). | eng |
dcterms.references | Alshehri, M. M., Quispe, C., Herrera-Bravo, J., Sharifi-Rad, J., Tutuncu, S., Aydar, E. F., Topkaya, C., Mertdinc, Z., Ozcelik, B., Aital, M., Kumar, N. V. A., Lapava, N., Rajkovic, J., Ertani, A., Nicola, S., Semwal, P., Painuli, S., González-Contreras, C., Martorell, M., . . . Cho, W. C. (2022). A Review of Recent Studies on the Antioxidant and Anti-Infectious Properties of Senna Plants. Oxidative Medicine And Cellular Longevity, 2022, 1-38. https://doi.org/10.1155/2022/6025900. | eng |
dcterms.references | Andersson, D. I., & Hughes, D. (2017). Selection and Transmission of Antibiotic-Resistant Bacteria. Microbiology Spectrum, 5(4). https://doi.org/10.1128/microbiolspec.mtbp0013-2016. | eng |
dcterms.references | Aung, W. W., Panich, K., Watthanophas, S., Naridsirikul, S., Ponphaiboon, J., Krongrawa, W., Kulpicheswanich, P., Limmatvapirat, S., & Limmatvapirat, C. (2023). Preparation of Bioactive De-Chlorophyll Rhein-Rich Senna alata Extract. Antibiotics, 12(1), 181. https://doi.org/10.3390/antibiotics12010181. | eng |
dcterms.references | Atanu, F. O., Rotimi, D., Ilesanmi, O. B., Malki, J. S. A., Batiha, G. E., & Idakwoji, P. A. (2022). Hydroethanolic Extracts ofSenna alataLeaves Possess Antimalarial Effects and Reverses Haematological and Biochemical Pertubation inPlasmodium bergheiinfected Mice. Journal Of Evidence-based Integrative Medicine, 27, 2515690X2211164. https://doi.org/10.1177/2515690x221116407. | eng |
dcterms.references | vello M & Cisternas I. (2010). Fitoterapia, sus orígenes, características y situación en Chile. Revista médica de Chile, 138(10), 1288-1293. https://doi.org/10.4067/s0034- 98872010001100014. | spa |
dcterms.references | Balogun F & Sabiu S. (2021). A review of the phytochemistry, ethnobotany, toxicology, and pharmacological potentials of Crescentia Cujete L. (Bignoniaceae). Evidence-based complementary and alternative medicine, 2021, 1-15. https://doi.org/10.1155/2021/6683708. | eng |
dcterms.references | Borges A, Abreu AC, Dias C, Saavedra M, Borges F & Simões M. (2016). New perspectives 20 on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules, 21(7), 877. https://doi.org/10.3390/molecules21070877. | eng |
dcterms.references | Centers for disease control and prevention-CDC (2020). About Antimicrobial Resistance. https://www.cdc.gov/antimicrobial-resistance/about/index.html. | eng |
dcterms.references | Chen, S., Wang, X., Cheng, Y., Gao, H., & Chen, X. (2023). A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules/Molecules Online/Molecules Annual, 28(13), 4982. https://doi.org/10.3390/molecules28134982. | eng |
dcterms.references | Chew, Y., Khor, M., Xu, Z., Lee, S., Keng, J., Sang, S., Akowuah, G. A., Goh, K. W., Liew, K. B., & Ming, L. C. (2022). Cassia alata, Coriandrum sativum, Curcuma longa and Azadirachta indica: Food Ingredients as Complementary and Alternative Therapies for Atopic Dermatitis-A Comprehensive Review. Molecules/Molecules Online/Molecules Annual, 27(17), 5475. https://doi.org/10.3390/molecules27175475. | eng |
dcterms.references | Clinical and Laboratory Standards Institute-CLSI (2022). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth. Information Supplement. https://clsi.org/standards/products/microbiology/documents/m100/. | eng |
dcterms.references | Domingo D & López-Brea M. (2003). Plantas con acción antimicrobiana. Rev Esp Quimioterap, 16(4), 385-393. https://www.seq.es/seq/0214-3429/16/4/385.pdf | spa |
dcterms.references | Dong, S., Yang, X., Zhao, L., Zhang, F., Hou, Z., & Xue, P. (2020). Antibacterial activity and mechanism of action saponins from Chenopodium quinoa Willd. husks against foodborne pathogenic bacteria. Industrial Crops And Products, 149, 112350. https://doi.org/10.1016/j.indcrop.2020.112350 | eng |
dcterms.references | Ejelonu B, Lasisi A, Olaremu A & Ejelonu O. (2011). The chemical constituents of calabash (Crescentia cujete). African Journal of Biotechnology, 10(84), 19631-19636. | eng |
dcterms.references | Eldemerdash, M. M., El-Sayed, A. S. A., Hussein, H. A., Teleb, S. S., & Shehata, R. S. (2022). Molecular and metabolic traits of some Egyptian species of Cassia L. and Senna Mill (Fabaceae-Caesalpinioideae). BMC Plant Biology, 22(1). https://doi.org/10.1186/s12870-022-03543-7. | eng |
dcterms.references | Espinoza Olazabal C & Suyon M. (2023). Actividad antibacteriana del extracto etanólico de las hojas de Crescentia Cujete l.(Totumo) frente a Staphylococcus aureus ATCC 25923. Tesis. https://hdl.handle.net/20.500.12970/1502. | spa |
dcterms.references | Espitia-Baena J, Duran-Sandoval H, Fandiño-Franky J, Díaz-Castillo F & Gómez-Estrada H. (2011). Química y biología del extracto etanólico del epicarpio de Crescentia cujete L.(totumo). Revista cubana de plantas medicinales, 16(4), 337. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962011000400005. | spa |
dcterms.references | Espitia-Almeida, F., Brito-Tapia, L., Pimienta-Daza, L. A., Barragán-Avilez, C., & FlórezSantiago, J. (2023c). Caracterización fitoquímica preliminar y cuantificación de 21 fenoles totales de extractos etanólicos obtenidos de Hylocereus undatus y Hylocereus megalanthus. Repositorio digital, Bonga. Universidad Simón Bolívar. https://hdl.handle.net/20.500.12442/13539. | spa |
dcterms.references | Espitia-Almeida, F., Díaz-Theran, M. E., Nieto-Tomases, A. M., Cabrera-Barraza, J., & Valle-Molinares, R. (2023b). Evaluación de la actividad antibacteriana de extractos etanólicos obtenidos de las flores de Crescentia cujete L. frente a patógenos de importancia clínica. Repositorio digital, Bonga. Universidad Simón Bolívar. https://hdl.handle.net/20.500.12442/13464. | spa |
dcterms.references | Espitia-Almeida F, Meléndez-Gómez C, Gómez-Camargo D & Ochoa-Díaz M. (2014). Estudio de la actividad antibacteriana en Pseudomonas aeruginosa d 4-amido-2-alquil tetrahidroquinolinas. Tesis. Disponible en: https://www.researchgate.net/publication/282239643. | spa |
dcterms.references | Espitia-Almeida F, Meléndez-Gómez C, Ochoa-Díaz M, Valle-Molinares R., Gutiérrez M & Gómez- Camargo D. (2016). Antimicrobial and degradative bacterial DNA effects of new 2-alkyl (tetrahydroquinoline-4-yl) formamide. Pharmacologyonline. 1, 72. https://www.semanticscholar.org/paper/ANTIMICROBIAL-AND-DEGRADATIVEBACTERIAL-DNA-EFFECTS-Espitia-Almeida-OchoaD%C3%ADaz/43b51842f0fec2b59e7a369a0c6d49e294dae971. | eng |
dcterms.references | Espitia-Almeida F, Valle-Molinares R, Navarro Quiroz E, Pacheco-Londoño L.C & GalánFreyle N. J. (2023c). Photodynamic Antimicrobial Activity of a Novel 5, 10, 15, 20- Tetrakis (4- Ethylphenyl) Porphyrin against Clinically Important Bacteria. Pharmaceuticals, 16(8), 1059. https://doi.org/10.3390/ph16081059. | eng |
dcterms.references | Fatmawati, S., Yuliana, Purnomo, A. S., & Bakar, M. F. A. (2020). Chemical constituents, usage and pharmacological activity of Cassia alata. Heliyon, 6(7), e04396. https://doi.org/10.1016/j.heliyon.2020.e04396. | eng |
dcterms.references | Folly, M. L. C., Ferreira, G. F., Salvador, M. R., Sathler, A. A., Da Silva, G. F., Santos, J. C. B., Santos, J. R. A. D., Neto, W. R. N., Rodrigues, J. F. S., Fernandes, E. S., Da Silva, L. C. N., De Freitas, G. J. C., Denadai, Â. M., Rodrigues, I. V., Mendonça, L. M., Monteiro, A. S., Santos, D. A., Cabrera, G. M., Siless, G., & Lang, K. L. (2020). Evaluation of in vitro Antifungal Activity of Xylosma prockia (Turcz.) Turcz. (Salicaceae) Leaves Against Cryptococcus spp. Frontiers In Microbiology, 10. https://doi.org/10.3389/fmicb.2019.03114. | eng |
dcterms.references | García Luján C, Martínez R, Ortega S & Castro B.F. (2010). Componentes químicos y su relación con las actividades biológicas de algunos extractos vegetales. Química Viva, 9(2), 86-96. https://www.redalyc.org/pdf/863/86314868005.pdf. | spa |
dcterms.references | Genevieve L & Limaye A. (2013). Infections in Transplant Patients. Med. Clin. N. Am, 97, 581–600. https://doi.org/10.1016/j.mcna.2013.03.002. | eng |
dcterms.references | González Mendoza, J., Maguiña Vargas, C., & González Ponce, F. D. M. (2019). La resistencia a los antibióticos: un problema muy serio. Acta Médica Peruana, 36 (2), 145-151. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1728- 22 59172019000200011&lng=es&tlng=es | spa |
dcterms.references | Guerra Ordoñez, M., Sánchez Govín, E., & Gálvez Blanco, Maria. (2004). Actividad antimicrobiana de Senna alata L. Revista Cubana de Plantas Medicinales, 9(1) http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028- 47962004000100005&lng=es&tlng=es. | spa |
dcterms.references | Haroun, M. F., & Al-Kayali, R. S. (2016). Synergistic effect of Thymbra spicata L. extracts with antibiotics against multidrug- resistant Staphylococcus aureus and Klebsiella pneumoniae strains. Iranian journal of basic medical sciences, 19(11), 1193–1200. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5126220/. | eng |
dcterms.references | Hou J, Long X, Wang X, Li L, Mao D, Luo Y & Ren H. (2023). Global trend of antimicrobial resistance in common bacterial pathogens in response to antibiotic consumption. Journal of Hazardous Materials, 442, 130042. https://doi.org/10.1016/j.jhazmat.2022.130042. | eng |
dcterms.references | Jogdand, S. (2024). Qualitative phytochemical analysis of Senna alata (L.) Roxb.: an important medicinal shrub. Zenodo. https://doi.org/10.5281/zenodo.10702631. | eng |
dcterms.references | Köser C. U, Ellington M, Cartwright E, Gillespie S. H, Brown N. M, Farrington M, Holden M, Dougan G, Bentley S, Parkhill J & Peacock S. J. (2012). Routine Use of Microbial Whole Genome Sequencing in Diagnostic and Public Health Microbiology. PLoS Pathogens, 8 (8), e1002824. https://doi.org/10.1371/journal.ppat.1002824. | eng |
dcterms.references | Khadka, D., Dhamala, M. K., Li, F., Aryal, P. C., Magar, P. R., Bhatta, S., Thakur, M. S., Basnet, A., Cui, D., & Shi, S. (2021). The use of medicinal plants to prevent COVID19 in Nepal. Journal Of Ethnobiology And Ethnomedicine, 17(1). https://doi.org/10.1186/s13002-021-00449-w. | eng |
dcterms.references | Khandy, M. T., Grigorchuk, V. P., Sofronova, A. K., & Gorpenchenko, T. Y. (2024). The Different Composition of Coumarins and Antibacterial Activity of Phlojodicarpus sibiricus and Phlojodicarpus villosus Root Extracts. Plants, 13(5), 601. https://doi.org/10.3390/plants13050601. | eng |
dcterms.references | Masana, M. O. (2015). Factores impulsores de la emergencia de peligros biológicos en los alimentos. Rev Argentina Microbiol, 47(1), 1-3. https://doi.org/10.1016/j.ram.2015.01.004. | spa |
dcterms.references | Mejía Suarez K. (2022). Revisión bibliográfica frente a un método de conservación para jarabe elaborado a base de totumo (Crescentia cujete), Salvia (Lamiaceae), y Anamú (Petiveria), por la comunidad indígena Zenú. Retrieved November 1, 2023, from https://repository.udca.edu.co/bitstream/handle/11158/4726/1.%20Proyecto%20final %20-%20Katheryn%20Mejia%20PDF.pdf?sequence=1&isAllowed=y. | spa |
dcterms.references | Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Hamadani, B. H. K., Kumaran, E. A. P., 23 McManigal, B., . . . Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 399(10325), 629-655. https://doi.org/10.1016/s0140-6736(21)02724-0 | eng |
dcterms.references | Mursaliyeva, V. K., Sarsenbek, B. T., Dzhakibaeva, G. T., Mukhanov, T. M., & Mammadov, R. (2023). Total Content of Saponins, Phenols and Flavonoids and Antioxidant and Antimicrobial Activity of In Vitro Culture of Allochrusa gypsophiloides (Regel) Schischk Compared to Wild Plants. Plants, 12(20), 3521. https://doi.org/10.3390/plants12203521. | eng |
dcterms.references | Nuro, G., Tolossa, K., & Giday, M. (2024). Medicinal Plants Used by Oromo Community in Kofale District, West-Arsi Zone, Oromia Regional State, Ethiopia. Journal Of Experimental Pharmacology, Volume 16, 81-109. https://doi.org/10.2147/jep.s449496 | eng |
dcterms.references | Nzogong, R. T., Ndjateu, F. S. T., Ekom, S. E., Fosso, J. M., Awouafack, M. D., Tene, M., Tane, P., Morita, H., Choudhary, M. I., & Tamokou, J. (2018). Antimicrobial and antioxidant activities of triterpenoid and phenolic derivatives from two Cameroonian Melastomataceae plants: Dissotis senegambiensis and Amphiblemma monticola. BMC Complementary And Alternative Medicine, 18(1). https://doi.org/10.1186/s12906-018- 2229-2 | eng |
dcterms.references | Oladeji, O. S., Adelowo, F. E., Oluyori, A. P., & Bankole, D. T. (2020). Ethnobotanical Description and Biological Activities of Senna alata. Evidence-based Complementary and Alternative Medicine, 2020, 1-12. https://doi.org/10.1155/2020/2580259. | eng |
dcterms.references | Organización Mundial de la Salud-OMS. (2023). Estrategia de la OMS para la medicina tradicional 2012-2023. 2013: 75. https://iris.who.int/bitstream/handle/10665/95008/9789243506098_spa.pdf | spa |
dcterms.references | Organización Mundial de la Salud-OMS. (2023). Resistencia antimicrobiana. Disponible en: https://www.paho.org/es/noticias/6-6-2023-partir-ahora-semana-mundialconcientizacion- sobre-uso-antimicrobianos-waaw-por. | spa |
dcterms.references | Pachorkar, P., & Patil, S. (2021). Therapeutic potential and characterization of Senna alata: an ethanomedicinal plant. International Journal Of Pharmaceutical Sciences And Research, 12(9). https://doi.org/10.13040/ijpsr.0975-8232.12(9).4985-92. | eng |
dcterms.references | Pájaro-González Y, Oliveros-Díaz A.F, Cabrera-Barraza J, Cerra-Domínguez J & DíazCastillo F. (2022). A review of medicinal plants used as antimicrobials in Colombia. Elsevier EBooks, 3–57. https://doi.org/10.1016/b978-0-323-90999-0.00005-7 | eng |
dcterms.references | Prapaiwong, T., Srakaew, W., Wachirapakorn, C., & Jarassaeng, C. (2021). Effects of hydrolyzable tannin extract obtained from sweet chestnut wood (Castanea sativa Mill.) against bacteria causing subclinical mastitis in Thai Friesian dairy cows. Veterinary World/Veterinary World, 2427-2433. https://doi.org/10.14202/vetworld.2021.2427- 2433. | eng |
dcterms.references | Ramírez L, Castillo Castañeda A & Melo Vargas A. (2013). Evaluación del potencial 24 antibacterial in vitro de Croton lechleri frente a aislamientos bacterianos de pacientes con úlceras cutáneas. Nova, 11(19), 51-63. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794- 24702013000100006&lng=en&tlng=es. | spa |
dcterms.references | Saito, S. T., Da Silva Trentin, D., Macedo, A. J., Pungartnik, C., Gosmann, G., De Deos Silveira, J., Guecheva, T. N., Henriques, J. A. P., & Brendel, M. (2012). Bioguided Fractionation ShowsCassia alataExtract to InhibitStaphylococcus epidermidisandPseudomonas aeruginosaGrowth and Biofilm Formation. Evidencebased Complementary And Alternative Medicine, 2012, 1-13. https://doi.org/10.1155/2012/867103. | eng |
dcterms.references | Salamatullah, A. M., Subash-Babu, P., Nassrallah, A., Alshatwi, A. A., & Alkaltham, M. S. (2021). Cyclotrisiloxan and β-Sitosterol rich Cassia alata (L.) flower inhibit HT-115 human colon cancer cell growth via mitochondrial dependent apoptotic stimulation. Saudi journal of biological sciences, 28(10), 6009-6016. https://doi.org/10.1016/j.sjbs.2021.06.065. | eng |
dcterms.references | Saptarini, N. M., Mustarichie, R., Hasanuddin, S., & Corpuz, M. J. T. (2024). Cassia alata L.: A Study of Antifungal Activity against Malassezia furfur, Identification of Major Compounds, and Molecular Docking to Lanosterol 14-Alpha Demethylase. Pharmaceuticals, 17(3), 380. https://doi.org/10.3390/ph17030380 | eng |
dcterms.references | Sikkema J, de Bont J. A & Poolman B. (1994). Interactions of cyclic hydrocarbons with biological membranes. The Journal of biological chemistry, 269 (11), 8022–8028. https://www.jbc.org/article/S0021-9258(17)37154-5/pdf. | eng |
dcterms.references | Suganya, T., Packiavathy, I. A. S. V., Aseervatham, G. S. B., Carmona, A., Rashmi, V., Mariappan, S., Devi, N. R., & Ananth, D. A. (2022). Tackling Multiple-Drug-Resistant Bacteria With Conventional and Complex Phytochemicals. Frontiers In Cellular And Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.883839. | eng |
dcterms.references | Syaefudin, N., Nitami, D., Utari, M. D. M., Rafi, M., & Hasanah, U. (2018). Antioxidant and Antibacterial Activities of Several Fractions from Crescentia cujete L. Stem Bark Extract. IOP Conference Series. Earth And Environmental Science, 197, 012004. https://doi.org/10.1088/1755-1315/197/1/012004. | eng |
dcterms.references | Tadesse, T., & Teka, A. (2023). Ethnobotanical Study on Medicinal Plants Used by the Local Communities of Ameya District, Oromia Regional State, Ethiopia. Evidence-based Complementary And Alternative Medicine, 2023, 1-10. https://doi.org/10.1155/2023/5961067. | eng |
dcterms.references | Toh, S. C., Lihan, S., Bunya, S. R., & Leong, S. S. (2023). In vitro antimicrobial efficacy of Cassia alata (Linn.) leaves, stem, and root extracts against cellulitis causative agent Staphylococcus aureus. BMC Complementary Medicine And Therapies, 23(1). https://doi.org/10.1186/s12906-023-03914-z. | eng |
dcterms.references | Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. R. M., Mitra, S., Emran, T. B., 25 Dhama, K., Ripon, K. H., Gajdács, M., Sahibzada, M. U. K., Hossain, J., & Koirala, N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal Of Infection And Public Health, 14(12), 1750- 1766. https://doi.org/10.1016/j.jiph.2021.10.020. | eng |
dcterms.references | Van Duin, D., & Paterson, D. L. (2020). Multidrug-Resistant Bacteria in the Community. Infectious Disease Clinics Of North America, 34(4), 709-722. https://doi.org/10.1016/j.idc.2020.08.002 | eng |
dcterms.references | Vitolo A. L. (2023). Biodiversidad (Biogeografía en un País Megadiverso). Escuela de Ciencias Básicas Y Aplicadas B-Learning. https://ciencia.lasalle.edu.co/blearning_ciencias_basicas/8 | spa |
dcterms.references | Vivot, E. P., Sánchez, C., Cacik, F., & Sequin, C. (2012). Actividad antibacteriana en plantas medicinales de la flora de Entre Ríos (Argentina). Ciencia, docencia y tecnología, (45), 131-146. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851- 17162012000200008&lng=es&tlng=es. | spa |
dcterms.references | Xie, J., Liu, F., Jia, X., Zhao, Y., Liu, X., Luo, M., He, Y., Liu, S., & Wu, F. (2022). Ethnobotanical study of the wild edible and healthy functional plant resources of the Gelao people in northern Guizhou, China. Journal Of Ethnobiology and Ethnomedicine, 18(1). https://doi.org/10.1186/s13002-022-00572-2. | eng |
dcterms.references | Yap, P. S. X., Yusoff, K., Lim, S. E., Chong, C., & Lai, K. (2021). Membrane Disruption Properties of Essential Oils—A Double-Edged Sword? Processes, 9(4), 595. https://doi.org/10.3390/pr9040595. | eng |
dcterms.references | Zhu, Y., Huang, W. E., & Yang, Q. (2022). Clinical Perspective of Antimicrobial Resistance in Bacteria. Infection And Drug Resistance, Volume 15, 735-746. https://doi.org/10.2147/idr.s345574. | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.programa | Microbiología | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: