Evaluación de la citotoxicidad y genotoxicidad en células V79 y HaCaT asociado a la exposición a nanopartículas de carbón de La Loma Cesar

datacite.rightshttp://purl.org/coar/access_right/c_16ec
dc.contributor.advisorLeón Mejía, Grethel
dc.contributor.advisorAcosta Hoyos, Antonio José
dc.contributor.authorMiranda Guevara, Alvaro de Jesús
dc.date.accessioned2024-04-25T22:40:47Z
dc.date.available2024-04-25T22:40:47Z
dc.date.issued2024
dc.description.abstractEl carbón es un mineral que en la actualidad representa una fuente de energía clave en la economía mundial. Durante décadas ha sido utilizado para la generación de electricidad, calefacción y como materia prima en la industria. La extracción de este mineral involucra la remoción de capas de tierra y roca para acceder a las capas de carbón debajo de la superficie, proceso que deja una huella ambiental significativa, y que ha desencadenado preocupaciones cruciales relacionadas con la salud, especialmente a través de la generación del polvo proveniente de las actividades de minería. En este sentido se considera que la composición de las partículas de carbón, el tamaño y forma, juegan un papel fundamental en las afecciones respiratorias de las poblaciones humanas. El objetivo principal de este estudio fue analizar los efectos citotóxicos y genotóxicos in vitro de nanopartículas de carbón en células V79 y HaCaT. Mediante el método de separación en medio ácido se aislaron las nanopartículas. Posteriormente estas nanopartículas fueron usadas para exponer células V79 y HaCaT a diferentes concentraciones. A través del ensayo con rezasurina y sulforodamina se determinaron los efectos de estas partículas en la viabilidad celular, y se seleccionaron las concentraciones 50, 150 y 300 μg/mL para realizar los ensayos de genotoxicidad, ensayo cometa y micronúcleos. La microscopía de fuerza atómica proporcionó una visión detallada de la topografía de las nanopartículas, destacando su propensión a la aglomeración. Mediante SEM-EDS se evidenció la forma y diversidad química de estas nanopartículas, constituidas principalmente por elementos como carbono (C), oxígeno (O), hierro (Fe), calcio (Ca) y mediante cromatografía de gases acoplada a espectrometría de masas (GC/MS), se determinaron los hidrocarburos aromáticos policíclicos (HAP) presentes en las nanopartículas como fluoranteno, naftaleno, antraceno, 7H-benzo[c]fluoreno, fenantreno, pireno, benzo[a]antraceno, criseno y algunos derivados alquílicos. La evaluación de la genotoxicidad mediante marcadores como el ensayo cometa, la formación de micronúcleos y la inmunomarcación empleando anticuerpos anti-Gamma H2AX, mostró un efecto dosis-respuesta evidenciando la capacidad de las nanopartículas de carbón para inducir inestabilidad genética y muerte celular. El uso de la técnica de temperatura melting y PCR en tiempo real permitió evidenciar una posible alteración en la estructura y estabilidad del ADN debido a la interacción físico-química de este con las nanopartículas de carbón. En conclusión, este estudio destaca la relación entre las características específicas de las nanopartículas de carbón para llegar a comprender el entendimiento de sus interacciones a nivel celular, molecular y sentar las bases para dilucidar los mecanismos relacionados con el desarrollo de diferentes enfermedades respiratorias.spa
dc.description.abstractEl coal is a mineral that currently represents a key energy source in the global economy. For decades, it has been used for electricity generation, heating, and as a raw material in industry. The extraction of this mineral involves the removal of layers of soil and rock to access the coal seams beneath the surface, a process that leaves a significant environmental footprint and has triggered crucial health concerns, especially through the generation of dust from mining activities. In this regard, it is considered that the composition, size, and shape of coal particles play a fundamental role in respiratory conditions in human populations. The main objective of this study was to analyze the in vitro cytotoxic and genotoxic effects of coal nanoparticles on V79 and HaCaT cells. Nanoparticles were isolated using the acid medium separation method. Subsequently, these nanoparticles were used to expose V79 and HaCaT cells to different concentrations. The effects of these particles on cell viability were determined through resazurin and sulforhodamine assays, and concentrations of 50, 150, and 300 μg/mL were selected for genotoxicity assays, comet assay, and micronuclei assay. Atomic force microscopy provided a detailed view of the topography of the nanoparticles, highlighting their tendency to agglomerate. SEM-EDS revealed the shape and chemical diversity of these nanoparticles, primarily composed of elements such as carbon (C), oxygen (O), iron (Fe), calcium (Ca), and through gas chromatography coupled with mass spectrometry (GC/MS), polycyclic aromatic hydrocarbons (PAHs) present in the nanoparticles were determined, such as fluoranthene, naphthalene, anthracene, 7Hbenzo[c]fluorene, phenanthrene, pyrene, benzo[a]anthracene, chrysene, and some alkyl derivatives. The evaluation of genotoxicity using markers such as the comet assay, micronucleus formation, and immunostaining employing antibodies against Gamma H2AX showed a dose-response effect, demonstrating the ability of coal nanoparticles to induce genetic instability and cell death. The use of melting temperature technique and real-time PCR allowed for the evidence of a possible alteration in the structure and stability of DNA due to the physicochemical interaction with coal nanoparticles. In conclusion, this study highlights the relationship between the specific characteristics of coal nanoparticles to understand their interactions at the cellular and molecular levels and lay the groundwork for elucidating mechanisms related to the development of various respiratory diseases.eng
dc.format.mimetypepdf
dc.identifier.urihttps://hdl.handle.net/20.500.12442/14552
dc.language.isospa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias Básicas y Biomédicasspa
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectNanopartículasspa
dc.subjectCarbónspa
dc.subjectCitotoxicidadspa
dc.subjectGenotoxicidadspa
dc.subjectDaño oxidativospa
dc.subjectHAPspa
dc.subjectMetalesspa
dc.subjectMuerte celularspa
dc.subjectNanoparticleseng
dc.subjectCoaleng
dc.subjectCytotoxicityeng
dc.subjectGenotoxicityeng
dc.subjectOxidative damageeng
dc.subjectPAHseng
dc.subjectMetalseng
dc.subjectCell deatheng
dc.titleEvaluación de la citotoxicidad y genotoxicidad en células V79 y HaCaT asociado a la exposición a nanopartículas de carbón de La Loma Cesarspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.spaTesis de doctorado
dcterms.referencesAssemi, S., Pan, L., Wang, X., Akinseye, T., Miller, J.D., 2023. Size Distribution, Elemental Composition and Morphology of Nanoparticles Separated from Respirable Coal Mine Dust. Minerals 13, 97. https://doi.org/10.3390/min13010097eng
dcterms.referencesAttota, R.K., Liu, E.C., 2016. Volume determination of irregularly-shaped quasi-spherical nanoparticles. Anal. Bioanal. Chem. 408, 7897–7903. https://doi.org/10.1007/s00216-016- 9909-xeng
dcterms.referencesAugustine, R., Hasan, A., Primavera, R., Wilson, R.J., Thakor, A.S., Kevadiya, B.D., 2020. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun. 25, 101692. https://doi.org/10.1016/j.mtcomm.2020.101692eng
dcterms.referencesBagur, R., Hajnóczky, G., 2017. Intracellular Ca2+ Sensing: Its Role in Calcium Homeostasis and Signaling. Mol. Cell 66, 780–788. https://doi.org/10.1016/j.molcel.2017.05.028eng
dcterms.referencesBergin, I.L., Witzmann, F.A., 2013. Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. Int. J. Biomed. Nanosci. Nanotechnol. 3, 163. https://doi.org/10.1504/IJBNN.2013.054515eng
dcterms.referencesBruinink, A., Wang, J., Wick, P., 2015. Effect of particle agglomeration in nanotoxicology. Arch. Toxicol. 89, 659–675. https://doi.org/10.1007/s00204-015-1460-6eng
dcterms.referencesBrunner, T.J., Wick, P., Manser, P., Spohn, P., Grass, R.N., Limbach, L.K., Bruinink, A., Stark, W.J., 2006. In Vitro Cytotoxicity of Oxide Nanoparticles: Comparison to Asbestos, Silica, and the Effect of Particle Solubility. Environ. Sci. Technol. 40, 4374–4381. https://doi.org/10.1021/es052069ieng
dcterms.referencesÇelik, T.A., 2018. Introductory Chapter: Cytotoxicity, in: Çelik, T.A. (Ed.), Cytotoxicity. InTech. https://doi.org/10.5772/intechopen.77244eng
dcterms.referencesChang, X., Li, J., Niu, S., Xue, Y., Tang, M., 2021. Neurotoxicity of metal‐containing nanoparticles and implications in glial cells. J. Appl. Toxicol. 41, 65–81. https://doi.org/10.1002/jat.4037eng
dcterms.referencesChen, J., 2016. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb. Perspect. Med. 6, a026104. https://doi.org/10.1101/cshperspect.a026104eng
dcterms.referencesChen, Y., Fan, Y., Huang, Y., Liao, X., Xu, W., Zhang, T., 2024. A comprehensive review of toxicity of coal fly ash and its leachate in the ecosystem. Ecotoxicol. Environ. Saf. 269, 115905. https://doi.org/10.1016/j.ecoenv.2023.115905eng
dcterms.referencesChen, Y.-H., Nguyen, D., Brindley, S., Ma, T., Xia, T., Brune, J., Brown, J.M., Tsai, C.S.-J., 2023. The dependence of particle size on cell toxicity for modern mining dust. Sci. Rep. 13, 5101. https://doi.org/10.1038/s41598-023-31215-5eng
dcterms.referencesCheng, C., Porter, A.E., Muller, K., Koziol, K., Skepper, J.N., Midgley, P., Welland, M., 2009. Imaging carbon nanoparticles and related cytotoxicity. J. Phys. Conf. Ser. 151, 012030. https://doi.org/10.1088/1742-6596/151/1/012030eng
dcterms.referencesDa Silva Júnior, F., Tavella, R., Fernandes, C., Soares, M., De Almeida, K., Garcia, E., Da Silva Pinto, E., Baisch, A., 2018. Genotoxicity in Brazilian coal miners and its associated factors. Hum. Exp. Toxicol. 37, 891–900. https://doi.org/10.1177/0960327117745692eng
dcterms.referencesDe Fazio, A.F., Misatziou, D., Baker, Y.R., Muskens, O.L., Brown, T., Kanaras, A.G., 2021. Chemically modified nucleic acids and DNA intercalators as tools for nanoparticle assembly. Chem. Soc. Rev. 50, 13410–13440. https://doi.org/10.1039/D1CS00632Keng
dcterms.referencesDe Stefano, D., Carnuccio, R., Maiuri, M.C., 2012. Nanomaterials Toxicity and Cell Death Modalities. J. Drug Deliv. 2012, 1–14. https://doi.org/10.1155/2012/167896eng
dcterms.referencesDevasena, T., Iffath, B., Renjith Kumar, R., Muninathan, N., Baskaran, K., Srinivasan, T., John, S.T., 2022. Insights on the Dynamics and Toxicity of Nanoparticles in Environmental Matrices. Bioinorg. Chem. Appl. 2022, 1–21. https://doi.org/10.1155/2022/4348149eng
dcterms.referencesDonaldson, K., 2004. Nanotoxicology. Occup. Environ. Med. 61, 727–728. https://doi.org/10.1136/oem.2004.013243eng
dcterms.referencesDong, X., Wu, Z., Li, X., Xiao, L., Yang, M., Li, Y., Duan, J., Sun, Z., 2020. The Size-dependent Cytotoxicity of Amorphous Silica Nanoparticles: A Systematic Review of in vitro Studies. Int. J. Nanomedicine Volume 15, 9089–9113. https://doi.org/10.2147/IJN.S276105eng
dcterms.referencesDwivedi, S., Saquib, Q., Al-Khedhairy, A.A., Ali, A.-Y.S., Musarrat, J., 2012. Characterization of coal fly ash nanoparticles and induced oxidative DNA damage in human peripheral blood mononuclear cells. Sci. Total Environ. 437, 331–338. https://doi.org/10.1016/j.scitotenv.2012.08.004eng
dcterms.referencesEtale, A., Tavengwa, N.T., Pakade, V.E., 2018. Metal Adsorption by Coal Fly Ash: The Role of Nano-sized Materials, in: Akinyemi, S.A., Gitari, M.W. (Eds.), Coal Fly Ash Beneficiation - Treatment of Acid Mine Drainage with Coal Fly Ash. InTech. https://doi.org/10.5772/intechopen.69426eng
dcterms.referencesEvans, S.J., Clift, M.J.D., Singh, N., De Oliveira Mallia, J., Burgum, M., Wills, J.W., Wilkinson, T.S., Jenkins, G.J.S., Doak, S.H., 2017. Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity. Mutagenesis 32, 233–241. https://doi.org/10.1093/mutage/gew054eng
dcterms.referencesFan, H., Sun, Q., Dukenbayev, K., Benassi, E., Manarbek, L., Nurkesh, A.A., Khamijan, M., Mu, C., Li, G., Razbekova, M., Chen, Z., Amin, A., Xie, Y., 2022. Carbon nanoparticles induce DNA repair and PARP inhibitor resistance associated with nanozyme activity in cancer cells. Cancer Nanotechnol. 13, 39. https://doi.org/10.1186/s12645-022-00144-9eng
dcterms.referencesFenech, M., Knasmueller, S., Bolognesi, C., Holland, N., Bonassi, S., Kirsch-Volders, M., 2020. Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. Mutat. Res. Mutat. Res. 786, 108342. https://doi.org/10.1016/j.mrrev.2020.108342eng
dcterms.referencesFerdous, Z., Nemmar, A., 2020. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 21, 2375. https://doi.org/10.3390/ijms21072375eng
dcterms.referencesFu, P.P., Xia, Q., Hwang, H.-M., Ray, P.C., Yu, H., 2014. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal. 22, 64–75. https://doi.org/10.1016/j.jfda.2014.01.005eng
dcterms.referencesGéloën, A., Mussabek, G., Kharin, A., Serdiuk, T., Alekseev, S.A., Lysenko, V., 2021. Impact of Carbon Fluoroxide Nanoparticles on Cell Proliferation. Nanomaterials 11, 3168. https://doi.org/10.3390/nano11123168eng
dcterms.referencesGeraldo León, J.A., Vázquez-Duhalt, R., Juárez Moreno, K.O., 2022. Desbalance del sistema antioxidante causado por la exposición a nanopartículas de óxido de zinc y óxido de cobre. Mundo Nano Rev. Interdiscip. En Nanociencias Nanotecnología 15, 1e–13e. https://doi.org/10.22201/ceiich.24485691e.2022.29.69701spa
dcterms.referencesGoulaouic, S., Foucaud, L., Bennasroune, A., Laval-Gilly, P., Falla, J., 2008. Effect of Polycyclic Aromatic Hydrocarbons and Carbon Black Particles on Pro-Inflammatory Cytokine Secretion: Impact of PAH Coating Onto Particles. J. Immunotoxicol. 5, 337–345. https://doi.org/10.1080/15476910802371016eng
dcterms.referencesHendryx, M., Zullig, K.J., Luo, J., 2020. Impacts of Coal Use on Health. Annu. Rev. Public Health 41, 397–415. https://doi.org/10.1146/annurev-publhealth-040119-094104eng
dcterms.referencesHou, C.-C., Zhu, J.-Q., 2017. Nanoparticles and female reproductive system: how do nanoparticles affect oogenesis and embryonic development. Oncotarget 8, 109799–109817. https://doi.org/10.18632/oncotarget.19087eng
dcterms.referencesIhantola, T., Hirvonen, M.-R., Ihalainen, M., Hakkarainen, H., Sippula, O., Tissari, J., Bauer, S., Di Bucchianico, S., Rastak, N., Hartikainen, A., Leskinen, J., Yli-Pirilä, P., Martikainen, M.-V., Miettinen, M., Suhonen, H., Rönkkö, T.J., Kortelainen, M., Lamberg, H., Czech, H., Martens, P., Orasche, J., Michalke, B., Yildirim, A.Ö., Jokiniemi, J., Zimmermann, R., Jalava, P.I., 2022. Genotoxic and inflammatory effects of spruce and brown coal briquettes combustion aerosols on lung cells at the air-liquid interface. Sci. Total Environ. 806, 150489. https://doi.org/10.1016/j.scitotenv.2021.150489eng
dcterms.referencesIshibashi, Y., Oura, S., Umemura, K., 2017. Adsorption of DNA binding proteins to functionalized carbon nanotube surfaces with and without DNA wrapping. Eur. Biophys. J. 46, 541–547. https://doi.org/10.1007/s00249-017-1200-3eng
dcterms.referencesIvask, A., Voelcker, N.H., Seabrook, S.A., Hor, M., Kirby, J.K., Fenech, M., Davis, T.P., Ke, P.C., 2015. DNA Melting and Genotoxicity Induced by Silver Nanoparticles and Graphene. Chem. Res. Toxicol. 28, 1023–1035. https://doi.org/10.1021/acs.chemrestox.5b00052eng
dcterms.referencesJo, Y., Woo, J.S., Lee, A.R., Lee, S.-Y., Shin, Y., Lee, L.P., Cho, M.-L., Kang, T., 2022. Inner-Membrane-Bound Gold Nanoparticles as Efficient Electron Transfer Mediators for Enhanced Mitochondrial Electron Transport Chain Activity. Nano Lett. 22, 7927–7935. https://doi.org/10.1021/acs.nanolett.2c02957eng
dcterms.referencesKamaszewski, M., Kawalski, K., Wiechetek, W., Szudrowicz, H., Martynow, J., Adamek-Urbańska, D., Łosiewicz, B., Szczepański, A., Bujarski, P., Frankowska-Łukawska, J., Chwaściński, A., Aksakal, E., 2023. The Effect of Silver Nanoparticles on the Digestive System, Gonad Morphology, and Physiology of Butterfly Splitfin (Ameca splendens). Int. J. Mol. Sci. 24, 14598. https://doi.org/10.3390/ijms241914598eng
dcterms.referencesKanti, P., Sharma, K.V., Raja Sekhar, Y., 2022. Influence of particle size on thermal conductivity and dynamic viscosity of water‐based Indian coal fly ash nanofluid. Heat Transf. 51, 413–433. https://doi.org/10.1002/htj.22313eng
dcterms.referencesKari, S., Subramanian, K., Altomonte, I.A., Murugesan, A., Yli-Harja, O., Kandhavelu, M., 2022. Programmed cell death detection methods: a systematic review and a categorical comparison. Apoptosis 27, 482–508. https://doi.org/10.1007/s10495-022-01735-yeng
dcterms.referencesKharlamova, M.V., Kramberger, C., 2023. Cytotoxicity of Carbon Nanotubes, Graphene, Fullerenes, and Dots. Nanomaterials 13, 1458. https://doi.org/10.3390/nano13091458eng
dcterms.referencesKhramtsov, P., Kropaneva, M., Kalashnikova, T., Bochkova, M., Timganova, V., Zamorina, S., Rayev, M., 2018. Highly Stable Conjugates of Carbon Nanoparticles with DNA Aptamers. Langmuir 34, 10321–10332. https://doi.org/10.1021/acs.langmuir.8b01255eng
dcterms.referencesKong, B., Seog, J.H., Graham, L.M., Lee, S.B., 2011. Experimental considerations on the cytotoxicity of nanoparticles. Nanomed. 6, 929–941. https://doi.org/10.2217/nnm.11.77spa
dcterms.referencesKrupina, K., Goginashvili, A., Cleveland, D.W., 2021. Causes and consequences of micronuclei. Curr. Opin. Cell Biol. 70, 91–99. https://doi.org/10.1016/j.ceb.2021.01.004eng
dcterms.referencesKumah, E.A., Fopa, R.D., Harati, S., Boadu, P., Zohoori, F.V., Pak, T., 2023. Human and environmental impacts of nanoparticles: a scoping review of the current literature. BMC Public Health 23, 1059. https://doi.org/10.1186/s12889-023-15958-4eng
dcterms.referencesLee, Y., Wang, Q., Shuryak, I., Brenner, D.J., Turner, H.C., 2019. Development of a high-throughput γ-H2AX assay based on imaging flow cytometry. Radiat. Oncol. 14, 150. https://doi.org/10.1186/s13014-019-1344-7eng
dcterms.referencesLei, X., Muscat, J.E., Zhang, B., Sha, X., Xiu, G., 2018. Differentially DNA methylation changes induced in vitro by traffic-derived nanoparticulate matter. Toxicology 395, 54–62. https://doi.org/10.1016/j.tox.2017.11.005eng
dcterms.referencesLeón-Mejía, G., Rueda, R.A., Pérez Pérez, J., Miranda-Guevara, A., Moreno, O.F., Quintana-Sosa, M., Trindade, C., De Moya, Y.S., Ruiz-Benitez, M., Lemus, Y.B., Rodríguez, I.L., Oliveros-Ortiz, L., Acosta-Hoyos, A., Pacheco-Londoño, L.C., Muñoz, A., Hernández-Rivera, S.P., Olívero-Verbel, J., Da Silva, J., Henriques, J.A.P., 2023. Analysis of the cytotoxic and genotoxic effects in a population chronically exposed to coal mining residues. Environ. Sci. Pollut. Res. 30, 54095–54105. https://doi.org/10.1007/s11356-023-26136-9eng
dcterms.referencesLeón-Mejía, G., Silva, L.F.O., Civeira, M.S., Oliveira, M.L.S., Machado, M., Villela, I.V., Hartmann, A., Premoli, S., Corrêa, D.S., Da Silva, J., Henriques, J.A.P., 2016. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells. Environ. Sci. Pollut. Res. 23, 24019–24031. https://doi.org/10.1007/s11356-016-7623-zeng
dcterms.referencesLi, F., Cai, Q., Hao, X., Zhao, C., Huang, Z., Zheng, Y., Lin, X., Weng, S., 2019. Insight into the DNA adsorption on nitrogen-doped positive carbon dots. RSC Adv. 9, 12462–12469. https://doi.org/10.1039/C9RA00881Keng
dcterms.referencesLim, H.K., Asharani, P.V., Hande, M.P., 2012. Enhanced Genotoxicity of Silver Nanoparticles in DNA Repair Deficient Mammalian Cells. Front. Genet. 3. https://doi.org/10.3389/fgene.2012.00104eng
dcterms.referencesLiu, J., Liu, Z., Pang, Y., Zhou, H., 2022. The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. J. Nanobiotechnology 20, 127. https://doi.org/10.1186/s12951-022-01343-7eng
dcterms.referencesLiu, Y., Hardie, J., Zhang, X., Rotello, V.M., 2017. Effects of engineered nanoparticles on the innate immune system. Semin. Immunol. 34, 25–32. https://doi.org/10.1016/j.smim.2017.09.011eng
dcterms.referencesLugrin, J., Rosenblatt-Velin, N., Parapanov, R., Liaudet, L., 2014. The role of oxidative stress during inflammatory processes. Biol. Chem. 395, 203–230. https://doi.org/10.1515/hsz-2013-0241eng
dcterms.referencesLuzhna, L., Kathiria, P., Kovalchuk, O., 2013. Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front. Genet. 4. https://doi.org/10.3389/fgene.2013.00131eng
dcterms.referencesMadannejad, R., Shoaie, N., Jahanpeyma, F., Darvishi, M.H., Azimzadeh, M., Javadi, H., 2019. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem. Biol. Interact. 307, 206–222. https://doi.org/10.1016/j.cbi.2019.04.036eng
dcterms.referencesMancuso, L., Cao, G., 2014. Acute toxicity test of CuO nanoparticles using human mesenchymal stem cells. Toxicol. Mech. Methods 24, 449–454. https://doi.org/10.3109/15376516.2014.928920eng
dcterms.referencesManke, A., Wang, L., Rojanasakul, Y., 2013. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. BioMed Res. Int. 2013, 1–15. https://doi.org/10.1155/2013/942916eng
dcterms.referencesMarano, F., Rodrigues-Lima, F., Dupret, J.-M., Baeza-Squiban, A., Boland, S., 2016. Cellular Mechanisms of Nanoparticle Toxicity, in: Bhushan, B. (Ed.), Encyclopedia of Nanotechnology. Springer Netherlands, Dordrecht, pp. 498–505. https://doi.org/10.1007/978-94-017-9780-1_175eng
dcterms.referencesMatt, S., Hofmann, T.G., 2016. The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell. Mol. Life Sci. 73, 2829–2850. https://doi.org/10.1007/s00018-016-2130-4eng
dcterms.referencesMatzenbacher, C.A., Garcia, A.L.H., Dos Santos, M.S., Nicolau, C.C., Premoli, S., Corrêa, D.S., De Souza, C.T., Niekraszewicz, L., Dias, J.F., Delgado, T.V., Kalkreuth, W., Grivicich, I., Da Silva, J., 2017. DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro. J. Hazard. Mater. 324, 781–788. https://doi.org/10.1016/j.jhazmat.2016.11.062eng
dcterms.referencesMiranda-Guevara, A., Muñoz-Acevedo, A., Fiorillo-Moreno, O., Acosta-Hoyos, A., Pacheco-Londoño, L., Quintana-Sosa, M., De Moya, Y., Dias, J., De Souza, G.S., Martinez-Lopez, W., Garcia, A.L.H., Da Silva, J., Borges, M.S., Henriques, J.A.P., León-Mejía, G., 2023. The dangerous link between coal dust exposure and DNA damage: unraveling the role of some of the chemical agents and oxidative stress. Environ. Geochem. Health 45, 7081–7097. https://doi.org/10.1007/s10653-023-01697-3eng
dcterms.referencesMisra, S.K., Chang, H.-H., Mukherjee, P., Tiwari, S., Ohoka, A., Pan, D., 2015. Regulating Biocompatibility of Carbon Spheres via Defined Nanoscale Chemistry and a Careful Selection of Surface Functionalities. Sci. Rep. 5, 14986. https://doi.org/10.1038/srep14986eng
dcterms.referencesModrzynska, J., Berthing, T., Ravn-Haren, G., Jacobsen, N.R., Weydahl, I.K., Loeschner, K., Mortensen, A., Saber, A.T., Vogel, U., 2018. Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice. Part. Fibre Toxicol. 15, 2. https://doi.org/10.1186/s12989-017-0238-9eng
dcterms.referencesMuñoz, X., Barreiro, E., Bustamante, V., Lopez-Campos, J.L., González-Barcala, F.J., Cruz, M.J., 2019. Diesel exhausts particles: Their role in increasing the incidence of asthma. Reviewing the evidence of a causal link. Sci. Total Environ. 652, 1129–1138. https://doi.org/10.1016/j.scitotenv.2018.10.188eng
dcterms.referencesMurugadoss, S., Brassinne, F., Sebaihi, N., Petry, J., Cokic, S.M., Van Landuyt, K.L., Godderis, L., Mast, J., Lison, D., Hoet, P.H., Van Den Brule, S., 2020. Agglomeration of titanium dioxide nanoparticles increases toxicological responses in vitro and in vivo. Part. Fibre Toxicol. 17, 10. https://doi.org/10.1186/s12989-020-00341-7eng
dcterms.referencesNakamura, T., Naguro, I., Ichijo, H., 2019. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim. Biophys. Acta BBA - Gen. Subj. 1863, 1398–1409. https://doi.org/10.1016/j.bbagen.2019.06.010eng
dcterms.referencesNeckel, A., Oliveira, M.L.S., Castro Bolaño, L.J., Maculan, L.S., Moro, L.D., Bodah, E.T., Moreno-Ríos, A.L., Bodah, B.W., Silva, L.F.O., 2021. Biophysical matter in a marine estuary identified by the Sentinel-3B OLCI satellite and the presence of terrestrial iron (Fe) nanoparticles. Mar. Pollut. Bull. 173, 112925. https://doi.org/10.1016/j.marpolbul.2021.112925eng
dcterms.referencesNeckel, A., Pinto, D., Adelodun, B., Dotto, G.L., 2022. An Analysis of Nanoparticles Derived from Coal Fly Ash Incorporated into Concrete. Sustainability 14, 3943. https://doi.org/10.3390/su14073943eng
dcterms.referencesNii, D., Hayashida, T., Umemura, K., 2013. Controlling the adsorption and desorption of double-stranded DNA on functionalized carbon nanotube surface. Colloids Surf. B Biointerfaces 106, 234–239. https://doi.org/10.1016/j.colsurfb.2013.01.054eng
dcterms.referencesOliveira, M.L.S., Akinyemi, S.A., Nyakuma, B.B., Dotto, G.L., 2022. Environmental Impacts of Coal Nanoparticles from Rehabilitated Mine Areas in Colombia. Sustainability 14, 4544. https://doi.org/10.3390/su14084544eng
dcterms.referencesPujalté, I., Passagne, I., Brouillaud, B., Tréguer, M., Durand, E., Ohayon-Courtès, C., L’Azou, B., 2011. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part. Fibre Toxicol. 8, 10. https://doi.org/10.1186/1743-8977-8-10eng
dcterms.referencesRahmati, M., Mozafari, M., 2019. Biological Response to Carbon-Family Nanomaterials: Interactions at the Nano-Bio Interface. Front. Bioeng. Biotechnol. 7, 4. https://doi.org/10.3389/fbioe.2019.00004eng
dcterms.referencesRedon, C.E., Nakamura, A.J., Martin, O.A., Parekh, P.R., Weyemi, U.S., Bonner, W.M., 2011. Recent developments in the use of γ -H2AX as a quantitative DNA double-strand break biomarker. Aging 3, 168–174. https://doi.org/10.18632/aging.100284eng
dcterms.referencesRibeiro, J., DaBoit, K., Flores, D., Kronbauer, M.A., Silva, L.F.O., 2013. Extensive FE-SEM/EDS, HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash. Sci. Total Environ. 452–453, 98–107. https://doi.org/10.1016/j.scitotenv.2013.02.010eng
dcterms.referencesRoos, W.P., Thomas, A.D., Kaina, B., 2016. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer 16, 20–33. https://doi.org/10.1038/nrc.2015.2eng
dcterms.referencesRouhani, A., Gusiatin, M.Z., Hejcman, M., 2023. An overview of the impacts of coal mining and processing on soil: assessment, monitoring, and challenges in the Czech Republic. Environ. Geochem. Health 45, 7459–7490. https://doi.org/10.1007/s10653-023-01700-xeng
dcterms.referencesRozhina, E., Ishmukhametov, I., Nigamatzyanova, L., Akhatova, F., Batasheva, S., Taskaev, S., Montes, C., Lvov, Y., Fakhrullin, R., 2021. Comparative Toxicity of Fly Ash: An In Vitro Study. Molecules 26, 1926. https://doi.org/10.3390/molecules26071926eng
dcterms.referencesSafaee, M.M., Gravely, M., Lamothe, A., McSweeney, M., Roxbury, D., 2019. Enhancing the Thermal Stability of Carbon Nanomaterials with DNA. Sci. Rep. 9, 11926. https://doi.org/10.1038/s41598-019-48449-xeng
dcterms.referencesSaikia, B.K., Saikia, J., Rabha, S., Silva, L.F.O., Finkelman, R., 2018. Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geosci. Front. 9, 863–875. https://doi.org/10.1016/j.gsf.2017.11.013eng
dcterms.referencesSambandam, B., Devasena, T., Islam, V.I.H., Prakhya, B.M., 2015. Characterization of coal fly ash nanoparticles and their induced in vitro cellular toxicity and oxidative DNA damage in different cell lines. Indian J. Exp. Biol. 53, 585–593.eng
dcterms.referencesSamrot, A.V., Noel Richard Prakash, L.X., 2023. Nanoparticles Induced Oxidative Damage in Reproductive System and Role of Antioxidants on the Induced Toxicity. Life 13, 767. https://doi.org/10.3390/life13030767eng
dcterms.referencesSawicki, K., Czajka, M., Matysiak-Kucharek, M., Fal, B., Drop, B., Męczyńska-Wielgosz, S., Sikorska, K., Kruszewski, M., Kapka-Skrzypczak, L., 2019. Toxicity of metallic nanoparticles in the central nervous system. Nanotechnol. Rev. 8, 175–200. https://doi.org/10.1515/ntrev-2019-0017eng
dcterms.referencesShearer, C.J., Yu, L., Fenati, R., Sibley, A.J., Quinton, J.S., Gibson, C.T., Ellis, A.V., Andersson, G.G., Shapter, J.G., 2017. Adsorption and Desorption of Single‐Stranded DNA from Single‐Walled Carbon Nanotubes. Chem. – Asian J. 12, 1625–1634. https://doi.org/10.1002/asia.201700446eng
dcterms.referencesShukla, R.K., Badiye, A., Vajpayee, K., Kapoor, N., 2021. Genotoxic Potential of Nanoparticles: Structural and Functional Modifications in DNA. Front. Genet. 12, 728250. https://doi.org/10.3389/fgene.2021.728250eng
dcterms.referencesSohaebuddin, S.K., Thevenot, P.T., Baker, D., Eaton, J.W., Tang, L., 2010. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part. Fibre Toxicol. 7, 22. https://doi.org/10.1186/1743-8977-7-22eng
dcterms.referencesSonwani, S., Madaan, S., Arora, J., Suryanarayan, S., Rangra, D., Mongia, N., Vats, T., Saxena, P., 2021. Inhalation Exposure to Atmospheric Nanoparticles and Its Associated Impacts on Human Health: A Review. Front. Sustain. Cities 3, 690444. https://doi.org/10.3389/frsc.2021.690444eng
dcterms.referencesSramkova, M., Kozics, K., Masanova, V., Uhnakova, I., Razga, F., Nemethova, V., Mazancova, P., Kapka-Skrzypczak, L., Kruszewski, M., Novotova, M., Puntes, V.F., Gabelova, A., 2019. Kidney nanotoxicity studied in human renal proximal tubule epithelial cell line TH1. Mutat. Res. Toxicol. Environ. Mutagen. 845, 403017. https://doi.org/10.1016/j.mrgentox.2019.01.012eng
dcterms.referencesSultana, S., Ahsan, S., Tanvir, S., Haque, N., Alam, F., Yellishetty, M., 2021. Coal Fly Ash Utilisation and Environmental Impact, in: Jyothi, R.K., Parhi, P.K. (Eds.), Clean Coal Technologies. Springer International Publishing, Cham, pp. 381–402. https://doi.org/10.1007/978-3-030-68502-7_15eng
dcterms.referencesSunoqrot, S., Niazi, M., Al-Natour, M.A., Jaber, M., Abu-Qatouseh, L., 2022. Loading of Coal Tar in Polymeric Nanoparticles as a Potential Therapeutic Modality for Psoriasis. ACS Omega 7, 7333–7340. https://doi.org/10.1021/acsomega.1c07267eng
dcterms.referencesSuzuki, T., Miura, N., Hojo, R., Yanagiba, Y., Suda, M., Hasegawa, T., Miyagawa, M., Wang, R.-S., 2020. Genotoxicity assessment of titanium dioxide nanoparticle accumulation of 90 days in the liver of gpt delta transgenic mice. Genes Environ. 42, 7. https://doi.org/10.1186/s41021-020-0146-3eng
dcterms.referencesTardani, F., Sarti, S., Sennato, S., Leo, M., Filetici, P., Casciardi, S., Schiavi, P.G., Bordi, F., 2020. Experimental Evidence of Single-Stranded DNA Adsorption on Multiwalled Carbon Nanotubes. J. Phys. Chem. B 124, 2514–2525. https://doi.org/10.1021/acs.jpcb.0c00882eng
dcterms.referencesTong, R., Liu, J., Ma, X., Yang, Y., Shao, G., Li, J., Shi, M., 2020. Occupational exposure to respirable dust from the coal-fired power generation process: sources, concentration, and health risk assessment. Arch. Environ. Occup. Health 75, 260–273. https://doi.org/10.1080/19338244.2019.1626330eng
dcterms.referencesToyooka, T., Ishihama, M., Ibuki, Y., 2011. Phosphorylation of Histone H2AX Is a Powerful Tool for Detecting Chemical Photogenotoxicity. J. Invest. Dermatol. 131, 1313–1321. https://doi.org/10.1038/jid.2011.28eng
dcterms.referencesVallabani, N.V.S., Karlsson, H.L., 2022. Primary and Secondary Genotoxicity of Nanoparticles: Establishing a Co-Culture Protocol for Assessing Micronucleus Using Flow Cytometry. Front. Toxicol. 4, 845987. https://doi.org/10.3389/ftox.2022.845987eng
dcterms.referencesVargas Buonfiglio, L.G., Mudunkotuwa, I.A., Abou Alaiwa, M.H., Vanegas Calderón, O.G., Borcherding, J.A., Gerke, A.K., Zabner, J., Grassian, V.H., Comellas, A.P., 2017. Effects of Coal Fly Ash Particulate Matter on the Antimicrobial Activity of Airway Surface Liquid. Environ. Health Perspect. 125, 077003. https://doi.org/10.1289/EHP876eng
dcterms.referencesVerma, H., Aggarwal, M., Kumar, S., 2022. Opportunities and Significance of Nanoparticle–DNA Binding in Medical Biotechnology: A Review. Cureus. https://doi.org/10.7759/cureus.31005eng
dcterms.referencesWan, R., Mo, Y., Feng, L., Chien, S., Tollerud, D.J., Zhang, Q., 2012. DNA Damage Caused by Metal Nanoparticles: Involvement of Oxidative Stress and Activation of ATM. Chem. Res. Toxicol. 25, 1402–1411. https://doi.org/10.1021/tx200513teng
dcterms.referencesWan, R., Mo, Y., Tong, R., Gao, M., Zhang, Q., 2019. Determination of Phosphorylated Histone H2AX in Nanoparticle-Induced Genotoxic Studies, in: Zhang, Q. (Ed.), Nanotoxicity, Methods in Molecular Biology. Springer New York, New York, NY, pp. 145–159. https://doi.org/10.1007/978-1-4939-8916-4_9eng
dcterms.referencesWu, J., Yang, Y., Tou, F., Yan, X., Dai, S., Hower, J.C., Saikia, B.K., Kersten, M., Hochella, M.F., 2023. Combustion conditions and feed coals regulating the Fe- and Ti-containing nanoparticles in various coal fly ash. J. Hazard. Mater. 445, 130482. https://doi.org/10.1016/j.jhazmat.2022.130482eng
dcterms.referencesXiang, Q.-Q., Kang, Y.-H., Lian, L.-H., Chen, Z.-Y., Wang, P., Hu, J.-M., Chen, L.-Q., 2022. Proteomic profiling reveals mitochondrial toxicity of nanosilver and silver nitrate in the gill of common carp. Aquat. Toxicol. 252, 106318. https://doi.org/10.1016/j.aquatox.2022.106318eng
dcterms.referencesXu, M., Niu, Z., Liu, C., Yan, J., Peng, B., Yang, Y., 2023. Oxidative Potential of Metal-Containing Nanoparticles in Coal Fly Ash Generated from Coal-Fired Power Plants in China. Environ. Health 1, 180–190. https://doi.org/10.1021/envhealth.3c00040eng
dcterms.referencesXuan, L., Ju, Z., Skonieczna, M., Zhou, P., Huang, R., 2023. Nanoparticles‐induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm 4, e327. https://doi.org/10.1002/mco2.327eng
dcterms.referencesYang, Y., Li, W., Kroner, E., Arzt, E., Bhushan, B., Benameur, L., Wei, L., Botta, A., Lu, Y., Lou, J., Jena, D., Nosonovsky, M., Bhushan, B., Søndergaard, T., Sekhar, P.K., Bhansali, S., Trusov, A.A., 2012. Genotoxicity of Nanoparticles, in: Bhushan, B. (Ed.), Encyclopedia of Nanotechnology. Springer Netherlands, Dordrecht, pp. 952–962. https://doi.org/10.1007/978-90-481-9751-4_335eng
dcterms.referencesYu, D., Xu, M., Yao, H., Liu, X., Zhou, K., Wen, C., Li, L., 2009. Physicochemical properties and potential health effects of nanoparticles from pulverized coal combustion. Sci. Bull. 54, 1243–1250. https://doi.org/10.1007/s11434-008-0582-0eng
dcterms.referencesYu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q., Li, P., 2020. Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field. Nanoscale Res. Lett. 15, 115. https://doi.org/10.1186/s11671-020-03344-7eng
dcterms.referencesYuan, X., Zhang, X., Sun, L., Wei, Y., Wei, X., 2019. Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Part. Fibre Toxicol. 16, 18. https://doi.org/10.1186/s12989-019-0299-zeng
dcterms.referencesZakrzewska, K.E., Samluk, A., Wierzbicki, M., Jaworski, S., Kutwin, M., Sawosz, E., Chwalibog, A., Pijanowska, D.G., Pluta, K.D., 2015. Analysis of the Cytotoxicity of Carbon-Based Nanoparticles, Diamond and Graphite, in Human Glioblastoma and Hepatoma Cell Lines. PLOS ONE 10, e0122579. https://doi.org/10.1371/journal.pone.0122579eng
dcterms.referencesZhang, P., Lu, J., Zuo, L., Wang, Y., Liu, R., Tao, D., Chen, Z., Tao, G., Wang, K., 2023. Identification of Natural Nearly or Nanoscale Particles in Bituminous Coal: An Important Form of Elements in Coal. Sustainability 15, 6276. https://doi.org/10.3390/su15076276eng
dcterms.referencesZhang, R., Liu, S., Zheng, S., 2021. Characterization of nano-to-micron sized respirable coal dust: Particle surface alteration and the health impact. J. Hazard. Mater. 413, 125447. https://doi.org/10.1016/j.jhazmat.2021.125447eng
dcterms.referencesZhang, Y., Li, A., Gao, J., Liang, J., Cao, N., Zhou, S., Tang, X., 2022. Differences in the characteristics and pulmonary toxicity of nano- and micron-sized respirable coal dust. Respir. Res. 23, 197. https://doi.org/10.1186/s12931-022-02120-8eng
dcterms.referencesZhang, Z., Qiao, W., Zhu, M., Meng, L., Yan, S., Feng, R., Zhang, X., Zhang, H., Si, C., Bai, H., Li, Y., 2023. The interaction between nucleotide bases and nano carbon: The dimension dominates. Surf. Interfaces 37, 102715. https://doi.org/10.1016/j.surfin.2023.102715eng
dcterms.referencesZhao, Johnson, J.K., 2007. Simulation of Adsorption of DNA on Carbon Nanotubes. J. Am. Chem. Soc. 129, 10438–10445. https://doi.org/10.1021/ja071844meng
dcterms.referencesZhou, H., McClements, D.J., 2022. Recent Advances in the Gastrointestinal Fate of Organic and Inorganic Nanoparticles in Foods. Nanomaterials 12, 1099. https://doi.org/10.3390/nano12071099eng
dcterms.referencesZierold, K.M., Hagemeyer, A.N., Sears, C.G., 2020. Health symptoms among adults living near a coal-burning power plant. Arch. Environ. Occup. Health 75, 289–296. https://doi.org/10.1080/19338244.2019.1633992eng
oaire.versioninfo:eu-repo/semantics/acceptedVersion
sb.programaDoctorado en Genética y Biología Molecularspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
5.05 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
PDF_Resumen.pdf
Tamaño:
314.54 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones