Colágeno marino como biomaterial en medicina regenerativa: Revisión sistemática de su biocompatibilidad, regeneración celular y potencial antimicrobiano
| datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
| dc.contributor.advisor | Borja Urzola, Aranys del Carmen | |
| dc.contributor.author | Bejarano De La Ossa, María Ema | |
| dc.contributor.author | Corcione Echeverria, Valentina | |
| dc.contributor.author | Helbrum Rojas, Yeilis Daniela | |
| dc.date.accessioned | 2025-12-03T14:24:43Z | |
| dc.date.available | 2025-12-03T14:24:43Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | El colágeno marino se puede consolidar como un biomaterial de alto impacto en la medicina regenerativa, presentándose como alternativa segura y sostenible frente a otras fuentes de origen bovino y porcino. Esta reorientación hacia fuentes marinas aborda limitaciones claves de sus predecesores, atenuando los riesgos en las transmisiones de enfermedades zoonóticas, descartando controversias éticas y culturales, reduciendo el choque ambiental presentado en la ganadería. Así mismo, la extracción del colágeno marino se ajusta aquellos fundamentos que pertenecen a la economía circular, ya que este se obtiene principalmente de escamas, piel y huesos. Esta valoración de subproductos pertenecientes a la industria pesquera lo posiciona como material de gran valor. Por consiguiente, este por su parte asegura que los tejidos sean más resistentes, elásticos y cohesivos al conectarse unos con otros. Además, por su versatilidad en sus funciones se ha convertido muy importante en las aplicaciones biomédicas en cuenta a la producción de dispositivos médicos como los andamios tisulares, hidrogeles, apósitos y películas. La prueba científica documentada resalta sus características bioactivas, siendo la biocompatibilidad su propiedad mas crucial. | spa |
| dc.description.abstract | Marine collagen can be consolidated as a high-impact biomaterial in regenerative medicine, presenting itself as a safe and sustainable alternative to other sources of bovine and porcine origin. This reorientation towards marine sources addresses key limitations of its predecessors, mitigating the risks of zoonotic disease transmission, ruling out ethical and cultural controversies, and reducing the environmental impact of livestock farming.Likewise, the extraction of marine collagen is in line with the principles of the circular economy, as it is obtained mainly from scales, skin, and bones. This valuation of by-products from the fishing industry positions it as a highly valuable material. | eng |
| dc.format.mimetype | ||
| dc.identifier.uri | https://hdl.handle.net/20.500.12442/17151 | |
| dc.language.iso | spa | |
| dc.publisher | Ediciones Universidad Simón Bolívar | spa |
| dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | eng |
| dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject | Colágeno marino | spa |
| dc.subject | Biomaterial | spa |
| dc.subject | Biocompatibilidad | spa |
| dc.subject | Regeneración celular | spa |
| dc.subject | Estudios clínicos | spa |
| dc.subject.keywords | Marine collagen | eng |
| dc.subject.keywords | Biomaterial | eng |
| dc.subject.keywords | Biocompatibility | eng |
| dc.subject.keywords | Cell regeneration | eng |
| dc.subject.keywords | Clinical studies | eng |
| dc.title | Colágeno marino como biomaterial en medicina regenerativa: Revisión sistemática de su biocompatibilidad, regeneración celular y potencial antimicrobiano | spa |
| dc.type.driver | info:eu-repo/semantics/other | |
| dc.type.spa | Trabajo de grado - pregrado | |
| dcterms.references | Alves, A. L., Costa-Gouveia, J., Vieira de Castro, J., Sotelo, C. G., Vázquez, J. A., PérezMartín, R. I., Torrado, E., Neves, N., Reis, R. L., Castro, A. G., & Silva, T. H. (2022). Study of the immunologic response of marine-derived collagen and gelatin extracts for tissue engineering applications. Acta Biomaterialia, 141. https://doi.org/10.1016/j.actbio.2022.01.009 | eng |
| dcterms.references | Badois, N., Bauër, P., Cheron, M., Hoffmann, C., Nicodeme, M., Choussy, O., Lesnik, M., Canoui Poitrine, F., & Fromantin, I. (2019). Acellular fish skin matrix on thin-skin graft donor sites: A preliminary study. Journal of Wound Care, 28(9). https://doi.org/10.12968/jowc.2019.28.9.624 | eng |
| dcterms.references | Barzkar, N., Vianello, F., Zengin, G., & Xu, S. (2021). Marine collagen: A comprehensive review with future perspectives. Advances in Colloid and Interface Science, 289, 102386. https://www.sciencedirect.com/science/article/abs/pii/S095816692100197X | eng |
| dcterms.references | Benayahu, D., Pomeraniec, L., Shemesh, S., Heller, S., Rosenthal, Y., Rath-Wolfson, L., & Benayahu, Y. (2020). Biocompatibility of a marine collagen-based scaffold in vitro and in vivo. Marine Drugs, 18(8). https://doi.org/10.3390/MD18080420 | eng |
| dcterms.references | Cao, H., Chen, M. M., Liu, Y., Liu, Y. Y., Huang, Y. Q., Wang, J. H., Chen, J. di, & Zhang, Q. Q. (2015). Fish collagen-based scaffold containing PLGA microspheres for controlled growth factor delivery in skin tissue engineering. Colloids and Surfaces B: Biointerfaces, 136, 1098–1106. https://doi.org/10.1016/J.COLSURFB.2015.10.022 | eng |
| dcterms.references | Chandika, P., Ko, S. C., & Kim, S. K. (2015). Fish collagen/alginate/chitooligosaccharides integrated composite for wound healing application. International Journal of Biological Macromolecules, 77, 15–22. https://www.sciencedirect.com/science/article/abs/pii/S0141813015005826 | eng |
| dcterms.references | Chattopadhyay, S., & Raines, R. T. (2014). Collagen-based biomaterials for wound healing. Journal of Biomaterials Applications, 33(3), 447–462. https://journals.sagepub.com/doi/abs/10.1177/0883911517747892 | eng |
| dcterms.references | Cheng, Y., Hu, Z., Zhao, Y., Zou, Z., Lu, S., Zhang, B., & Li, S. (2019). Sponges of carboxymethyl chitosan grafted with collagen peptides for wound healing. International Journal of Molecular Sciences, 20(16). https://doi.org/10.3390/ijms20163890 | eng |
| dcterms.references | Coppola, D., Oliviero, M., Vitale, G. A., Lauritano, C., D’Ambra, I., Iannace, S., & de Pascale, D. (2020). Marine collagen from alternative and sustainable sources: Extraction, processing and applications. In Marine Drugs (Vol. 18, Issue 4). https://doi.org/10.3390/md18040214 | eng |
| dcterms.references | Correia, C., Sousa, R. O., Vale, A. C., Peixoto, D., Silva, T. H., Reis, R. L., Pashkuleva, I., & Alves, N. M. (2022). Adhesive and biodegradable membranes made of sustainable catechol-functionalized marine collagen and chitosan. Colloids and Surfaces B: Biointerfaces, 213, 112409. https://doi.org/10.1016/J.COLSURFB.2022.112409 | eng |
| dcterms.references | Cruz, M. A., Fernandes, K. R., Parisi, J. R., Vale, G. C. A., Junior, S. R. A., Freitas, F. R., Sales, A. F. S., Fortulan, C. A., Peitl, O., Zanotto, E., Granito, R. N., Ribeiro, A. M., & Renno, A. C. M. (2020). Marine collagen scaffolds and photobiomodulation on bone healing process in a model of calvaria defects. Journal of Bone and Mineral Metabolism, 38(5). https://doi.org/10.1007/s00774-020-01102-4 | eng |
| dcterms.references | Ferrario, C., Rusconi, F., Pulaj, A., Macchi, R., Landini, P., Paroni, M., Colombo, G., Martinello, T., Melotti, L., Gomiero, C., Daniela Candia Carnevali, M., Bonasoro, F., Patruno, M., & Sugni, M. (2020). From food waste to innovative biomaterial: Sea urchinderived collagen for applications in skin regenerative medicine. Marine Drugs, 18(8). https://doi.org/10.3390/MD18080414 | eng |
| dcterms.references | Ferreira, A. M., Gentile, P., Chiono, V., & Ciardelli, G. (2012). Collagen for bone tissue regeneration. In Acta Biomaterialia (Vol. 8, Issue 9). https://doi.org/10.1016/j.actbio.2012.06.014 | eng |
| dcterms.references | Geahchan, S., Baharlouei, P., & Rahman, M. A. (2022). Marine Collagen: A Promising Biomaterial for Wound Healing, Skin Anti-Aging, and Bone Regeneration. In Marine Drugs (Vol. 20, Issue 1). https://doi.org/10.3390/md20010061 | eng |
| dcterms.references | Guo, J., Zhang, J., & Xu, W. (2023). Personalized scaffolds based on marine collagen for tissue regeneration. Tissue Engineering Part B: Reviews, 29(7), 625–637. https://www.liebertpub.com/doi/abs/10.1089/ten.teb.2023.0077 | eng |
| dcterms.references | Hu, Z., Yang, P., Zhou, C., Li, S., & Hong, P. (2017). Marine collagen peptides from the skin of Nile Tilapia (Oreochromis niloticus): Characterization and wound healing evaluation. Marine Drugs, 15(4). https://doi.org/10.3390/md15040102 | eng |
| dcterms.references | Jafari, H., Lista, A., Siekapen, M. M., Ghaffari-Bohlouli, P., Nie, L., Alimoradi, H., & Shavandi, A. (2020). Fish collagen: Extraction, characterization, and applications for biomaterials engineering. In Polymers (Vol. 12, Issue 10). https://doi.org/10.3390/polym12102230 | eng |
| dcterms.references | Jridi, M., Bardaa, S., Moalla, D., Rebaii, T., Souissi, N., Sahnoun, Z., & Nasri, M. (2015). Microstructure, rheological and wound healing properties of collagen-based gel from cuttlefish skin. International Journal of Biological Macromolecules, 77. https://doi.org/10.1016/j.ijbiomac.2015.03.020 | eng |
| dcterms.references | Leary, E., Raftery, R. M., & O’Brien, F. J. (2021). Fish collagen for wound healing: A clinical and in vitro study. Anticancer Research, 41(2), 707–715. https://ar.iiarjournals.org/content/41/2/707.abstract | eng |
| dcterms.references | Lim, Y. S., Ok, Y. J., Hwang, S. Y., Kwak, J. Y., & Yoon, S. (2019). Marine collagen as a promising biomaterial for biomedical applications. In Marine Drugs (Vol. 17, Issue 8). https://doi.org/10.3390/md17080467 | eng |
| dcterms.references | Melotti, L., Martinello, T., Perazzi, A., Iacopetti, I., Ferrario, C., Sugni, M., Sacchetto, R., & Patruno, M. (2021). A prototype skin substitute, made of recycled marine collagen, improves the skin regeneration of sheep. Animals, 11(5). https://doi.org/10.3390/ani11051219 | eng |
| dcterms.references | Michael, S., Winters, C., & Khan, M. (2019). Acellular fish skin graft use for diabetic lower extremity wound healing: A retrospective study of 58 ulcerations and a literature review. Wounds, 31(10). | eng |
| dcterms.references | Morelli, S., D’Amora, U., Piscioneri, A., Oliviero, M., Scialla, S., Coppola, A., de Pascale, D., Crocetta, F., de Santo, M. P., Davoli, M., Coppola, D., & de Bartolo, L. (2024). Methacrylated chitosan/jellyfish collagen membranes as cell instructive platforms for liver tissue engineering. International Journal of Biological Macromolecules, 281, 136313. https://doi.org/10.1016/J.IJBIOMAC.2024.136313 | eng |
| dcterms.references | Portela, L. C. P. N., Cahú, T. B., Bezerra, T. S., Santos, D. K. D. do N., Sousa, G. F., Portela, R. W. S., Melo, C. M. L., & Bezerra, R. de S. (2022). Biocompatibility and immunostimulatory properties of fish collagen and shrimp chitosan towards peripheral blood mononuclear cells (PBMCs). International Journal of Biological Macromolecules, 210. https://doi.org/10.1016/j.ijbiomac.2022.05.018 | eng |
| dcterms.references | Rajabimashhadi, Z., Gallo, N., Salvatore, L., & Lionetto, F. (2023). Collagen derived from fish industry waste: Progresses and challenges. Polymers, 15(3), 544. https://pmc.ncbi.nlm.nih.gov/articles/PMC9590366/ | eng |
| dcterms.references | Raman, M., & Gopakumar, K. (2018). Fish Collagen and its Applications in Food and Pharmaceutical Industry: A Review. EC Nutrition, 13(12). | eng |
| dcterms.references | Sayin, S., Kohlhaas, T., Veziroglu, S., Okudan, E., Naz, M., Schröder, S., Saygili, E. I., Açil, Y., Faupel, F., Wiltfang, J., Aktas, O. C., & Gülses, A. (2020). Marine Algae-PLA composites as de novo alternative to porcine derived collagen membranes. Materials Today Chemistry, 17. https://doi.org/10.1016/j.mtchem.2020.100276 | eng |
| dcterms.references | Schmidt, M. M., Dornelles, R. C. P., Mello, R. O., Kubota, E. H., Mazutti, M. A., Kempka, A. P., & Demiate, I. M. (2016). Collagen extraction process. Applied Biochemistry and Biotechnology, 178(7), 1473–1488. https://www.sciencedirect.com/science/article/abs/pii/S0141813022009734 | eng |
| dcterms.references | Shaik, M. I., Rahman, S. H. A., Yusri, A. S., Ismail-Fitry, M. R., Kumar, N. S. S., & Sarbon, N. M. (2024). A review on the processing technique, physicochemical, and bioactive properties of marine collagen. Journal of Food Science, 89(9), 5205–5229. https://www.sciencedirect.com/science/article/abs/pii/S0014299924007568 | eng |
| dcterms.references | Shanmugapriya, K., Kim, H., & Kang, H. W. (2020). Fucoidan-loaded hydrogels facilitates wound healing using photodynamic therapy by in vitro and in vivo evaluation. Carbohydrate Polymers, 247. https://doi.org/10.1016/j.carbpol.2020.116624 | eng |
| dcterms.references | Silva, T. H., Moreira-Silva, J., Marques, A. L. P., Domingues, A., Bayon, Y., & Reis, R. L. (2014). Marine origin collagens and its potential applications. In Marine Drugs (Vol. 12, Issue 12). https://doi.org/10.3390/md12125881 | eng |
| dcterms.references | Song, E., Yeon, Y. K., Lee, Y. B., Jeon, Y. S., Lim, J. J., Lee, S., … Park, Y. H. (2021). Marine collagen scaffolds in tissue engineering: Applications and challenges. Acta Biomaterialia, 123, 210–223. https://www.sciencedirect.com/science/article/abs/pii/S2468519420300367 | eng |
| dcterms.references | Song, X., Li, Z., Li, Y., & Hou, H. (2022). Typical structure, biocompatibility, and cell proliferation bioactivity of collagen from Tilapia and Pacific cod. Colloids and Surfaces B: Biointerfaces, 210. https://doi.org/10.1016/j.colsurfb.2021.112238 | eng |
| dcterms.references | ubhan, F., Ikram, M., Shehzad, A., & Ghafoor, A. (2015). Marine Collagen: An Emerging Player in Biomedical applications. In Journal of Food Science and Technology (Vol. 52, Issue 8). https://doi.org/10.1007/s13197-014-1652-8 | eng |
| dcterms.references | Swatschek, D., Schatton, W., Kellermann, J., Müller, W. E. G., & Kreuter, J. (2002). Marine sponge collagen: Isolation, characterization and effects on wound healing. International Journal of Biological Macromolecules, 31(1–3), 1–12. https://www.sciencedirect.com/science/article/abs/pii/S0141813020346274 | eng |
| dcterms.references | Ullah, S., Zainol, I., Chowdhury, S. R., & Fauzi, M. B. (2018). Development of various composition multicomponent chitosan/fish collagen/glycerin 3D porous scaffolds: Effect on morphology, mechanical strength, biostability and cytocompatibility. International Journal of Biological Macromolecules, 111. https://doi.org/10.1016/j.ijbiomac.2017.12.136 | eng |
| dcterms.references | Valenzuela-Rojo, R. D., López-Cervantes, J., Sánchez-Machado, D. I., Escárcega-Galaz, A. A., & Martínez-Macias, M. del R. (2020). Antibacterial, mechanical and physical properties of collagen – chitosan sponges from aquatic source. Sustainable Chemistry and Pharmacy, 15. https://doi.org/10.1016/j.scp.2020.100218 | eng |
| dcterms.references | Wu, D. Y., Wang, S. S., & Wu, C. S. (2020). Antibacterial properties and cytocompatibility of biobased nanofibers of fish scale gelatine, modified polylactide, and freshwater clam shell. International Journal of Biological Macromolecules, 165. https://doi.org/10.1016/j.ijbiomac.2020.10.002 | eng |
| dcterms.references | Xu, S., Wang, Z., & Kim, S. K. (2012). Marine-derived collagen biomaterials for biomedical applications. International Journal of Biological Macromolecules, 51(4), 557–563. https://www.sciencedirect.com/science/article/abs/pii/S2352554119302992 | eng |
| dcterms.references | Xu, Y., Xu, W., & Guo,J. (2021). Collagen from marine organisms: Structure, properties, and biomedical applications. International Journal of Biological Macromolecules, 183, 1796–1810. https://pubmed.ncbi.nlm.nih.gov/34838415/ | eng |
| dcterms.references | Zhang, W., Zheng, J., Tian, X., Tang, Y., Ding, G., Yang, Z., & Jin, H. (2019). PepsinSoluble Collagen from the Skin of Lophius litulo: A preliminary study evaluating physicochemical, antioxidant, and wound healing properties. Marine Drugs, 17(12). https://doi.org/10.3390/md17120708 | eng |
| oaire.version | info:eu-repo/semantics/acceptedVersion | |
| sb.programa | Química y Farmacia | spa |
| sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

