Colágeno marino como biomaterial en medicina regenerativa: Revisión sistemática de su biocompatibilidad, regeneración celular y potencial antimicrobiano

datacite.rightshttp://purl.org/coar/access_right/c_f1cf
dc.contributor.advisorBorja Urzola, Aranys del Carmen
dc.contributor.authorBejarano De La Ossa, María Ema
dc.contributor.authorCorcione Echeverria, Valentina
dc.contributor.authorHelbrum Rojas, Yeilis Daniela
dc.date.accessioned2025-12-03T14:24:43Z
dc.date.available2025-12-03T14:24:43Z
dc.date.issued2025
dc.description.abstractEl colágeno marino se puede consolidar como un biomaterial de alto impacto en la medicina regenerativa, presentándose como alternativa segura y sostenible frente a otras fuentes de origen bovino y porcino. Esta reorientación hacia fuentes marinas aborda limitaciones claves de sus predecesores, atenuando los riesgos en las transmisiones de enfermedades zoonóticas, descartando controversias éticas y culturales, reduciendo el choque ambiental presentado en la ganadería. Así mismo, la extracción del colágeno marino se ajusta aquellos fundamentos que pertenecen a la economía circular, ya que este se obtiene principalmente de escamas, piel y huesos. Esta valoración de subproductos pertenecientes a la industria pesquera lo posiciona como material de gran valor. Por consiguiente, este por su parte asegura que los tejidos sean más resistentes, elásticos y cohesivos al conectarse unos con otros. Además, por su versatilidad en sus funciones se ha convertido muy importante en las aplicaciones biomédicas en cuenta a la producción de dispositivos médicos como los andamios tisulares, hidrogeles, apósitos y películas. La prueba científica documentada resalta sus características bioactivas, siendo la biocompatibilidad su propiedad mas crucial.spa
dc.description.abstractMarine collagen can be consolidated as a high-impact biomaterial in regenerative medicine, presenting itself as a safe and sustainable alternative to other sources of bovine and porcine origin. This reorientation towards marine sources addresses key limitations of its predecessors, mitigating the risks of zoonotic disease transmission, ruling out ethical and cultural controversies, and reducing the environmental impact of livestock farming.Likewise, the extraction of marine collagen is in line with the principles of the circular economy, as it is obtained mainly from scales, skin, and bones. This valuation of by-products from the fishing industry positions it as a highly valuable material.eng
dc.format.mimetypepdf
dc.identifier.urihttps://hdl.handle.net/20.500.12442/17151
dc.language.isospa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias Básicas y Biomédicasspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationaleng
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectColágeno marinospa
dc.subjectBiomaterialspa
dc.subjectBiocompatibilidadspa
dc.subjectRegeneración celularspa
dc.subjectEstudios clínicosspa
dc.subject.keywordsMarine collageneng
dc.subject.keywordsBiomaterialeng
dc.subject.keywordsBiocompatibilityeng
dc.subject.keywordsCell regenerationeng
dc.subject.keywordsClinical studieseng
dc.titleColágeno marino como biomaterial en medicina regenerativa: Revisión sistemática de su biocompatibilidad, regeneración celular y potencial antimicrobianospa
dc.type.driverinfo:eu-repo/semantics/other
dc.type.spaTrabajo de grado - pregrado
dcterms.referencesAlves, A. L., Costa-Gouveia, J., Vieira de Castro, J., Sotelo, C. G., Vázquez, J. A., PérezMartín, R. I., Torrado, E., Neves, N., Reis, R. L., Castro, A. G., & Silva, T. H. (2022). Study of the immunologic response of marine-derived collagen and gelatin extracts for tissue engineering applications. Acta Biomaterialia, 141. https://doi.org/10.1016/j.actbio.2022.01.009eng
dcterms.referencesBadois, N., Bauër, P., Cheron, M., Hoffmann, C., Nicodeme, M., Choussy, O., Lesnik, M., Canoui Poitrine, F., & Fromantin, I. (2019). Acellular fish skin matrix on thin-skin graft donor sites: A preliminary study. Journal of Wound Care, 28(9). https://doi.org/10.12968/jowc.2019.28.9.624eng
dcterms.referencesBarzkar, N., Vianello, F., Zengin, G., & Xu, S. (2021). Marine collagen: A comprehensive review with future perspectives. Advances in Colloid and Interface Science, 289, 102386. https://www.sciencedirect.com/science/article/abs/pii/S095816692100197Xeng
dcterms.referencesBenayahu, D., Pomeraniec, L., Shemesh, S., Heller, S., Rosenthal, Y., Rath-Wolfson, L., & Benayahu, Y. (2020). Biocompatibility of a marine collagen-based scaffold in vitro and in vivo. Marine Drugs, 18(8). https://doi.org/10.3390/MD18080420eng
dcterms.referencesCao, H., Chen, M. M., Liu, Y., Liu, Y. Y., Huang, Y. Q., Wang, J. H., Chen, J. di, & Zhang, Q. Q. (2015). Fish collagen-based scaffold containing PLGA microspheres for controlled growth factor delivery in skin tissue engineering. Colloids and Surfaces B: Biointerfaces, 136, 1098–1106. https://doi.org/10.1016/J.COLSURFB.2015.10.022eng
dcterms.referencesChandika, P., Ko, S. C., & Kim, S. K. (2015). Fish collagen/alginate/chitooligosaccharides integrated composite for wound healing application. International Journal of Biological Macromolecules, 77, 15–22. https://www.sciencedirect.com/science/article/abs/pii/S0141813015005826eng
dcterms.referencesChattopadhyay, S., & Raines, R. T. (2014). Collagen-based biomaterials for wound healing. Journal of Biomaterials Applications, 33(3), 447–462. https://journals.sagepub.com/doi/abs/10.1177/0883911517747892eng
dcterms.referencesCheng, Y., Hu, Z., Zhao, Y., Zou, Z., Lu, S., Zhang, B., & Li, S. (2019). Sponges of carboxymethyl chitosan grafted with collagen peptides for wound healing. International Journal of Molecular Sciences, 20(16). https://doi.org/10.3390/ijms20163890eng
dcterms.referencesCoppola, D., Oliviero, M., Vitale, G. A., Lauritano, C., D’Ambra, I., Iannace, S., & de Pascale, D. (2020). Marine collagen from alternative and sustainable sources: Extraction, processing and applications. In Marine Drugs (Vol. 18, Issue 4). https://doi.org/10.3390/md18040214eng
dcterms.referencesCorreia, C., Sousa, R. O., Vale, A. C., Peixoto, D., Silva, T. H., Reis, R. L., Pashkuleva, I., & Alves, N. M. (2022). Adhesive and biodegradable membranes made of sustainable catechol-functionalized marine collagen and chitosan. Colloids and Surfaces B: Biointerfaces, 213, 112409. https://doi.org/10.1016/J.COLSURFB.2022.112409eng
dcterms.referencesCruz, M. A., Fernandes, K. R., Parisi, J. R., Vale, G. C. A., Junior, S. R. A., Freitas, F. R., Sales, A. F. S., Fortulan, C. A., Peitl, O., Zanotto, E., Granito, R. N., Ribeiro, A. M., & Renno, A. C. M. (2020). Marine collagen scaffolds and photobiomodulation on bone healing process in a model of calvaria defects. Journal of Bone and Mineral Metabolism, 38(5). https://doi.org/10.1007/s00774-020-01102-4eng
dcterms.referencesFerrario, C., Rusconi, F., Pulaj, A., Macchi, R., Landini, P., Paroni, M., Colombo, G., Martinello, T., Melotti, L., Gomiero, C., Daniela Candia Carnevali, M., Bonasoro, F., Patruno, M., & Sugni, M. (2020). From food waste to innovative biomaterial: Sea urchinderived collagen for applications in skin regenerative medicine. Marine Drugs, 18(8). https://doi.org/10.3390/MD18080414eng
dcterms.referencesFerreira, A. M., Gentile, P., Chiono, V., & Ciardelli, G. (2012). Collagen for bone tissue regeneration. In Acta Biomaterialia (Vol. 8, Issue 9). https://doi.org/10.1016/j.actbio.2012.06.014eng
dcterms.referencesGeahchan, S., Baharlouei, P., & Rahman, M. A. (2022). Marine Collagen: A Promising Biomaterial for Wound Healing, Skin Anti-Aging, and Bone Regeneration. In Marine Drugs (Vol. 20, Issue 1). https://doi.org/10.3390/md20010061eng
dcterms.referencesGuo, J., Zhang, J., & Xu, W. (2023). Personalized scaffolds based on marine collagen for tissue regeneration. Tissue Engineering Part B: Reviews, 29(7), 625–637. https://www.liebertpub.com/doi/abs/10.1089/ten.teb.2023.0077eng
dcterms.referencesHu, Z., Yang, P., Zhou, C., Li, S., & Hong, P. (2017). Marine collagen peptides from the skin of Nile Tilapia (Oreochromis niloticus): Characterization and wound healing evaluation. Marine Drugs, 15(4). https://doi.org/10.3390/md15040102eng
dcterms.referencesJafari, H., Lista, A., Siekapen, M. M., Ghaffari-Bohlouli, P., Nie, L., Alimoradi, H., & Shavandi, A. (2020). Fish collagen: Extraction, characterization, and applications for biomaterials engineering. In Polymers (Vol. 12, Issue 10). https://doi.org/10.3390/polym12102230eng
dcterms.referencesJridi, M., Bardaa, S., Moalla, D., Rebaii, T., Souissi, N., Sahnoun, Z., & Nasri, M. (2015). Microstructure, rheological and wound healing properties of collagen-based gel from cuttlefish skin. International Journal of Biological Macromolecules, 77. https://doi.org/10.1016/j.ijbiomac.2015.03.020eng
dcterms.referencesLeary, E., Raftery, R. M., & O’Brien, F. J. (2021). Fish collagen for wound healing: A clinical and in vitro study. Anticancer Research, 41(2), 707–715. https://ar.iiarjournals.org/content/41/2/707.abstracteng
dcterms.referencesLim, Y. S., Ok, Y. J., Hwang, S. Y., Kwak, J. Y., & Yoon, S. (2019). Marine collagen as a promising biomaterial for biomedical applications. In Marine Drugs (Vol. 17, Issue 8). https://doi.org/10.3390/md17080467eng
dcterms.referencesMelotti, L., Martinello, T., Perazzi, A., Iacopetti, I., Ferrario, C., Sugni, M., Sacchetto, R., & Patruno, M. (2021). A prototype skin substitute, made of recycled marine collagen, improves the skin regeneration of sheep. Animals, 11(5). https://doi.org/10.3390/ani11051219eng
dcterms.referencesMichael, S., Winters, C., & Khan, M. (2019). Acellular fish skin graft use for diabetic lower extremity wound healing: A retrospective study of 58 ulcerations and a literature review. Wounds, 31(10).eng
dcterms.referencesMorelli, S., D’Amora, U., Piscioneri, A., Oliviero, M., Scialla, S., Coppola, A., de Pascale, D., Crocetta, F., de Santo, M. P., Davoli, M., Coppola, D., & de Bartolo, L. (2024). Methacrylated chitosan/jellyfish collagen membranes as cell instructive platforms for liver tissue engineering. International Journal of Biological Macromolecules, 281, 136313. https://doi.org/10.1016/J.IJBIOMAC.2024.136313eng
dcterms.referencesPortela, L. C. P. N., Cahú, T. B., Bezerra, T. S., Santos, D. K. D. do N., Sousa, G. F., Portela, R. W. S., Melo, C. M. L., & Bezerra, R. de S. (2022). Biocompatibility and immunostimulatory properties of fish collagen and shrimp chitosan towards peripheral blood mononuclear cells (PBMCs). International Journal of Biological Macromolecules, 210. https://doi.org/10.1016/j.ijbiomac.2022.05.018eng
dcterms.referencesRajabimashhadi, Z., Gallo, N., Salvatore, L., & Lionetto, F. (2023). Collagen derived from fish industry waste: Progresses and challenges. Polymers, 15(3), 544. https://pmc.ncbi.nlm.nih.gov/articles/PMC9590366/eng
dcterms.referencesRaman, M., & Gopakumar, K. (2018). Fish Collagen and its Applications in Food and Pharmaceutical Industry: A Review. EC Nutrition, 13(12).eng
dcterms.referencesSayin, S., Kohlhaas, T., Veziroglu, S., Okudan, E., Naz, M., Schröder, S., Saygili, E. I., Açil, Y., Faupel, F., Wiltfang, J., Aktas, O. C., & Gülses, A. (2020). Marine Algae-PLA composites as de novo alternative to porcine derived collagen membranes. Materials Today Chemistry, 17. https://doi.org/10.1016/j.mtchem.2020.100276eng
dcterms.referencesSchmidt, M. M., Dornelles, R. C. P., Mello, R. O., Kubota, E. H., Mazutti, M. A., Kempka, A. P., & Demiate, I. M. (2016). Collagen extraction process. Applied Biochemistry and Biotechnology, 178(7), 1473–1488. https://www.sciencedirect.com/science/article/abs/pii/S0141813022009734eng
dcterms.referencesShaik, M. I., Rahman, S. H. A., Yusri, A. S., Ismail-Fitry, M. R., Kumar, N. S. S., & Sarbon, N. M. (2024). A review on the processing technique, physicochemical, and bioactive properties of marine collagen. Journal of Food Science, 89(9), 5205–5229. https://www.sciencedirect.com/science/article/abs/pii/S0014299924007568eng
dcterms.referencesShanmugapriya, K., Kim, H., & Kang, H. W. (2020). Fucoidan-loaded hydrogels facilitates wound healing using photodynamic therapy by in vitro and in vivo evaluation. Carbohydrate Polymers, 247. https://doi.org/10.1016/j.carbpol.2020.116624eng
dcterms.referencesSilva, T. H., Moreira-Silva, J., Marques, A. L. P., Domingues, A., Bayon, Y., & Reis, R. L. (2014). Marine origin collagens and its potential applications. In Marine Drugs (Vol. 12, Issue 12). https://doi.org/10.3390/md12125881eng
dcterms.referencesSong, E., Yeon, Y. K., Lee, Y. B., Jeon, Y. S., Lim, J. J., Lee, S., … Park, Y. H. (2021). Marine collagen scaffolds in tissue engineering: Applications and challenges. Acta Biomaterialia, 123, 210–223. https://www.sciencedirect.com/science/article/abs/pii/S2468519420300367eng
dcterms.referencesSong, X., Li, Z., Li, Y., & Hou, H. (2022). Typical structure, biocompatibility, and cell proliferation bioactivity of collagen from Tilapia and Pacific cod. Colloids and Surfaces B: Biointerfaces, 210. https://doi.org/10.1016/j.colsurfb.2021.112238eng
dcterms.referencesubhan, F., Ikram, M., Shehzad, A., & Ghafoor, A. (2015). Marine Collagen: An Emerging Player in Biomedical applications. In Journal of Food Science and Technology (Vol. 52, Issue 8). https://doi.org/10.1007/s13197-014-1652-8eng
dcterms.referencesSwatschek, D., Schatton, W., Kellermann, J., Müller, W. E. G., & Kreuter, J. (2002). Marine sponge collagen: Isolation, characterization and effects on wound healing. International Journal of Biological Macromolecules, 31(1–3), 1–12. https://www.sciencedirect.com/science/article/abs/pii/S0141813020346274eng
dcterms.referencesUllah, S., Zainol, I., Chowdhury, S. R., & Fauzi, M. B. (2018). Development of various composition multicomponent chitosan/fish collagen/glycerin 3D porous scaffolds: Effect on morphology, mechanical strength, biostability and cytocompatibility. International Journal of Biological Macromolecules, 111. https://doi.org/10.1016/j.ijbiomac.2017.12.136eng
dcterms.referencesValenzuela-Rojo, R. D., López-Cervantes, J., Sánchez-Machado, D. I., Escárcega-Galaz, A. A., & Martínez-Macias, M. del R. (2020). Antibacterial, mechanical and physical properties of collagen – chitosan sponges from aquatic source. Sustainable Chemistry and Pharmacy, 15. https://doi.org/10.1016/j.scp.2020.100218eng
dcterms.referencesWu, D. Y., Wang, S. S., & Wu, C. S. (2020). Antibacterial properties and cytocompatibility of biobased nanofibers of fish scale gelatine, modified polylactide, and freshwater clam shell. International Journal of Biological Macromolecules, 165. https://doi.org/10.1016/j.ijbiomac.2020.10.002eng
dcterms.referencesXu, S., Wang, Z., & Kim, S. K. (2012). Marine-derived collagen biomaterials for biomedical applications. International Journal of Biological Macromolecules, 51(4), 557–563. https://www.sciencedirect.com/science/article/abs/pii/S2352554119302992eng
dcterms.referencesXu, Y., Xu, W., & Guo,J. (2021). Collagen from marine organisms: Structure, properties, and biomedical applications. International Journal of Biological Macromolecules, 183, 1796–1810. https://pubmed.ncbi.nlm.nih.gov/34838415/eng
dcterms.referencesZhang, W., Zheng, J., Tian, X., Tang, Y., Ding, G., Yang, Z., & Jin, H. (2019). PepsinSoluble Collagen from the Skin of Lophius litulo: A preliminary study evaluating physicochemical, antioxidant, and wound healing properties. Marine Drugs, 17(12). https://doi.org/10.3390/md17120708eng
oaire.versioninfo:eu-repo/semantics/acceptedVersion
sb.programaQuímica y Farmaciaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Resumen.pdf
Tamaño:
259.49 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
920.04 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones