Hepatic and neurobiological effects of foetal and breastfeeding and adulthood exposure to methylmercury in Wistar rats
dc.contributor.author | da Rosa-Silva, Helen Tais | |
dc.contributor.author | Castro Panzenhagen, Alana | |
dc.contributor.author | Schmidtt, Victória | |
dc.contributor.author | Alves Teixeira, Alexsander | |
dc.contributor.author | Espitia-Pérez, Pedro | |
dc.contributor.author | de Oliveira Franco, Álvaro | |
dc.contributor.author | Mingori, Moara | |
dc.contributor.author | Torres-Ávila, José F. | |
dc.contributor.author | Schnorr, Carlos Eduardo | |
dc.contributor.author | Silva Hermann, Paolla Rissi | |
dc.contributor.author | Pompéu Moraes, Diogo | |
dc.contributor.author | Farina Almeida, Roberto | |
dc.contributor.author | Fonseca Moreira, José Cláudio | |
dc.date.accessioned | 2019-12-06T14:38:26Z | |
dc.date.available | 2019-12-06T14:38:26Z | |
dc.date.issued | 2019 | |
dc.description.abstract | Methylmercury (MeHg) is an organic bioaccumulated mercury derivative that strongly affects the environment and represents a public health problem primarily to riparian communities in South America. Our objective was to investigate the hepatic and neurological effects of MeHg exposure during the phases foetal and breast-feeding and adult in Wistar rats. Wistar rats (n = 10) were divided into 3 groups. Control group received mineral oil; The simple exposure (SE) group was exposed only in adulthood (0.5 mg/kg/day); and double exposure (DE) was pre-exposed to MeHg 0.5 mg/kg/day during pregnancy and breastfeeding (±40 days) and re-exposed to MeHg for 45 days from day 100. After, we evaluated possible abnormalities. Behavioral and biochemical parameters in liver and occipital cortex (CO), markers of liver injury, redox and AKT/GSK3b/mTOR signaling pathway. Our results showed that both groups treated with MeHg presented significant alterations, such as decreased locomotion and exploration and impaired visuospatial perception. The rats exposed to MeHg showed severe liver damage and increased hepatic glycogen concentration. The MeHg groups showed significant impairment in redox balance and oxidative damage to liver macromolecules and CO. MeHg upregulated the AKT/GSK3b/mTOR pathway and the phosphorylated form of the Tau protein. In addition, we found a reduction in NeuN and GFAP immunocontent. These results represent the first approach to the hepatotoxic and neural effects of foetal and adult MeHg exposure. | eng |
dc.identifier.issn | 00456535 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/4410 | |
dc.language.iso | eng | eng |
dc.publisher | ELSevier | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Chemosphere | eng |
dc.source.uri | https://doi.org/10.1016/j.chemosphere.2019.125400 | eng |
dc.subject | Methylmercury | eng |
dc.subject | Double exposure | eng |
dc.subject | Double exposure | eng |
dc.subject | Hepatotoxicity | eng |
dc.subject | Neurotoxicity | eng |
dc.title | Hepatic and neurobiological effects of foetal and breastfeeding and adulthood exposure to methylmercury in Wistar rats | eng |
dc.type | article | eng |
dcterms.references | Aebi, H., 1984. [13] Catalase in vitro. Oxygen Radicals in Biological Systems, vol. 105. Academic Press, pp. 121e126. https://doi.org/10.1016/S0076-6879(84)05016-3. | eng |
dcterms.references | Almeida, R.F., et al., 2010. Systemic administration of GMP induces anxiolytic-like behavior in rats. Pharmacol. Biochem. Behav. 96 (3), 306e311. https://doi.org/ 10.1016/j.pbb.2010.05.022. | eng |
dcterms.references | Amorim, M.I., Mergler, D., Bahia, M.O., Dubeau, H., Miranda, D., Lebel, J., et al., 2000. Cytogenetic damage related to low levels of methyl mercury contamination in the Brazilian Amazon. An Acad. Bras Ci^encias 72, 497e507. | eng |
dcterms.references | Baraldi, M., Caselgrandi, E., Borella, P., Zeneroli, M.L., 1983. Decrease of brain zinc in experimental hepatic encephalopathy. Brain Res. https://doi.org/10.1016/0006- 8993(83)91246-5. | eng |
dcterms.references | Bellinger, D.C., et al., 2016. Country-specific estimates of the incidence of intellectual disability associated with prenatal exposure to methylmercury. Environ. Res. 147, 159e163. https://doi.org/10.1016/j.envres.2015.10.006. | eng |
dcterms.references | Berger, K., Lindh, R., Wierup, N., Zmuda-Trzebiatowska, E., Lindqvist, A., Manganiello, V.C., et al., 2009. Phosphodiesterase 3B is localized in caveolae and smooth ER in mouse hepatocytes and is important in the regulation of glucose and lipid metabolism. PLoS One 4. https://doi.org/10.1371/journal.- pone.0004671 e4671ee4671 | eng |
dcterms.references | Betti, C., Barale, R., Pool Zobel, B.L., 1993. Comparative studies on cytotoxic and genotoxic effects of two organic mercury compounds in lymphocytes and gastric mucosa cells of sprague-dawley rats. Environ. Mol. Mutagen. 22, 172e180. https://doi.org/10.1002/em.2850220310. | eng |
dcterms.references | Bisen-Hersh, E.B., Farina, M., Barbosa, F., Rocha, J.B.T., Aschner, M., 2014. Behavioral effects of developmental methylmercury drinking water exposure in rodents. J. Trace Elem. Med. Biol. 28, 117e124. https://doi.org/10.1016/ j.jtemb.2013.09.008. | eng |
dcterms.references | Braissant, O., Rackayová, V., Pierzchala, K., Grosse, J., McLin, V., Cudalbu, C., 2019. Longitudinal neurometabolic changes in the hippocampus of a rat model of chronic hepatic encephalopathy. J. Hepatol. https://doi.org/10.1016/ j.jhep.2019.05.022. | eng |
dcterms.references | Browne, D., Armstrong, R.W., 1998. Reduced glutathione and glutathione disulfide. Methods Mol. Biol. (Clifton, N.J.) 108. https://doi.org/10.1385/0-89603-472-0: 347. | eng |
dcterms.references | Carvalho, C.M.L., Chew, E.H., Hashemy, S.I., Lu, J., Holmgren, A., 2008. Inhibition of the human thioredoxin system: a molecular mechanism of mercury toxicity. J. Biol. Chem. 283, 11913e11923. https://doi.org/10.1074/jbc.M710133200. | eng |
dcterms.references | Castoldi, A.F., Coccini, T., Ceccatelli, S., Manzo, L., 2001. Neurotoxicity and molecular effects of methylmercury. Brain Res. Bull. 55, 197e203. https://doi.org/10.1016/ S0361-9230(01)00458-0. | eng |
dcterms.references | Castoldi, A.F., Onishchenko, N., Johansson, C., Coccini, T., Roda, E., Vahter, M., et al., 2008. Neurodevelopmental toxicity of methylmercury: laboratory animal data and their contribution to human risk assessment. Regul. Toxicol. Pharmacol. 51, 215e229. https://doi.org/10.1016/j.yrtph.2008.03.005. | eng |
dcterms.references | Cohn, A., Ohri, A., 2017. Diabetes mellitus in a patient with glycogen storage disease type Ia: a case report. J. Med. Case Rep. 11, 319. https://doi.org/10.1186/s13256- 017-1462-5. | eng |
dcterms.references | Collins, A.R., 2015. The comet assay: a heavenly method! Mutagenesis 30, 1e4. https://doi.org/10.1093/mutage/geu079. | eng |
dcterms.references | Crespo-López, M.E., Lima de Sá, A., Herculano, A.M., Rodríguez Burbano, R., Martins do Nascimento, J.L., 2007. Methylmercury genotoxicity: a novel effect in human cell lines of the central nervous system. Environ. Int. 33, 141e146. https:// doi.org/10.1016/j.envint.2006.08.005. | eng |
dcterms.references | Cryer, P.E., 2007. Hypoglycemia, functional brain failure, and brain death. J. Clin. Investig. 117, 868e870. https://doi.org/10.1172/JCI31669. | eng |
dcterms.references | Cudalbu, C., Taylor-Robinson, S.D., 2019. Brain edema in chronic hepatic encephalopathy. J. Clin. Exp. Hepatol. https://doi.org/10.1016/j.jceh.2019.02.003. | eng |
dcterms.references | Cumming, R.C., Andon, N.L., Haynes, P.A., Park, M., Fischer, W.H., Schubert, D., 2004. Protein disulfide bond formation in the cytoplasm during oxidative stress. J. Biol. Chem. 279, 21749e21758. https://doi.org/10.1074/jbc.M312267200. | eng |
dcterms.references | Cusack, L.K., Smit, E., Kile, M.L., Harding, A.K., 2017. Regional and temporal trends in blood mercury concentrations and fish consumption in women of child bearing Age in the United States using NHANES data from 1999-2010. Environ. Health: A Glob. Access Sci. Source 16, 1e11. https://doi.org/10.1186/s12940-017-0218-4. | eng |
dcterms.references | Debes, F.,Weihe, P., Grandjean, P., 2016. Cognitive deficits at age 22 years associated with prenatal exposure to methylmercury. Cortex 74, 358e369. https://doi.org/ 10.1016/j.cortex.2015.05.017. | eng |
dcterms.references | Draper, H.H., Hadley, M., 1990a. [43] Malondialdehyde determination as index of lipid Peroxidation. Methods Enzymol. 186, 421e431. https://doi.org/10.1016/ 0076-6879(90)86135-I. | eng |
dcterms.references | Draper, H.H., Hadley, M., 1990b. [43] Malondialdehyde determination as index of lipid Peroxidation. Oxygen Radicals in Biological Systems Part B: Oxygen Radicals and Antioxidants, vol. 186. Academic Press, pp. 421e431. https://doi.org/ 10.1016/0076-6879(90)86135-I. | eng |
dcterms.references | Ellman, G.L., 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70e77. https://doi.org/10.1016/0003-9861(59)90090-6. | eng |
dcterms.references | Endo, H., Nito, C., Kamada, H., Nishi, T., Chan, P.H., 2006. Activation of the Akt/ GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J. Cereb. Blood Flow Metab.: Off. J. Int. Soc. Cereb. Blood Flow Metab. 26, 1479e1489. https://doi.org/ 10.1038/sj.jcbfm.9600303. | eng |
dcterms.references | Ernst, E., Thompson Coon, J., 2001. Heavy metals in traditional Chinese medicines: a systematic review. Clin. Pharmacol. Therapeut. 70, 497e504. https://doi.org/ 10.1067/mcp.2001.120249. | eng |
dcterms.references | Espitia-Pérez, P., Albino, S.M., Espitia-Pérez, L., Brango, H., da Rosa, H., Kleber Silveira, A., et al., 2018a. Neurobehavioral and oxidative stress alterations following methylmercury and retinyl palmEspitia-Pérez P, Albino SM, Espitia- Pérez L, Brango H, da Rosa H, Kleber Silveira A, et al. Neurobehavioral and oxidative stress alterations following methylmercury a. NeuroToxicology 69, 164e180. https://doi.org/10.1016/j.neuro.2018.10.004. | eng |
dcterms.references | Espitia-Pérez, P., Albino, S.M., da Rosa, H.T., Silveira, A.K., Espitia-Pérez, L., Brango, H., et al., 2018b. Effects of methylmercury and retinol palmitate coadministration in rats during pregnancy and breastfeeding: metabolic and redox parameters in dams and their offspring. Ecotoxicol. Environ. Saf. 162, 603e615. https://doi.org/10.1016/j.ecoenv.2018.06.093. | eng |
dcterms.references | Faial, K., Deus, R., Deus, S., Neves, R., Jesus, I., Santos, E., et al., 2015. Mercury levels assessment in hair of riverside inhabitants of the Tapajós River, Pará State, Amazon, Brazil: fish consumption as a possible route of exposure. J. Trace Elem. Med. Biol. 30, 66e76. https://doi.org/10.1016/j.jtemb.2014.10.009. | eng |
dcterms.references | Farina, M., Aschner, M., Rocha, J.B.T., 2011. Oxidative stress in MeHg-induced neurotoxicity. Toxicol. Appl. Pharmacol. 256, 405e417. https://doi.org/10.1016/ j.taap.2011.05.001 | eng |
dcterms.references | Fujimura, M., Cheng, J., Zhao, W., 2012. Perinatal exposure to low-dose methylmercury induces dysfunction of motor coordination with decreases in synaptophysin expression in the cerebellar granule cells of rats. Brain Res. 1464, 1e7. https://doi.org/10.1016/j.brainres.2012.05.012. | eng |
dcterms.references | Gasparotto, J., Ribeiro, C.T., da Rosa-Silva, H.T., Bortolin, R.C., Rabelo, T.K., Peixoto, D.O., et al., 2018. Systemic inflammation changes the site of RAGE expression from endothelial cells to neurons in different brain areas. Mol. Neurobiol. https://doi.org/10.1007/s12035-018-1291-6. | eng |
dcterms.references | Gelain, D.P., Pasquali, MA. de B., Caregnato, F.F., Castro, M.A.A., Moreira, J.C.F., 2012. Retinol induces morphological alterations and proliferative focus formation through free radical-mediated activation of multiple signaling pathways. Acta Pharmacol. Sin. 33, 558e567. https://doi.org/10.1038/aps.2011.202. | eng |
dcterms.references | Grandjean, P., Landrigan, P., 2006. Developmental neurotoxicity of industrial chemicals. Lancet 368, 2167e2178. https://doi.org/10.1016/S0140-6736(06) 69665-7. | eng |
dcterms.references | Grotto, D., Barcelos, G.R.M., Valentini, J., Antunes, L.M.G., Angeli, J.P.F., Garcia, S.C., et al., 2009. Low levels of methylmercury induce DNA damage in rats: protective effects of selenium. Arch. Toxicol. 83, 249e254. https://doi.org/10.1007/ s00204-008-0353-3. | eng |
dcterms.references | Grotto, D., Vicentini, J., Friedmann Angeli, J.P., Francisco Latorraca, E., Pontes Monteiro, P.A., Mazzaron Barcelos, G.R., et al., 2011. Evaluation of protective effects of fish oil against oxidative damage in rats exposed to methylmercury. Ecotoxicol. Environ. Saf. 74, 487e493. https://doi.org/10.1016/ j.ecoenv.2010.10.012. | eng |
dcterms.references | Haack, N., Dublin, P., Rose, C.R., 2014. Dysbalance of astrocyte calcium under hyperammonemic conditions. PLoS One 9. https://doi.org/10.1371/journal.- pone.0105832 e105832 | eng |
dcterms.references | Halliwell, B., 2006. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 141, 312e322. https://doi.org/ 10.1104/pp.106.077073. | eng |
dcterms.references | Haykal-Coates, N., Shafer, T.J., Mundy, W.R., Barone, S.J., 1998. Effects of gestational methylmercury exposure on immunoreactivity of specific isoforms of PKC and enzyme activity during post-natal development of the rat brain. Brain Res. Dev. Brain Res. 109, 33e49. | eng |
dcterms.references | Heimfarth, L., Delgado, J., Mignori, M.R., Gelain, D.P., Moreira, J.C.F., Pessoa- Pureur, R., 2017. Developmental neurotoxicity of the hippocampus following in utero exposure to methylmercury: impairment in cell signaling. Arch. Toxicol. 92, 1e15. https://doi.org/10.1007/s00204-017-2042-6. | eng |
dcterms.references | Heimfarth, L., Delgado, J., Mingori, M.R., Moresco, K.S., Pureur, R.P., Gelain, D.P., et al., 2018. Delayed neurochemical effects of prenatal exposure to MeHg in the cerebellum of developing rats. Toxicol. Lett. 284, 161e169. https://doi.org/10.1016/ j.toxlet.2017.12.006. | eng |
dcterms.references | Hertz, L., Song, D., Peng, L., Chen, Y., 2017. Multifactorial effects on different types of brain cells contribute to ammonia toxicity. Neurochem. Res. 42, 721e736. https://doi.org/10.1007/s11064-016-1966-1. | eng |
dcterms.references | Hol, E.M., Pekny, M., 2015. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr. Opin. Cell Biol. 32, 121e130. https://doi.org/10.1016/j.ceb.2015.02.004. | eng |
dcterms.references | Horta, R.N., Kahl, V.F.S., Sarmento, M.D.S., Nunes, M.F.S., Porto, C.R.M., Andrade, VM De, et al., 2016. Protective effects of acerola juice on genotoxicity induced by iron in vivo. Genet. Mol. Biol. 39, 122e128. https://doi.org/10.1590/1678-4685- GMB-2015-0157. | eng |
dcterms.references | Huang, X.-J., Choi, Y.-K., Im, H.-S., Yarimaga, O., Yoon, E., Kim, H.-S., 2006. Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors 6, 756e782. https://doi.org/10.3390/s6070756. | eng |
dcterms.references | Joshi, D., Kumar, M.D., Kumar, S.A., Sangeeta, S., 2014. Reversal of methylmercuryinduced oxidative stress, lipid peroxidation, and DNA damage by the treatment of N-acetyl cysteine: a protective approach. J. Environ. Pathol. Toxicol. Oncol.: Off. Organ Int. Soc. Environ. Toxicol. Canc. 33, 167e182. https://doi.org/ 10.1615/JEnvironPatholToxicolOncol.2014010291. | eng |
dcterms.references | Kabuto, M., 1991. Chronic effects of methylmercury on the urinary excretion of catecholamines and their responses to hypoglycemic stress. Arch. Toxicol. 65, 164e167. https://doi.org/10.1007/bf02034946. | eng |
dcterms.references | Kaercher, L.E., Goldschmidt, F., Paniz, J.N.G., De Moraes Flores, É.M., Dressler, V.L., 2005. Determination of inorganic and total mercury by vapor generation atomic absorption spectrometry using different temperatures of the measurement cell. Spectrochim. Acta B At. Spectrosc. 60, 705e710. https://doi.org/10.1016/ j.sab.2005.03.006. | eng |
dcterms.references | Lawlor, M.A., Alessi, D.R., 2001. PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J. Cell Sci. 114, 2903e2910. | eng |
dcterms.references | Lehnherr, I., 2014. Methylmercury Biogeochemistry: A Review with Special Reference to Arctic Aquatic Ecosystems, vol. 22. https://doi.org/10.1139/er-2013- 0059. | eng |
dcterms.references | Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A.-G., et al., 1990. Determination of carbonyl content in oxidatively modified proteins. In: Oxygen Radicals in Biological Systems Part B: Oxygen Radicals and Antioxidants, vol. 186. Academic Press, pp. 464e478. https://doi.org/10.1016/0076-6879(90) 86141-H [49]. | eng |
dcterms.references | Levine, R.L., Williams, J.A., Stadtman, E.P., Shacter, E., 1994. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 233, 346e357. https://doi.org/10.1016/S0076-6879(94)33040-9. | eng |
dcterms.references | Lowry, Lowry, 1951. Protein assay. J. Biol. Chem. https://doi.org/10.1021/jf1005935. | eng |
dcterms.references | Maqbool, M., Mobashir, M., Hoda, N., 2016. Pivotal role of glycogen synthase kinase- 3: a therapeutic target for Alzheimer’s disease. Eur. J. Med. Chem. 107, 63e81. https://doi.org/10.1016/j.ejmech.2015.10.018. | eng |
dcterms.references | Marcondes, F.K., 2002. Determination of the estrous cycle phases of rats: Some helpful considerations. Braz. J. Biol. 62 (4) https://doi.org/10.1590/S1519- 69842002000400008. | eng |
dcterms.references | Melis, D., Parenti, G., Della Casa, R., Sibilio, M., Romano, A., Di Salle, F., et al., 2004. Brain damage in glycogen storage disease type I. J. Pediatr. 144, 637e642. https://doi.org/10.1016/j.jpeds.2004.02.033. | eng |
dcterms.references | Ménard, C., et al., 2014. Glutamatergic signaling and low prodynorphin expression are associated with intact memory and reduced anxiety in rat models of healthy aging. Front. Aging Neurosci. 6 (81) https://doi.org/10.3389/fnagi.2014.00081. | eng |
dcterms.references | Misra, H.P., Fridovich, I., 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247, 3170e3175. | eng |
dcterms.references | Mizoguchi, K., Yuzurihara, M., Ishige, A., 2002. Chronic stress impairs rotarod performance in rats : implications for depressive state, vol. 71, pp. 79e84. | eng |
dcterms.references | Moriyama, T., Tsujioka, S., Ohira, T., Nonaka, S., Ikeda, H., Sugiura, H., et al., 2008. Effects of reduced food intake on toxicity study parameters in rats. J. Toxicol. Sci. 33, 537e547. https://doi.org/10.2131/jts.33.537. | eng |
dcterms.references | Mortensen, M.E., Caudill, S.P., Caldwell, K.L., Ward, C.D., Jones, R.L., 2014. Total and methyl mercury in whole blood measured for the first time in the U.S. population: NHANES 2011-2012. Environ. Res. 134, 257e264. https://doi.org/10.1016/ j.envres.2014.07.019. | eng |
dcterms.references | Nabi, S., 2014. Toxic E Ects of Mercury. | eng |
dcterms.references | Newland, M.C., Reed, M.N., LeBlanc, A., Donlin,W.D., 2006. Brain and blood mercury and selenium after chronic and developmental exposure to methylmercury. Neurotoxicology (Little Rock) 27, 710e720. https://doi.org/10.1016/ j.neuro.2006.05.007. | eng |
dcterms.references | Newland, M.C., Reile, P.A., 1999. Blood and brain mercury levels after chronic gestational exposure to methylmercury in rats. Toxicol. Sci. 50, 106e116. https://doi.org/10.1093/toxsci/50.1.106. | eng |
dcterms.references | Newland, M.C., Reile, P.A., Langston, J.L., 2004. Gestational exposure to methylmercury retards choice in transition in aging rats. Neurotoxicol. Teratol. 26, 179e194. https://doi.org/10.1016/j.ntt.2003.12.004. | eng |
dcterms.references | NRC, 2011. Guide for the Care and Use of Laboratory Animals. Eight Edition. https:// doi.org/10.1163/1573-3912_islam_DUM_3825. | eng |
dcterms.references | OECD, 2014. Test No. 474: Mammalian Erythrocyte Micronucleus Test. OECD. https://doi.org/10.1787/9789264224292-en. | eng |
dcterms.references | Passos, C.J., et al., 2007. Daily mercury intake in fish-eating populations in the Brazilian Amazon. J. Expo. Sci. Environ. Epidemiol. 18, 76e87. https://doi.org/ 10.1038/sj.jes.7500599. | eng |
dcterms.references | Peixoto, N., et al., 2007. Behavioral alterations induced by HgCl2 depend on the postnatal period of exposure. Int. J. Dev. Neurosci. 25 (1), 39e46. https:// doi.org/10.1016/j.ijdevneu.2006.11.002. | eng |
dcterms.references | Peixoto, N.C., Roza, T., Flores, É.M.M., Pereira, M.E., 2003. Effects of zinc and cadmium on HgCl2-d-ALA-D inhibition and Hg levels in tissues of suckling rats. Toxicol. Lett. 146, 17e25. https://doi.org/10.1016/j.toxlet.2003.08.006. | eng |
dcterms.references | Pieper, I., Wehe, C.A., Bornhorst, J., Ebert, F., Leffers, L., Holtkamp, M., et al., 2014. Mechanisms of Hg species induced toxicity in cultured human astrocytes: genotoxicity and DNA-damage response. Metall: Integr. Biometal Sci. 6, 662e671. https://doi.org/10.1039/c3mt00337j. | eng |
dcterms.references | Prystupa, A., Bła_zewicz, A., Kici nski, P., Sak, J.J., Niedziałek, J., Załuska, W., 2016. Serum concentrations of selected heavy metals in patients with alcoholic liver cirrhosis from the lublin region in eastern Poland. Int. J. Environ. Res. Public Health 13. https://doi.org/10.3390/ijerph13060582. | eng |
dcterms.references | Puente, E.C., Silverstein, J., Bree, A.J., Musikantow, D.R., Wozniak, D.F., Maloney, S., et al., 2010. Recurrent moderate hypoglycemia ameliorates brain damage and cognitive dysfunction induced by severe hypoglycemia. Diabetes 59, 1055e1062. https://doi.org/10.2337/db09-1495. | eng |
dcterms.references | Rajasekaran, K., 2000. Effects of combined exposure to aluminium and ethanol on food intake , motor behaviour and a few biochemical parameters in pubertal rats, vol. 9, pp. 25e30. | eng |
dcterms.references | Rao, M.V., Sharma, P.S., 2001. Protective effect of vitamin E against mercuric chloride reproductive toxicity in male mice. Reprod. Toxicol. 15, 705e712. | eng |
dcterms.references | Rasinger, J.D., Lundebye, A.-K., Penglase, S.J., Ellingsen, S., Amlund, H., 2017. Methylmercury induced neurotoxicity and the influence of selenium in the brains of adult zebrafish (Danio rerio). Int. J. Mol. Sci. 18, 725. https://doi.org/10.3390/ ijms18040725. | eng |
dcterms.references | Rice, K.M., EMW, Jr, Wu, M., Gillette, C., Blough, E.R., 2014. Environmental Mercury and its Toxic Effects, pp. 74e83. | eng |
dcterms.references | Ristow, M., Schmeisser, K., 2014. Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose-Response : A Publication of International Hormesis Society 12, 288e341. https://doi.org/10.2203/ dose-response.13-035. Ristow. | eng |
dcterms.references | Roegge, C.S., Morris, J.R., Villareal, S., Wang, V.C., Powers, B.E., Klintsova, A.Y., et al., 2006. Purkinje cell and cerebellar effects following developmental exposure to PCBs and/or MeHg. Neurotoxicol. Teratol. 28, 74e85. https://doi.org/10.1016/ j.ntt.2005.10.001. | eng |
dcterms.references | Roegge, C.S., Wang, V.C., Powers, B.E., Klintsova, A.Y., Villareal, S., Greenough, W.T., et al., 2011. NIH public access. Arch. Toxicol. 25, 1074e1082. https://doi.org/ 10.1016/j.brainres.2010.11.042. | eng |
dcterms.references | Roegge, C.S., Wang, V.C., Powers, B.E., Klintsova, A.Y., Villareal, S., Greenough, W.T., et al., 2004. Motor impairment in rats exposed to PCBs and methylmercury during early development. Toxicol. Sci. 77, 315e324. https://doi.org/10.1093/ toxsci/kfg252. | eng |
dcterms.references | Ruszkiewicz, J.A., Bowman, A.B., Farina, M., Rocha, J.B.T., Aschner, M., 2016. Sex- and structure-specific differences in antioxidant responses to methylmercury during early development. NeuroToxicology 56, 118e126. https://doi.org/10.1016/ j.neuro.2016.07.009. | eng |
dcterms.references | Sakamoto, M., Tatsuta, N., Chan, H.M., Domingo, J.L., Murata, K., Nakai, K., 2018. Brain methylmercury uptake in fetal, neonate, weanling, and adult rats. Environ. Res. 167, 15e20. https://doi.org/10.1016/j.envres.2018.06.038. | eng |
dcterms.references | Salvaterra, P., Massaro, E.J., Morganti, J.B., Lown, B.A., 1975. Time-dependent tissue/ organ uptake and distribution of 203Hg in mice exposed to multiple sublethal doses of methyl mercury. Toxicol. Appl. Pharmacol. 32, 432e442. https:// doi.org/10.1016/0041-008x(75)90233-1. | eng |
dcterms.references | Sarbassov, D.D., Sabatini, D.M., 2005. Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex. J. Biol. Chem. 280, 39505e39509. https://doi.org/10.1074/jbc.M506096200. | eng |
dcterms.references | Schliess, F., G€org, B., H€aussinger, D., 2009. RNA oxidation and zinc in hepatic encephalopathy and hyperammonemia. Metab. Brain Dis. 24, 119e134. https:// doi.org/10.1007/s11011-008-9125-2. | eng |
dcterms.references | Schnorr, C.E., Bittencourt, L. da S., Petiz, L.L., Gelain, D.P., Zeidán-Chuliá, F., Moreira, J.C.F., 2015. Chronic retinyl palmitate supplementation to middle-aged Wistar rats disrupts the brain redox homeostasis and induces changes in emotional behavior. Mol. Nutr. Food Res. 59, 979e990. https://doi.org/10.1002/ mnfr.201400637. | eng |
dcterms.references | Schnorr, C.E., Morrone, M.D.S., Weber, M.H., Lorenzi, R., Behr, G.A., Moreira, J.C.F., 2011. The effects of vitamin A supplementation to rats during gestation and lactation upon redox parameters: increased oxidative stress and redox modulation in mothers and their offspring. Food Chem. Toxicol. 49, 2645e2654. https://doi.org/10.1016/j.fct.2011.07.010. | eng |
dcterms.references | Schnorr, C.E., da Silva Morrone, M., Sim~oes-Pires, A., da Silva Bittencourt, L., Zeidán- Chuliá, F., Moreira, J.C.F., 2014. Supplementation of adult rats with moderate amounts of ??-carotene modulates the redox status in plasma without exerting pro-oxidant effects in the brain: a safer alternative to food fortification with vitamin A? Nutrients 6, 5572e5582. https://doi.org/10.3390/nu6125572. | eng |
dcterms.references | Segade, S.R., Tyson, J.F., 2003. Determination of inorganic mercury and total mercury in biological and environmental samples by flow injection-cold vaporatomic absorption spectrometry using sodium borohydride as the sole reducing agent. Spectrochim. Acta B At. Spectrosc. 58, 797e807. https://doi.org/10.1016/ S0584-8547(03)00015-6. | eng |
dcterms.references | Seira, O., Del Rio, J.A., 2014. Glycogen synthase kinase 3 beta (GSK3beta) at the tip of neuronal development and regeneration. Mol. Neurobiol. 49, 931e944. https:// doi.org/10.1007/s12035-013-8571-y. | eng |
dcterms.references | Sharma, M.K., Kumar, M., Kumar, A., 2005. Protection against mercury-induced renal damage in Swiss albino mice by. Ocimum sanctum 19, 161e167. https:// doi.org/10.1016/j.etap.2004.06.002. | eng |
dcterms.references | da Silva, A.L.G., da Rosa, H.T., Charlier, C.F., Salvador, M., Moura, D.J., Valim, A.R.M., et al., 2013. DNA damage and oxidative stress in patients with chronic obstructive pulmonary disease. Open Biomark. J. 6 https://doi.org/10.2174/ 1875318301306010001 | eng |
dcterms.references | Da Silva, D.A.F., Barbosa, F., Scarano, W.R., 2012. Oral exposure to methylmercury modifies the prostatic microenvironment in adult rats. Int. J. Exp. Pathol. 93, 354e360. https://doi.org/10.1111/j.1365-2613.2012.00825.x. | eng |
dcterms.references | Singh, N.P., McCoy, M.T., Tice, R.R., Schneider, E.L., 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184e191. https://doi.org/10.1016/0014-4827(88)90265-0. | eng |
dcterms.references | Sitia, R., Molteni, S.N., 2004. Stress, protein (Mis)folding, and signaling: the redox connection. Sci. Signal. 2004 https://doi.org/10.1126/stke.2392004pe27 pe27epe27. | eng |
dcterms.references | Snell, K., Ashby, S.L., Barton, S.J., 1977. Disturbances of perinatal carbohydrate metabolism in rats exposed to methylmercury in utero. Toxicology 8, 277e283. https://doi.org/10.1016/0300-483x(77)90076-2. | eng |
dcterms.references | Song, Y.S., Narasimhan, P., Kim, G.S., Jung, J.E., Park, E.-H., Chan, P.H., 2008. The role of Akt signaling in oxidative stress mediates NF-kappaB activation in mild transient focal cerebral ischemia. J. Cereb. Blood Flow Metab.: Off. J. Int. Soc. Cereb. Blood Flow Metab. 28, 1917e1926. https://doi.org/10.1038/ jcbfm.2008.80. | eng |
dcterms.references | Stokes-Riner, A., Thurston, S.W., Myers G, J., Duffy, E.M., Wallace, J., Bonham, M., et al., 2011. A longitudinal analysis of prenatal exposure to methylmercury and fatty acids in the Seychelles. Neurotoxicol. Teratol. 33, 325e328. https://doi.org/ 10.1016/j.ntt.2010.11.003. | eng |
dcterms.references | Stringari, J., Nunes, A.K.C., Franco, J.L., Bohrer, D., Garcia, S.C., Dafre, A.L., et al., 2008. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol. Appl. Pharmacol. 227, 147e154. https://doi.org/10.1016/j.taap.2007.10.010. | eng |
dcterms.references | Takei, N., Nawa, H., 2014. mTOR signaling and its roles in normal and abnormal brain development. Front. Mol. Neurosci. 7, 28. https://doi.org/10.3389/ fnmol.2014.00028. | eng |
dcterms.references | Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012. Heavy metal toxicity and the environment. Exp. Suppl. 101, 133e164. https://doi.org/10.1007/978-3- 7643-8340-4_6, 2012. | eng |
dcterms.references | Uranga, R.M., Katz, S., Salvador, G.A., 2013. Enhanced phosphatidylinositol 3-kinase (PI3K)/Akt signaling has pleiotropic targets in hippocampal neurons exposed to iron-induced oxidative stress. J. Biol. Chem. 288, 19773e19784. https://doi.org/ 10.1074/jbc.M113.457622. | eng |
dcterms.references | USEPA, 2000. EPA/823/B-97/009. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Vol 2, Risk Assessment and Fish Consumption Limits, third ed., vol. 2. Office of Science and Technology and Office of Water, Washington, DC. EPA 823-B-00-008. | eng |
dcterms.references | Vendite, D.,Wofchuk, S., Souza, D.O., 1985. Effects of undernutrition during suckling on footshock escape behavior and on related neurochemical parameters in rats. J. Nutr. 115, 1418e1424. | eng |
dcterms.references | Vicente, É., Boer, M., Netto, C., Fochesatto, C., Dalmaz, C., Rodrigues Siqueira, I., et al., 2004. Hippocampal antioxidant system in neonates from methylmercuryintoxicated rats. Neurotoxicol. Teratol. 26, 817e823. https://doi.org/10.1016/ j.ntt.2004.08.003. | eng |
dcterms.references | Wendel, A., 1981. Glutathione peroxidase. Methods Enzymol. 77, 325e333. https:// doi.org/10.1016/S0076-6879(81)77046-0. | eng |
dcterms.references | Winnick, J.J., Kraft, G., Gregory, J.M., Edgerton, D.S., Williams, P., Hajizadeh, I.A., et al., 2016. Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis. J. Clin. Investig. 126, 2236e2248. https://doi.org/10.1172/ JCI79895. | eng |
dcterms.references | Winterbourn, C.C., Metodiewa, D., 1999. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 27, 322e328. https://doi.org/10.1016/S0891-5849(99)00051-9. | eng |
dcterms.references | World Health Organization, 2005. Mercury in Health Care. WORLD HEALTH ORGANIZATION. | eng |
dcterms.references | Xu, C., Liu, C., Liu, L., Zhang, R., Zhang, H., Chen, S., et al., 2015. Rapamycin prevents cadmium-induced neuronal cell death via targeting both mTORC1 and mTORC2 pathways. Neuropharmacology 97, 35e45. https://doi.org/10.1016/ j.neuropharm.2015.05.008. | eng |
dcterms.references | Xu, X., Mathieu, C., Boitard, S.E., Dairou, J., Dupret, J.-M., Agbulut, O., et al., 2014. Skeletal muscle glycogen phosphorylase is irreversibly inhibited by mercury: molecular, cellular and kinetic aspects. FEBS (Fed. Eur. Biochem. Soc.) Lett. 588, 138e142. https://doi.org/10.1016/j.febslet.2013.11.021. | eng |
dcterms.references | Yadetie, F., Bjorneklett, S., Garberg, H.K., Oveland, E., Berven, F., Goksoyr, A., et al., 2016. Quantitative analyses of the hepatic proteome of methylmercury-exposed Atlantic cod (Gadus morhua) suggest oxidative stress-mediated effects on cellular energy metabolism. BMC Genomics 17, 554. https://doi.org/10.1186/ s12864-016-2864-2. | eng |
dcterms.references | Yu, J.S.L., Cui,W., 2016. Proliferation, survival and metabolism: the role of PI3K/AKT/ mTOR signalling in pluripotency and cell fate determination. Development 143, 3050e3060. https://doi.org/10.1242/dev.137075. | eng |
dcterms.references | Zarrindast, M.-R., Khakpai, F., 2015. The modulatory role of dopamine in anxietylike behavior. Arch. Iran. Med. 18, 591e603 doi:0151809/AIM.009. | eng |
dcterms.references | Zhang, Y., Yang, J.-H., 2013. Activation of the PI3K/Akt pathway by oxidative stress mediates high glucose-induced increase of adipogenic differentiation in primary rat osteoblasts. J. Cell. Biochem. 114, 2595e2602. https://doi.org/10.1002/ jcb.24607. | eng |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 381 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: