Intrinsic and environmental basis of aging: A narrative review
datacite.rights | http://purl.org/coar/access_right/c_abf2 | eng |
dc.contributor.author | Navarro, Carla | |
dc.contributor.author | Salazar, Juan | |
dc.contributor.author | Díaz, María P. | |
dc.contributor.author | Chacin, Maricarmen | |
dc.contributor.author | Santeliz, Raquel | |
dc.contributor.author | Vera, Ivana | |
dc.contributor.author | D'Marco, Luis | |
dc.contributor.author | Parra, Heliana | |
dc.contributor.author | Bernal, Mary Carlota | |
dc.contributor.author | Castro, Ana | |
dc.contributor.author | Escalona, Daniel | |
dc.contributor.author | García-Pacheco, Henry | |
dc.contributor.author | Bermúdez, Valmore | |
dc.date.accessioned | 2023-09-07T19:54:17Z | |
dc.date.available | 2023-09-07T19:54:17Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Longevity has been a topic of interest since the beginnings of humanity, yet its aetiology and precise mechanisms remain to be elucidated. Aging is currently viewed as a physiological phenomenon characterized by the gradual degeneration of organic physiology and morphology due to the passage of time where both external and internal stimuli intervene. The influence of intrinsic factors, such as progressive telomere shortening, genome instability due to mutation buildup, the direct or indirect actions of age-related genes, and marked changes in epigenetic, metabolic, and mitochondrial patterns constitute a big part of its underlying endogenous mechanisms. On the other hand, several psychosocial and demographic factors, such as diet, physical activity, smoking, and drinking habits, may have an even more significant impact on shaping the aging process. Consequentially, implementing dietary and exercise patterns has been proposed as the most viable alternative strategy for attenuating the most typical degenerative aging changes, thus increasing the likelihood of prolonging lifespan and achieving successful aging. | eng |
dc.format.mimetype | eng | |
dc.identifier.doi | https://doi.org/10.1016/j.heliyon.2023.e18239 | |
dc.identifier.issn | 24058440 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/13249 | |
dc.language.iso | eng | eng |
dc.publisher | Elsevier Ltd. | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Heliyon | eng |
dc.source | Volume 9, Issue 8 (2023) | |
dc.subject | Aging | eng |
dc.subject | Telomeres | eng |
dc.subject | Telomerase | eng |
dc.subject | Obesity | eng |
dc.subject | Chronic diseases | eng |
dc.subject | Age-related genes | eng |
dc.title | Intrinsic and environmental basis of aging: A narrative review | eng |
dc.type.driver | info:eu-repo/semantics/article | eng |
dc.type.spa | Artículo científico | spa |
dcterms.references | A. Poças, E. Soukiazis, M. Antunes, Factors explaining life expectancy at age 65: a panel data approach applied to European union countries, Soc. Indic. Res. 150 (1) (2020) 265–288, el 1 de julio de. | eng |
dcterms.references | H. Beltran-Sánchez, E.M. Crimmins, C.E. Finch, Early cohort mortality predicts the rate of aging in the cohort: a historical analysis, J. Develop. Orig. Heal. Dis. 3 (5) (2012) 380–386, octubre de. | eng |
dcterms.references | G.A. Mensah, G.S. Wei, P.D. Sorlie, L.J. Fine, Y. Rosenberg, P.G. Kaufmann, et al., Decline in cardiovascular mortality: possible causes and implications, Circ. Res. 120 (2) (2017) 366–380, el 20 de enero de | eng |
dcterms.references | R. Guthold, G.A. Stevens, L.M. Riley, F.C. Bull, Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1⋅9 million participants, Lancet Glob. Heal. 6 (10) (2018) e1077–e1086, el 1 de octubre de. | eng |
dcterms.references | S. Stenholm, J. Head, M. Kivimaki, I. Kawachi, V. Aalto, M. Zins, et al., Smoking, physical inactivity and obesity as predictors of healthy and disease-free life expectancy between ages 50 and 75: a multicohort study, Int. J. Epidem. 45 (4) (2016) 1260–1270, el 1 de agosto de. | eng |
dcterms.references | M. Abdelaal, C.W. le Roux, N.G. Docherty, Morbidity and mortality associated with obesity, Ann. Trans. Med. 5 (7) (2017) 161, abril de. | eng |
dcterms.references | N.K. Mehta, L.R. Abrams, M. Myrskyl¨ a, US life expectancy stalls due to cardiovascular disease, not drug deaths, PNAS 117 (13) (2020) 6998–7000, el 31 de marzo de. | eng |
dcterms.references | E. Jaul, J. Barron, Age-related diseases and clinical and public health implications for the 85 Years old and over population, Front. Public Health 5 (2017) 335. | eng |
dcterms.references | J.Y. Ho, A.S. Hendi, Recent trends in life expectancy across high income countries: retrospective observational study [Internet]. el 15 de agosto de, BMJ (2018) [citado el 1 de junio de 2021]; 362. Disponible en, https://www.bmj.com/content/362/bmj.k2562. | eng |
dcterms.references | E.M. Crimmins, Lifespan, Healthspan, Past, present, and promise, Gerontologist 55 (6) (2015) 901–911, diciembre de. | eng |
dcterms.references | K. Christensen, G. Doblhammer, R. Rau, J.W. Vaupel, Ageing populations: the challenges ahead, Lancet 374 (9696) (2009) 1196–1208, el 3 de octubre de | eng |
dcterms.references | D.P. Goldman, D. Cutler, J.W. Rowe, P.-C. Michaud, J. Sullivan, D. Peneva, et al., Substantial health and economic returns from delayed aging may warrant a new focus for medical research, Health Aff. (Millwood) 32 (10) (2013) 1698–1705, octubre de. | eng |
dcterms.references | M.J. Prince, F. Wu, Y. Guo, L.M.G. Robledo, M. O’Donnell, R. Sullivan, et al., The burden of disease in older people and implications for health policy and practice, The Lancet 385 (9967) (2015) 549–562, el 7 de febrero de | eng |
dcterms.references | M. Kyriazis, Ageing throughout history: the evolution of human lifespan, J. Mol. Evol. 88 (1) (2020) 57–65, enero de. | eng |
dcterms.references | J.J. Carmona, S. Michan, Biology of healthy aging and longevity, Rev. Invest. Clin. 68 (1) (2016) 7–16, febrero de. | eng |
dcterms.references | D. Melzer, L.C. Pilling, L. Ferrucci, The genetics of human ageing, Nat. Rev. Genet. 21 (2) (2020) 88–101, febrero de | eng |
dcterms.references | A. Bektas, S.H. Schurman, R. Sen, L. Ferrucci, Aging, inflammation and the environment, Exp. Gerontol. 105 (2018) 10–18, mayo de | eng |
dcterms.references | M. Ogrodnik, H. Salmonowicz, V.N. Gladyshev, Integrating cellular senescence with the concept of damage accumulation in aging: relevance for clearance of senescent cells, Aging Cell 18 (1) (2019), e12841 febrero de. | eng |
dcterms.references | M. Chung, M. Ruan, N. Zhao, D.C. Koestler, I. De Vivo, K.T. Kelsey, et al., DNA methylation ageing clocks and pancreatic cancer risk: pooled analysis of three prospective nested case-control studies, Epigenetics (2021) 1–11, el 7 de enero de. | eng |
dcterms.references | P.A. Irizar, S. Schauble, D. Esser, M. Groth, C. Frahm, S. Priebe, et al., Publisher Correction: transcriptomic alterations during ageing reflect the shift from cancer to degenerative diseases in the elderly, Nat Commun. 10 (1) (2019) 2459, el 31 de mayo de. | eng |
dcterms.references | G.G. Dorighello, B.A. Paim, A.C.R. Leite, A.E. Vercesi, H.C.F. Oliveira, Spontaneous experimental atherosclerosis in hypercholesterolemic mice advances with ageing and correlates with mitochondrial reactive oxygen species, Exp Gerontol. 109 (2018) 47–50, agosto de. | eng |
dcterms.references | F. Paneni, C. Diaz Canestro, ˜ P. Libby, T.F. Lüscher, G.G. Camici, The aging cardiovascular system: understanding it at the cellular and clinical levels, J. Am. Coll. Cardiol. 69 (15) (2017) 1952–1967, el 18 de abril de | eng |
dcterms.references | Y. Hou, X. Dan, M. Babbar, Y. Wei, S.G. Hasselbalch, D.L. Croteau, et al., Ageing as a risk factor for neurodegenerative disease, Nat. Rev. Neurol. 15 (10) (2019) 565–581, octubre de. | eng |
dcterms.references | T.J. Collier, N.M. Kanaan, J.H. Kordower, Aging and Parkinson’s disease: different sides of the same coin? Mov Disord. 32 (7) (2017) 983–990, julio de | eng |
dcterms.references | T. Li, Y.C. Yang, J.J. Anderson, Mortality increase in late-middle and early-old age: heterogeneity in death processes as a new explanation, Demography 50 (5) (2013) 1563–1591, octubre de. | eng |
dcterms.references | P.V. Sergiev, O.A. Dontsova, G.V. Berezkin, Theories of aging: an ever-evolving field, Acta Naturae 7 (1) (2015) 9–18, marzo de. | eng |
dcterms.references | J.P. da Costa, R. Vitorino, G.M. Silva, C. Vogel, A.C. Duarte, T. Rocha-Santos, A synopsis on aging-Theories, mechanisms and future prospects, Ageing Res Rev. 29 (2016) 90–112, agosto de. | eng |
dcterms.references | Z.G. Turan, P. Parvizi, H.M. Donertas, J. Tung, P. Khaitovich, M. Somel, Molecular footprint of Medawar’s mutation accumulation process in mammalian aging, Aging Cell 18 (4) (2019), e12965 agosto de | eng |
dcterms.references | S.N. Austad, J.M. Hoffman, Is antagonistic pleiotropy ubiquitous in aging biology? Evol. Med. Pub. Heal. 2018 (1) (2018) 287–294. | eng |
dcterms.references | A. Podlutsky, Running out of developmental program and selfish anti-aging: a new hypothesis explaining the aging process in primates, Geroscience 41 (2) (2019) 243–253, abril de | eng |
dcterms.references | A.A. Moskalev, A.M. Aliper, Z. Smit-McBride, A. Buzdin, A. Zhavoronkov, Genetics and epigenetics of aging and longevity, Cell Cycle 13 (7) (2014) 1063–1077 | eng |
dcterms.references | B.J. Morris, B.J. Willcox, T.A. Donlon, Genetic and epigenetic regulation of human aging and longevity, Biochim. Biophys. Acta Mol. Basis Dis. 1865 (7) (2019) 1718–1744, el 1 de julio de. | eng |
dcterms.references | A. Bartke, Growth hormone and aging: updated review, World J. Mens Health 37 (1) (2019) 19–30, enero de. | eng |
dcterms.references | K. Kim, H.K. Choe, Role of hypothalamus in aging and its underlying cellular mechanisms, Mech. Ageing Dev. 177 (2019) 74–79, enero de. | eng |
dcterms.references | A.A. Johnson, M.N. Shokhirev, B. Shoshitaishvili, Revamping the evolutionary theories of aging, Ageing Res. Rev. 55 (2019) 100947, noviembre de. | eng |
dcterms.references | J. Meng, Z. Lv, X. Qiao, X. Li, Y. Li, Y. Zhang, et al., The decay of Redox-stress Response Capacity is a substantive characteristic of aging: revising the redox theory of aging, Redox Biol. 11 (2017) 365–374, abril de | eng |
dcterms.references | L.C.D. Pomatto, K.J.A. Davies, Adaptive homeostasis and the free radical theory of ageing, Free Radic. Biol. Med. 124 (2018) 420–430, el 20 de agosto de. | eng |
dcterms.references | J.R. Aunan, M.M. Watson, H.R. Hagland, K. Søreide, Molecular and biological hallmarks of ageing, Br. J. Surg. 103 (2) (2016) e29–e46, enero de. | eng |
dcterms.references | T. Flatt, L. Partridge, Horizons in the evolution of aging, BMC Biol. 16 (1) (2018) 93, el 20 de agosto de. | eng |
dcterms.references | C. Lopez-Otín, M.A. Blasco, L. Partridge, M. Serrano, G. Kroemer, The hallmarks of aging, Cell 153 (6) (2013) 1194–1217, el 6 de junio de. | eng |
dcterms.references | L.J. Niedernhofer, A.U. Gurkar, Y. Wang, J. Vijg, J.H.J. Hoeijmakers, P.D. Robbins, Nuclear genomic instability and aging, Annu. Rev. Biochem. 87 (2018) 295–322, el 20 de junio de. | eng |
dcterms.references | Y. Zhu, X. Liu, X. Ding, F. Wang, X. Geng, Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction, Biogerontology 20 (1) (2019) 1–16, febrero de. | eng |
dcterms.references | K. Whittemore, E. Vera, E. Martínez-Nevado, C. Sanpera, M.A. Blasco, Telomere shortening rate predicts species life span, Proc. Nat. Acad. Sci. U S A 116 (30) (2019) 15122–15127, el 23 de julio de. | eng |
dcterms.references | P. Sen, P.P. Shah, R. Nativio, S.L. Berger, Epigenetic mechanisms of longevity and aging, Cell 166 (4) (2016) 822–839, el 11 de agosto de. | eng |
dcterms.references | P. D’Aquila, Epigenetics And Aging, 2013, p. 7. | eng |
dcterms.references | A. Trusina, Stress induced telomere shortening: longer life with less mutations? BMC Sys. Biol. 8 (2014) 27, el 1 de marzo de. | eng |
dcterms.references | S. van der Rijt, M. Molenaars, R.L. McIntyre, G.E. Janssens, R.H. Houtkooper, Integrating the hallmarks of aging throughout the tree of life: a focus on mitochondrial dysfunction, Front Cell Dev. Biol. 8 (2020) 594416, el 26 de noviembre de. | eng |
dcterms.references | J.Y. Jang, A. Blum, J. Liu, T. Finkel, The role of mitochondria in aging, J. Clin. Invest. 128 (9) (2018) 3662–3670, el 31 de agosto de. | eng |
dcterms.references | A.R. Brooks-Wilson, Genetics of healthy aging and longevity, Hum. Genet. 132 (12) (2013) 1323–1338. | eng |
dcterms.references | B.D. Van Raa Piening, J. Lovejoy, J.C. Earls, Ageotypes: distinct biomolecular trajectories in human aging, Trends Pharmacol. Sci. 41 (2020) 299–301, https:// doi.org/10.1016/j.tips.2020.02.003. | eng |
dcterms.references | S. Ahadi, W. Zhou, S.M. Schüssler-Fiorenza Rose, M.R. Sailani, K. Contrepois, M. Avina, et al., Personal aging markers and ageotypes revealed by deep longitudinal profiling, Nat. Med. 26 (2020) 83–90, https://doi.org/10.1038/s41591-019-0719-5 | eng |
dcterms.references | msdonk Jm, Mechanisms underlying longevity: a genetic switch model of aging, Exp. Gerontol. 107 (2018) 136–139, el 1 de julio de. | eng |
dcterms.references | A.K. Koliada, D.S. Krasnenkov, A.M. Vaiserman, Telomeric aging: mitotic clock or stress indicator? [Internet]. el 16 de marzo de, Front. Genet. (2015) 6. Disponible en, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4360757/. | eng |
dcterms.references | Z. Wang, D.B. Rhee, J. Lu, C.T. Bohr, F. Zhou, H. Vallabhaneni, et al., Characterization of oxidative guanine damage and repair in mammalian telomeres [Internet]. el 13 de mayo de, PLoS Genet. (5) (2010) 6. Disponible en, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869316/. | eng |
dcterms.references | Z. Wang, D.B. Rhee, J. Lu, C.T. Bohr, F. Zhou, H. Vallabhaneni, et al., Characterization of oxidative guanine damage and repair in mammalian telomeres [Internet]. el 13 de mayo de, PLoS Genet. (5) (2010) 6. Disponible en, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869316/. | eng |
dcterms.references | M.P. Razgonova, A.M. Zakharenko, K.S. Golokhvast, M. Thanasoula, E. Sarandi, K. Nikolouzakis, et al., Telomerase and telomeres in aging theory and chronographic aging theory, Mol. Med. Rep. 22 (3) (2020) 1679–1694, septiembre de. | eng |
dcterms.references | A. Vaiserman, D. Krasnienkov, Telomere length as a marker of biological age: state-of-the-art, open issues, and future perspectives [Internet], Front. Genet. (2021) [citado el 6 de junio de 2021];11. Disponible en, https://www.frontiersin.org/articles/10.3389/fgene.2020.630186/full#h6. | eng |
dcterms.references | E. Coluzzi, S. Leone, A. Sgura, Oxidative stress induces telomere dysfunction and senescence by replication fork arrest [Internet]. el 3 de enero de, Cells (1) (2019) 8. Disponible en, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356380/. | eng |
dcterms.references | E. Coluzzi, M. Colamartino, R. Cozzi, S. Leone, C. Meneghini, N. O’Callaghan, et al., Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells [Internet]. el 29 de octubre de, PLoS One (10) (2014) 9. Disponible en, https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4212976/. | eng |
dcterms.references | J.-H. Chen, C.N. Hales, S.E. Ozanne, DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res. 35 (22) (2007) 7417–7428, diciembre de. | eng |
dcterms.references | M.A. Petr, T. Tulika, L.M. Carmona-Marin, M. Scheibye-Knudsen, Protecting the aging genome, Trends Cell Biol. 30 (2) (2020) 117–132, el 1 de febrero de. | eng |
dcterms.references | O.A. Sedelnikova, I. Horikawa, D.B. Zimonjic, N.C. Popescu, W.M. Bonner, J.C. Barrett, Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks, Nat Cell Biol. 6 (2) (2004) 168–170, febrero de. | eng |
dcterms.references | R. Mostoslavsky, K.F. Chua, D.B. Lombard, W.W. Pang, M.R. Fischer, L. Gellon, et al., Genomic instability and aging-like phenotype in the absence of mammalian SIRT6, Cell 124 (2) (2006) 315–329, el 27 de enero de. | eng |
dcterms.references | B. Debrabant, M. Soerensen, F. Flachsbart, S. Dato, J. Mengel-From, T. Stevnsner, et al., Human longevity and variation in DNA damage response and repair: study of the contribution of sub-processes using competitive gene-set analysis, Eur. J. Hum. Gen. 22 (9) (2014) 1131–1136, septiembre de. | eng |
dcterms.references | O. Altintas, S. Park, S.-J.V. Lee, The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster, BMB Rep. 49 (2) (2016) 81–92, el 29 de febrero de. | eng |
dcterms.references | D. van Heemst, Insulin, IGF-1 and longevity, Ageing Dis. 1 (2) (2010) 147–157, el 26 de agosto de. | eng |
dcterms.references | A. Bartke, J. Darcy, GH and ageing: pitfalls and new insights, Best Pract. b.Res. Clin. Endocrinol. Metab 31 (1) (2017) 113–125, febrero de. | eng |
dcterms.references | A.F. Bokov, N. Garg, Y. Ikeno, S. Thakur, N. Musi, R.A. DeFronzo, et al., Does reduced IGF-1R signaling in Igf1r +/ mice alter aging? [Internet]. el 23 de noviembre de, PLoS One (11) (2011) 6. Disponible en, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223158/. | eng |
dcterms.references | ] K. Mao, G.F. Quipildor, T. Tabrizian, A. Novaj, F. Guan, R.O. Walters, et al., Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice, Nat. Commun. 9 (1) (2018) 1–12, el 19 de junio de. | eng |
dcterms.references | Y. Suh, G. Atzmon, M.-O. Cho, D. Hwang, B. Liu, D.J. Leahy, et al., Functionally significant insulin-like growth factor I receptor mutations in centenarians, Proc. Natl. Acad. Sci. U S A. 105 (9) (2008) 3438–3442, el 4 de marzo de. | eng |
dcterms.references | S. H¨agg, J. Jylh¨av¨a, Sex differences in biological aging with a focus on human studies, Elife 10 (2021 May 13), e63425, https://doi.org/10.7554/eLife.63425 | eng |
dcterms.references | R. Martins, G.J. Lithgow, W. Link, Long live FOXO: unraveling the role of FOXO proteins in aging and longevity, Ageing Cell 15 (2) (2016) 196–207, abril de. | eng |
dcterms.references | P. Sanese, G. Forte, V. Disciglio, V. Grossi, C. Simone, FOXO3 on the road to longevity: lessons from SNPs and chromatin hubs, Comp. Stru. Biotech. J. 17 (2019) 737–745, el 13 de junio de. | eng |
dcterms.references | J.-M. Bao, X.-L. Song, Y.-Q. Hong, H.-L. Zhu, C. Li, T. Zhang, et al., Association between FOXO3A gene polymorphisms and human longevity: a meta-analysis, Asian J. Androl. 16 (3) (2014) 446–452. | eng |
dcterms.references | F. Flachsbart, J. Dose, L. Gentschew, C. Geismann, A. Caliebe, C. Knecht, et al., Identification and characterisation of two functional variants in the human longevity gene FOXO3, Nat. Commun. 8 (1) (2017) 1–12, el 12 de diciembre de. | eng |
dcterms.references | P. Garagnani, J. Marquis, M. Delledonne, C. Pirazzini, E. Marasco, K.M. Kwiatkowska, et al., Whole-genome sequencing analysis of semi-supercentenarians. eLife [Internet]. 10. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096429/. | eng |
dcterms.references | Y.J. Kim, H.S. Kim, Y.R. Seo, Genomic approach to understand the association of DNA repair with longevity and healthy aging using genomic databases of oldest-old population [Internet]. el 3 de mayo de, Oxid. Med. Cell. Longev. (2018) 2018. Disponible en, https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC5960555/. | eng |
dcterms.references | C. Giuliani, P. Garagnani, C. Franceschi, Genetics of human longevity within an eco-evolutionary nature-nurture framework, Circ. Res. 123 (2018) 745–772. | eng |
dcterms.references | M. Revelas, A. Thalamuthu, C. Oldmeadow, T.J. Evans, N.J. Armstrong, J.B. Kwok, et al., Review and meta-analysis of genetic polymorphisms associated with exceptional human longevity, Mech. Ageing Dev. 175 (2018 Oct) 24–34, https://doi.org/10.1016/j.mad.2018.06.002. | eng |
dcterms.references | I. Reinvang, T. Espeseth, L. Westlye, APOE-related biomarker profiles in non-pathological aging and early phases of Alzheimer’s disease, Neurosci. Biobehav. Rev. 37 (8) (2013) 1322–1335, el 1 de septiembre de. | eng |
dcterms.references | H.N. Yassine, C.E. Finch, APOE alleles and diet in brain ageing and alzheimer’s disease [Internet], Front. Age. Neurosci. (2020) [citado el 6 de junio de 2021]; 12. Disponible en, https://www.frontiersin.org/articles/10.3389/fnagi.2020.00150/full. | eng |
dcterms.references | A. Montagne, D.A. Nation, A.P. Sagare, G. Barisano, M.D. Sweeney, A. Chakhoyan, et al., APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline, Nature 581 (7806) (2020) 71–76, mayo de. | eng |
dcterms.references | F. Bonomini, F. Filippini, T. Hayek, M. Aviram, S. Keidar, L.F. Rodella, et al., Apolipoprotein E and its role in aging and survival, Exp. Gerontol. 45 (2) (2010) 149–157, febrero de. | eng |
dcterms.references | M. Shinohara, T. Kanekiyo, L. Yang, D. Linthicum, M. Shinohara, Y. Fu, et al., APOE2 eases cognitive decline during aging: clinical and preclinical evaluations, Ann. Neurol. 79 (5) (2016) 758–774, mayo de. | eng |
dcterms.references | M. Shinohara, T. Kanekiyo, M. Tachibana, A. Kurti, M. Shinohara, Y. Fu, et al., APOE2 is associated with longevity independent of Alzheimer’s disease. eLife [Internet]. 9. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588231/. | eng |
dcterms.references | D. Sinclair, P. Oberdoerffer, The Ageing Epigenome: Damaged Beyond Repair?, 2010, p. 20. | eng |
dcterms.references | Shireby GL, Davies JP, Francis PT, Burrage J, Walker EM, Neilson GWA, et al. Recalibrating The Epigenetic Clock: Implications For Assessing Biological Age In The Human Cortex. :13. | eng |
dcterms.references | C.G. Bell, R. Lowe, P.D. Adams, A.A. Baccarelli, S. Beck, J.T. Bell, et al., DNA methylation aging clocks: challenges and recommendations, Genome Biol. 20 (1) (2019 Dec) 249. | eng |
dcterms.references | J. Franzen, T. Georgomanolis, A. Selich, C.-C. Kuo, R. St¨oger, L. Brant, et al., DNA methylation changes during long-term in vitro cell culture are caused by epigenetic drift, Commun. Biol. 4 (1) (2021) 598, diciembre d | eng |
dcterms.references | C. Huidobro, Aging epigenetics: causes and consequences, Mol. Aspect. Med. (2013) 17. | eng |
dcterms.references | W. Mahmood, Aging-associated distinctive DNA methylation changes of LINE-1 retrotransposons in pure cell-free DNA from human blood, Sci. Rep. (2020) 12. | eng |
dcterms.references | Y. Quan, Blood cell DNA methylation of ageing-related ubiquitination gene DZIP3 can predict the onset of early stage colorectal cancer, Front. Oncol. 10 (2020) 12. | eng |
dcterms.references | Klutstein M. Cause And Effect In Epigenetics – Where Lies The Truth, And How Can Experiments Reveal It? Epigenetic Self-Reinforcing Loops Obscure Causation In Cancer And Ageing. :12 | eng |
dcterms.references | R.F. Pérez, J.L. Fernandez-Morera, J. Romano-Garcia, E. Menendez-Torre, E. Delgado-Alvarez, M.F. Fraga, et al., DNA Methylomes and Epigenetic Age Acceleration Associations with Poor Metabolic Control in T1D, 2021, p. 8 | eng |
dcterms.references | Castillo-Fernandez J, Herrera-Puerta E, Demond H, Clark SJ, Hanna CW, Hemberger M, et al. Increased Transcriptome Variation And Localised DNA Methylation Changes In Oocytes From Aged Mice Revealed By Parallel Single-Cell Analysis. :14. | eng |
dcterms.references | S. Horvath, DNA methylation age of human tissues and cell types, Genome Biol. 14 (10) (2013) R115. | eng |
dcterms.references | M. Fatemi, A. Hermann, H. Gowher, A. Jeltsch, Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA: cooperation of Dnmt1 and Dnmt3a, Eur. J. Biochem. 269 (20) (2002) 4981–4984, octubre de | eng |
dcterms.references | B.A. Benayoun, E.A. Pollina, A. Brunet, Epigenetic regulation of ageing: linking environmental inputs to genomic stability, Nat. Rev. Mol. Cell. Biol. 16 (10) (2015) 593–610, octubre de | eng |
dcterms.references | M. Zampieri, F. Ciccarone, R. Calabrese, C. Franceschi, A. Bürkle, P. Caiafa, Reconfiguration of DNA methylation in ageing, Mechan. Agein. Develop. 151 (2015) 60–70, noviembre de. | eng |
dcterms.references | S.-J. Yi, K. Kim, New insights into the role of histone changes in ageing, Int. J. Mol. Sci. (2020) 20. | eng |
dcterms.references | S. Gonzalo, Epigenetic alterations in aging, J. Appl. Physiol. 109 (2010) 13. | eng |
dcterms.references | ] W. Dang, K.K. Steffen, R. Perry, J.A. Dorsey, F.B. Johnson, A. Shilatifard, et al., Histone H4 lysine 16 acetylation regulates cellular lifespan, Nature 459 (7248) (2009) 802–807, junio de | eng |
dcterms.references | ] W. Dang, K.K. Steffen, R. Perry, J.A. Dorsey, F.B. Johnson, A. Shilatifard, et al., Histone H4 lysine 16 acetylation regulates cellular lifespan, Nature 459 (7248) (2009) 802–807, junio de | eng |
dcterms.references | J. Feser, D. Truong, C. Das, J.J. Carson, J. Kieft, T. Harkness, et al., Elevated histone expression promotes life span extension, Mol. Cell 39 (5) (2010) 724–735, septiembre de | eng |
dcterms.references | S. Han, A. Brunet, Histone Methylation Makes Its Mark On Longevity, 2013, p. 19. | eng |
dcterms.references | A. Kirmizis, Histone modifications as an intersection between diet and longevity, Front. Genet. 10 (2019) 18. | eng |
dcterms.references | Yi S-J, Kim K. Histone Tail Cleavage As A Novel Epigenetic Regulatory Mechanism For Gene Expression. :8. | eng |
dcterms.references | A.E. Kane, D.A. Sinclair, Epigenetic changes during ageing and their reprogramming potential, Crit. Rev. Biochem. Mol. Biol. 54 (1) (2019) 61–83, el 2 de enero de | eng |
dcterms.references | G. Pegoraro, N. Kubben, U. Wickert, H. G¨ohler, K. Hoffmann, T. Misteli, Ageing-related chromatin defects through loss of the NURD complex, Nat. Cell Biol. 11 (10) (2009) 1261–1267, octubre de. | eng |
dcterms.references | Guan Y, Zhang C, Lyu G, Huang X, Zhang X, Zhuang T, et al. Senescence-Activated Enhancer Landscape Orchestrates The Senescence-Associated Secretory Phenotype In Murine fibroblasts. :15. | eng |
dcterms.references | T. Tchkonia, A.K. Palmer, J.L. Kirkland, New horizons: novel approaches to enhance healthspan through targeting cellular senescence and related ageing mechanisms, J. Clin. Endocrinol. (2020) 7. | eng |
dcterms.references | R. Bahar, C.H. Hartmann, K.A. Rodriguez, A.D. Denny, R.A. Busuttil, M.E.T. Doll´e, et al., Increased cell-to-cell variation in gene expression in ageing mouse heart, Nature 441 (7096) (2006) 1011–1014, junio de | eng |
dcterms.references | P. Oberdoerffer, D.A. Sinclair, The role of nuclear architecture in genomic instability and ageing, Nat. Rev. Mol. Cell Biol. 8 (9) (2007) 692–702, septiembre de. | eng |
dcterms.references | J.M. Sedivy, G. Banumathy, P.D. Adams, Ageing by epigenetics—a consequence of chromatin damage? Exp. Cell Res. 314 (9) (2008) 1909–1917, mayo de. | eng |
dcterms.references | L.N. Booth, A. Brunet, The Ageing Epigenome, 2017, p. 36. | eng |
dcterms.references | J.E. Wilusz, H. Sunwoo, D.L. Spector, Long noncoding RNAs: functional surprises from the RNA world, Genes & Development 23 (13) (2009) 1494–1504, el 1 de julio de. | eng |
dcterms.references | J. Grillari, R. Grillari-Voglauer, Novel modulators of senescence, ageing, and longevity: small non-coding RNAs enter the stage, Exper. Ger. 45 (4) (2010) 302–311, abril de. | eng |
dcterms.references | N.J. Lehrbach, C. Castro, K.J. Murfitt, C. Abreu-Goodger, J.L. Griffin, E.A. Miska, Post-developmental microRNA expression is required for normal physiology, and regulates ageing in parallel to insulin/IGF-1 signaling in C. elegans, RNA 18 (12) (2012) 2220–2235, el 1 de diciembre de. | eng |
dcterms.references | A. De Lencastre, Z. Pincus, K. Zhou, M. Kato, S.S. Lee, F.J. Slack, MicroRNAs both promote and antagonize longevity in C. elegans, Curr. Biol. 20 (24) (2010) 2159–2168, diciembre de. | eng |
dcterms.references | K. Szafranski, Non-coding RNA in neural function, disease, and ageing [Internet], Front Genet. (2015) [citado el 9 de julio de 2021];6. Disponible en, http:// journal.frontiersin.org/Article/10.3389/fgene.2015.00087/abstract. | eng |
dcterms.references | B.F. Darst, R.L. Koscik, K.J. Hogan, S.C. Johnson, C.D. Engelman, Longitudinal plasma metabolomics of ageing and sex, Ageing 11 (4) (2019) 1262–1282, el 24 de febrero de. | eng |
dcterms.references | J. Chaudhuri, Y. Bains, S. Guha, A. Kahn, D. Hall, N. Bose, et al., The role of advanced glycation end products in ageing and metabolic diseases: bridging association and causality, Cell Metab. 28 (3) (2018) 337–352, el 4 de septiembre de. | eng |
dcterms.references | I. Iatsenko, J.-P. Boquete, B. Lemaitre, Microbiota-derived lactate activates production of reactive oxygen species by the intestinal NADPH oxidase nox and shortens Drosophila lifespan, el 20 de noviembre de, Immunity 49 (5) (2018) 929–942. e5 | eng |
dcterms.references | M. Kozakiewicz, M. Kornatowski, O. Krzywi´nska, K. Kędziora-Kornatowska, Changes in the blood antioxidant defense of advanced age people, Clin. Inter. Ageing 14 (2019) 763–771, el 1 de mayo de. | eng |
dcterms.references | Macronutrient-mediated inflammation and oxidative stress: Relevance to Insulin Resistance, Obesity, and Atherogenesis. | eng |
dcterms.references | Oxidative Stress In Neurodegenerative Diseases: From A Mitochondrial Point Of View. Cenini et al., 2019, https://doi.org/10.1155/2019/2105607. Article ID 2105607. | eng |
dcterms.references | J. Clin. Endocrinol. Metabol. ume 104 (Issue 12) (December 2019) 6118–6128, https://doi.org/10.1210/jc.2018-01833. | eng |
dcterms.references | N.T. Moldogazieva, I.M. Mokhosoev, T.I. Mel’nikova, Y.B. Porozov, A.A. Terentiev, Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in ageing and age-related diseases, Oxid. Med. Cell. Longev. 2019 (2019) 3085756 | eng |
dcterms.references | E. Fouquerel, R.P. Barnes, S. Uttam, S.C. Watkins, M.P. Bruchez, P.L. Opresko, Targeted and persistent 8-oxoguanine base damage at telomeres promotes telomere loss and crisis, el 11 de julio de, Mol. Cell. 75 (1) (2019) 117–130. e6. | eng |
dcterms.references | S. Stryeck, R. Birner-Gruenberger, T. Madl, Integrative metabolomics as emerging tool to study autophagy regulation, Microb. Cell 4 (8) (2017) 240–258, el 13 de julio de. | eng |
dcterms.references | A. Metaxakis, C. Ploumi, N. Tavernarakis, Autophagy in age-associated neurodegeneration, Cells (5) (2018) 7, el 5 de mayo de | eng |
dcterms.references | M. Pareja-Cajiao, H.M. Gransee, J.M. Stowe, S. Rana, G.C. Sieck, C.B. Mantilla, Age-related impairment of autophagy in cervical motor neurons, Exper. Ger. 144 (2021) 111193, febrero de. | eng |
dcterms.references | M.C. Barbosa, R.A. Grosso, C.M. Fader, Hallmarks of Ageing: an Autophagic Perspective [Internet]. el 9 de enero de, Front Endocrinol, Lausanne, 2019 [citado el 2 de febrero de 2021];9. Disponible en, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333684/ | eng |
dcterms.references | K. Schmeisser, J.A. Parker, Pleiotropic effects of mTOR and autophagy during development and ageing [Internet], Front. Cell Dev. Biol. (2019) [citado el 10 de mayo de 2021];7. Disponible en, https://www.frontiersin.org/articles/10.3389/fcell.2019.00192/full. | eng |
dcterms.references | L. Wang, J. Du, F. Zhao, Z. Chen, J. Chang, F. Qin, et al., Trillium tschonoskii maxim saponin mitigates D-galactose-induced brain ageing of rats through rescuing dysfunctional autophagy mediated by Rheb-mTOR signal pathway, Biomed. Pharmacother. 98 (2018) 516–522, febrero de | eng |
dcterms.references | M. Fournet, F. Bont´e, A. Desmouli`ere, Glycation damage: a possible hub for major pathophysiological disorders and ageing, Ageing Dis. 9 (5) (2018) 880–900, octubre de. | eng |
dcterms.references | S.S. Farhan, S.A. Hussain, Advanced glycation end products (AGEs) and their soluble receptors (sRAGE) as early predictors of reno-vascular complications in patients with uncontrolled type 2 diabetes mellitus, Diab. Metab. Syndr. 13 (4) (2019) 2457–2461, agosto de. | eng |
dcterms.references | C.-S. Kim, S. Park, J. Kim, The role of glycation in the pathogenesis of ageing and its prevention through herbal products and physical exercise, J. Exer. Nutr. Biochem. 21 (3) (2017) 55–61, el 30 de septiembre de. | eng |
dcterms.references | S.B. Bansode, R.N. Gacche, Glycation-induced modification of tissue-specific ECM proteins: a pathophysiological mechanism in degenerative diseases, Biochim. Biophys. Acta Gen. Subj. 1863 (11) (2019) 129411, noviembre de | eng |
dcterms.references | Y.X. Mao, W.J. Cai, X.Y. Sun, P.P. Dai, X.M. Li, Q. Wang, et al., RAGE-dependent mitochondria pathway: a novel target of silibinin against apoptosis of osteoblastic cells induced by advanced glycation end products, Cell Death & Dis. 9 (6) (2018) 1–14, el 4 de junio de | eng |
dcterms.references | A. Grimm, A. Eckert, Brain ageing and neurodegeneration: from a mitochondrial point of view, J Neurochem. 143 (4) (2017) 418–431, noviembre de. | eng |
dcterms.references | N. Nissanka, C.T. Moraes, Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease, FEBS Lett. 592 (5) (2018) 728–742, marzo de. | eng |
dcterms.references | H. Li, J. Slone, L. Fei, T. Huang, mitochondrial DNA variants and common diseases: a mathematical model for the diversity of age-related mtDNA mutations, Cells (6) (2019) 8, el 18 de junio de | eng |
dcterms.references | V. Eisner, M. Picard, G. Hajn´oczky, Mitochondrial dynamics in adaptive and maladaptive cellular stress responses, Nat Cell Biol. 20 (7) (2018) 755–765, julio de. | eng |
dcterms.references | D. Sebasti´an, M. Palacín, A. Zorzano, Mitochondrial dynamics: coupling mitochondrial fitness with healthy ageing, Trends Mol. Med. 23 (3) (2017) 201–215, marzo de. | eng |
dcterms.references | M. Khacho, A. Clark, D.S. Svoboda, J. Azzi, J.G. MacLaurin, C. Meghaizel, et al., Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program, Cell Stem Cell 19 (2) (2016) 232–247, el 4 de agosto de | eng |
dcterms.references | O. Amartuvshin, C.-H. Lin, S.-C. Hsu, S.-H. Kao, A. Chen, W.-C. Tang, et al., Ageing shifts mitochondrial dynamics toward fission to promote germline stem cell loss, Ageing Cell 19 (8) (2020), e13191 agosto de. | eng |
dcterms.references | A. Kankaanp¨a¨a, A. Tolvanen, S. Bollepalli, T. Leskinen, U.M. Kujala, J. Kaprio, et al., Leisure-time and occupational physical activity associates differently with epigenetic ageing, Med. Sci. Sports Exer. 53 (3) (2021) 487–495, abril de. | eng |
dcterms.references | B.K. Pedersen, B. Saltin, Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases, Scand. J. Med. Sci. Sports 25 (2015) 1–72, diciembre de | eng |
dcterms.references | L.F. Cherkas, The association between physical activity in leisure time and leukocyte telomere length, Arch Intern. Med. 168 (2) (2008) 154, el 28 de enero de. | eng |
dcterms.references | J. Denham, B.J. O’Brien, F.J. Charchar, Telomere length maintenance and cardio-metabolic disease prevention through exercise training, Sports Med. 46 (9) (2016) 1213–1237, septiembre de. | eng |
dcterms.references | Z. Murlasits, R.G. Cutlip, K.B. Geronilla, K.M.K. Rao, W.F. Wonderlin, S.E. Alway, Resistance training increases heat shock protein levels in skeletal muscle of young and old rats. Experimental Gerontology, abril de 41 (4) (2006) 398–406. | eng |
dcterms.references | A. Mancini, D. Vitucci, M.B. Randers, J.F. Schmidt, M. Hagman, T.R. Andersen, et al., Lifelong football training: effects on autophagy and healthy longevity promotion, Front Physiol. 10 (2019) 132, el 19 de febrero de. | eng |
dcterms.references | Y. Yang, X. Gao, A.C. Just, E. Colicino, C. Wang, B.A. Coull, et al., Smoking-related DNA methylation is associated with DNA methylation phenotypic age acceleration: the veterans affairs normative ageing study, IJERPH 16 (13) (2019) 2356, el 3 de julio de | eng |
dcterms.references | R. Philibert, J.A. Mills, J.D. Long, S.E. Salisbury, A. Comellas, A. Gerke, et al., The Reversion Of Cg05575921 Methylation In Smoking Cessation: A Potential Tool For Incentivizing Healthy Ageing, 2020, p. 12 | eng |
dcterms.references | M.E. Levine, A.T. Lu, A. Quach, B.H. Chen, T.L. Assimes, S. Bandinelli, et al., An epigenetic biomarker of ageing for lifespan and healthspan, Ageing 10 (4) (2018) 573–591, el 18 de abril de. | eng |
dcterms.references | M.-K. Lei, F.X. Gibbons, R.L. Simons, R.A. Philibert, S.R.H. Beach, The effect of tobacco smoking differs across indices of DNA methylation-based ageing in an african American sample: DNA methylation-based indices of smoking capture these effects, Genes 11 (3) (2020) 311, el 14 de marzo de. | eng |
dcterms.references | P.A. van den Brandt, L. Brandts, Alcohol consumption in later life and reaching longevity: The Netherlands Cohort Study, Age and Ageing 49 (3) (2020) 395–402, el 27 de abril de. | eng |
dcterms.references | E.L. Richard, D. Kritz-Silverstein, G.A. Laughlin, T.T. Fung, E. Barrett-Connor, L.K. McEvoy, Alcohol intake and cognitively healthy longevity in community- dwelling adults: the rancho bernardo study. Panza F, editor, JAD 59 (3) (2017) 803–814, el 29 de julio de. | eng |
dcterms.references | A. Giacosa, R. Barale, L. Bavaresco, M.A. Faliva, V. Gerbi, C. La Vecchia, et al., Mediterranean way of drinking and longevity, Crit. Rev. Food Sci. Nutr. 56 (4) (2016) 635–640, el 11 de marzo de. | eng |
dcterms.references | A. Luo, J. Jung, M. Longley, D.B. Rosoff, K. Charlet, C. Muench, et al., Epigenetic ageing is accelerated in alcohol use disorder and regulated by genetic variation in APOL2, Neuropsychopharmacol 45 (2) (2020) 327–336, enero de. | eng |
oaire.version | info:eu-repo/semantics/publishedVersion | eng |