Intrinsic and environmental basis of aging: A narrative review

datacite.rightshttp://purl.org/coar/access_right/c_abf2eng
dc.contributor.authorNavarro, Carla
dc.contributor.authorSalazar, Juan
dc.contributor.authorDíaz, María P.
dc.contributor.authorChacin, Maricarmen
dc.contributor.authorSanteliz, Raquel
dc.contributor.authorVera, Ivana
dc.contributor.authorD'Marco, Luis
dc.contributor.authorParra, Heliana
dc.contributor.authorBernal, Mary Carlota
dc.contributor.authorCastro, Ana
dc.contributor.authorEscalona, Daniel
dc.contributor.authorGarcía-Pacheco, Henry
dc.contributor.authorBermúdez, Valmore
dc.date.accessioned2023-09-07T19:54:17Z
dc.date.available2023-09-07T19:54:17Z
dc.date.issued2023
dc.description.abstractLongevity has been a topic of interest since the beginnings of humanity, yet its aetiology and precise mechanisms remain to be elucidated. Aging is currently viewed as a physiological phenomenon characterized by the gradual degeneration of organic physiology and morphology due to the passage of time where both external and internal stimuli intervene. The influence of intrinsic factors, such as progressive telomere shortening, genome instability due to mutation buildup, the direct or indirect actions of age-related genes, and marked changes in epigenetic, metabolic, and mitochondrial patterns constitute a big part of its underlying endogenous mechanisms. On the other hand, several psychosocial and demographic factors, such as diet, physical activity, smoking, and drinking habits, may have an even more significant impact on shaping the aging process. Consequentially, implementing dietary and exercise patterns has been proposed as the most viable alternative strategy for attenuating the most typical degenerative aging changes, thus increasing the likelihood of prolonging lifespan and achieving successful aging.eng
dc.format.mimetypepdfeng
dc.identifier.doihttps://doi.org/10.1016/j.heliyon.2023.e18239
dc.identifier.issn24058440
dc.identifier.urihttps://hdl.handle.net/20.500.12442/13249
dc.language.isoengeng
dc.publisherElsevier Ltd.eng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceHeliyoneng
dc.sourceVolume 9, Issue 8 (2023)
dc.subjectAgingeng
dc.subjectTelomereseng
dc.subjectTelomeraseeng
dc.subjectObesityeng
dc.subjectChronic diseaseseng
dc.subjectAge-related geneseng
dc.titleIntrinsic and environmental basis of aging: A narrative revieweng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesA. Poças, E. Soukiazis, M. Antunes, Factors explaining life expectancy at age 65: a panel data approach applied to European union countries, Soc. Indic. Res. 150 (1) (2020) 265–288, el 1 de julio de.eng
dcterms.referencesH. Beltran-Sánchez, E.M. Crimmins, C.E. Finch, Early cohort mortality predicts the rate of aging in the cohort: a historical analysis, J. Develop. Orig. Heal. Dis. 3 (5) (2012) 380–386, octubre de.eng
dcterms.referencesG.A. Mensah, G.S. Wei, P.D. Sorlie, L.J. Fine, Y. Rosenberg, P.G. Kaufmann, et al., Decline in cardiovascular mortality: possible causes and implications, Circ. Res. 120 (2) (2017) 366–380, el 20 de enero deeng
dcterms.referencesR. Guthold, G.A. Stevens, L.M. Riley, F.C. Bull, Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1⋅9 million participants, Lancet Glob. Heal. 6 (10) (2018) e1077–e1086, el 1 de octubre de.eng
dcterms.referencesS. Stenholm, J. Head, M. Kivimaki, I. Kawachi, V. Aalto, M. Zins, et al., Smoking, physical inactivity and obesity as predictors of healthy and disease-free life expectancy between ages 50 and 75: a multicohort study, Int. J. Epidem. 45 (4) (2016) 1260–1270, el 1 de agosto de.eng
dcterms.referencesM. Abdelaal, C.W. le Roux, N.G. Docherty, Morbidity and mortality associated with obesity, Ann. Trans. Med. 5 (7) (2017) 161, abril de.eng
dcterms.referencesN.K. Mehta, L.R. Abrams, M. Myrskyl¨ a, US life expectancy stalls due to cardiovascular disease, not drug deaths, PNAS 117 (13) (2020) 6998–7000, el 31 de marzo de.eng
dcterms.referencesE. Jaul, J. Barron, Age-related diseases and clinical and public health implications for the 85 Years old and over population, Front. Public Health 5 (2017) 335.eng
dcterms.referencesJ.Y. Ho, A.S. Hendi, Recent trends in life expectancy across high income countries: retrospective observational study [Internet]. el 15 de agosto de, BMJ (2018) [citado el 1 de junio de 2021]; 362. Disponible en, https://www.bmj.com/content/362/bmj.k2562.eng
dcterms.referencesE.M. Crimmins, Lifespan, Healthspan, Past, present, and promise, Gerontologist 55 (6) (2015) 901–911, diciembre de.eng
dcterms.referencesK. Christensen, G. Doblhammer, R. Rau, J.W. Vaupel, Ageing populations: the challenges ahead, Lancet 374 (9696) (2009) 1196–1208, el 3 de octubre deeng
dcterms.referencesD.P. Goldman, D. Cutler, J.W. Rowe, P.-C. Michaud, J. Sullivan, D. Peneva, et al., Substantial health and economic returns from delayed aging may warrant a new focus for medical research, Health Aff. (Millwood) 32 (10) (2013) 1698–1705, octubre de.eng
dcterms.referencesM.J. Prince, F. Wu, Y. Guo, L.M.G. Robledo, M. O’Donnell, R. Sullivan, et al., The burden of disease in older people and implications for health policy and practice, The Lancet 385 (9967) (2015) 549–562, el 7 de febrero deeng
dcterms.referencesM. Kyriazis, Ageing throughout history: the evolution of human lifespan, J. Mol. Evol. 88 (1) (2020) 57–65, enero de.eng
dcterms.referencesJ.J. Carmona, S. Michan, Biology of healthy aging and longevity, Rev. Invest. Clin. 68 (1) (2016) 7–16, febrero de.eng
dcterms.referencesD. Melzer, L.C. Pilling, L. Ferrucci, The genetics of human ageing, Nat. Rev. Genet. 21 (2) (2020) 88–101, febrero deeng
dcterms.referencesA. Bektas, S.H. Schurman, R. Sen, L. Ferrucci, Aging, inflammation and the environment, Exp. Gerontol. 105 (2018) 10–18, mayo deeng
dcterms.referencesM. Ogrodnik, H. Salmonowicz, V.N. Gladyshev, Integrating cellular senescence with the concept of damage accumulation in aging: relevance for clearance of senescent cells, Aging Cell 18 (1) (2019), e12841 febrero de.eng
dcterms.referencesM. Chung, M. Ruan, N. Zhao, D.C. Koestler, I. De Vivo, K.T. Kelsey, et al., DNA methylation ageing clocks and pancreatic cancer risk: pooled analysis of three prospective nested case-control studies, Epigenetics (2021) 1–11, el 7 de enero de.eng
dcterms.referencesP.A. Irizar, S. Schauble, D. Esser, M. Groth, C. Frahm, S. Priebe, et al., Publisher Correction: transcriptomic alterations during ageing reflect the shift from cancer to degenerative diseases in the elderly, Nat Commun. 10 (1) (2019) 2459, el 31 de mayo de.eng
dcterms.referencesG.G. Dorighello, B.A. Paim, A.C.R. Leite, A.E. Vercesi, H.C.F. Oliveira, Spontaneous experimental atherosclerosis in hypercholesterolemic mice advances with ageing and correlates with mitochondrial reactive oxygen species, Exp Gerontol. 109 (2018) 47–50, agosto de.eng
dcterms.referencesF. Paneni, C. Diaz Canestro, ˜ P. Libby, T.F. Lüscher, G.G. Camici, The aging cardiovascular system: understanding it at the cellular and clinical levels, J. Am. Coll. Cardiol. 69 (15) (2017) 1952–1967, el 18 de abril deeng
dcterms.referencesY. Hou, X. Dan, M. Babbar, Y. Wei, S.G. Hasselbalch, D.L. Croteau, et al., Ageing as a risk factor for neurodegenerative disease, Nat. Rev. Neurol. 15 (10) (2019) 565–581, octubre de.eng
dcterms.referencesT.J. Collier, N.M. Kanaan, J.H. Kordower, Aging and Parkinson’s disease: different sides of the same coin? Mov Disord. 32 (7) (2017) 983–990, julio deeng
dcterms.referencesT. Li, Y.C. Yang, J.J. Anderson, Mortality increase in late-middle and early-old age: heterogeneity in death processes as a new explanation, Demography 50 (5) (2013) 1563–1591, octubre de.eng
dcterms.referencesP.V. Sergiev, O.A. Dontsova, G.V. Berezkin, Theories of aging: an ever-evolving field, Acta Naturae 7 (1) (2015) 9–18, marzo de.eng
dcterms.referencesJ.P. da Costa, R. Vitorino, G.M. Silva, C. Vogel, A.C. Duarte, T. Rocha-Santos, A synopsis on aging-Theories, mechanisms and future prospects, Ageing Res Rev. 29 (2016) 90–112, agosto de.eng
dcterms.referencesZ.G. Turan, P. Parvizi, H.M. Donertas, J. Tung, P. Khaitovich, M. Somel, Molecular footprint of Medawar’s mutation accumulation process in mammalian aging, Aging Cell 18 (4) (2019), e12965 agosto deeng
dcterms.referencesS.N. Austad, J.M. Hoffman, Is antagonistic pleiotropy ubiquitous in aging biology? Evol. Med. Pub. Heal. 2018 (1) (2018) 287–294.eng
dcterms.referencesA. Podlutsky, Running out of developmental program and selfish anti-aging: a new hypothesis explaining the aging process in primates, Geroscience 41 (2) (2019) 243–253, abril deeng
dcterms.referencesA.A. Moskalev, A.M. Aliper, Z. Smit-McBride, A. Buzdin, A. Zhavoronkov, Genetics and epigenetics of aging and longevity, Cell Cycle 13 (7) (2014) 1063–1077eng
dcterms.referencesB.J. Morris, B.J. Willcox, T.A. Donlon, Genetic and epigenetic regulation of human aging and longevity, Biochim. Biophys. Acta Mol. Basis Dis. 1865 (7) (2019) 1718–1744, el 1 de julio de.eng
dcterms.referencesA. Bartke, Growth hormone and aging: updated review, World J. Mens Health 37 (1) (2019) 19–30, enero de.eng
dcterms.referencesK. Kim, H.K. Choe, Role of hypothalamus in aging and its underlying cellular mechanisms, Mech. Ageing Dev. 177 (2019) 74–79, enero de.eng
dcterms.referencesA.A. Johnson, M.N. Shokhirev, B. Shoshitaishvili, Revamping the evolutionary theories of aging, Ageing Res. Rev. 55 (2019) 100947, noviembre de.eng
dcterms.referencesJ. Meng, Z. Lv, X. Qiao, X. Li, Y. Li, Y. Zhang, et al., The decay of Redox-stress Response Capacity is a substantive characteristic of aging: revising the redox theory of aging, Redox Biol. 11 (2017) 365–374, abril deeng
dcterms.referencesL.C.D. Pomatto, K.J.A. Davies, Adaptive homeostasis and the free radical theory of ageing, Free Radic. Biol. Med. 124 (2018) 420–430, el 20 de agosto de.eng
dcterms.referencesJ.R. Aunan, M.M. Watson, H.R. Hagland, K. Søreide, Molecular and biological hallmarks of ageing, Br. J. Surg. 103 (2) (2016) e29–e46, enero de.eng
dcterms.referencesT. Flatt, L. Partridge, Horizons in the evolution of aging, BMC Biol. 16 (1) (2018) 93, el 20 de agosto de.eng
dcterms.referencesC. Lopez-Otín, M.A. Blasco, L. Partridge, M. Serrano, G. Kroemer, The hallmarks of aging, Cell 153 (6) (2013) 1194–1217, el 6 de junio de.eng
dcterms.referencesL.J. Niedernhofer, A.U. Gurkar, Y. Wang, J. Vijg, J.H.J. Hoeijmakers, P.D. Robbins, Nuclear genomic instability and aging, Annu. Rev. Biochem. 87 (2018) 295–322, el 20 de junio de.eng
dcterms.referencesY. Zhu, X. Liu, X. Ding, F. Wang, X. Geng, Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction, Biogerontology 20 (1) (2019) 1–16, febrero de.eng
dcterms.referencesK. Whittemore, E. Vera, E. Martínez-Nevado, C. Sanpera, M.A. Blasco, Telomere shortening rate predicts species life span, Proc. Nat. Acad. Sci. U S A 116 (30) (2019) 15122–15127, el 23 de julio de.eng
dcterms.referencesP. Sen, P.P. Shah, R. Nativio, S.L. Berger, Epigenetic mechanisms of longevity and aging, Cell 166 (4) (2016) 822–839, el 11 de agosto de.eng
dcterms.referencesP. D’Aquila, Epigenetics And Aging, 2013, p. 7.eng
dcterms.referencesA. Trusina, Stress induced telomere shortening: longer life with less mutations? BMC Sys. Biol. 8 (2014) 27, el 1 de marzo de.eng
dcterms.referencesS. van der Rijt, M. Molenaars, R.L. McIntyre, G.E. Janssens, R.H. Houtkooper, Integrating the hallmarks of aging throughout the tree of life: a focus on mitochondrial dysfunction, Front Cell Dev. Biol. 8 (2020) 594416, el 26 de noviembre de.eng
dcterms.referencesJ.Y. Jang, A. Blum, J. Liu, T. Finkel, The role of mitochondria in aging, J. Clin. Invest. 128 (9) (2018) 3662–3670, el 31 de agosto de.eng
dcterms.referencesA.R. Brooks-Wilson, Genetics of healthy aging and longevity, Hum. Genet. 132 (12) (2013) 1323–1338.eng
dcterms.referencesB.D. Van Raa Piening, J. Lovejoy, J.C. Earls, Ageotypes: distinct biomolecular trajectories in human aging, Trends Pharmacol. Sci. 41 (2020) 299–301, https:// doi.org/10.1016/j.tips.2020.02.003.eng
dcterms.referencesS. Ahadi, W. Zhou, S.M. Schüssler-Fiorenza Rose, M.R. Sailani, K. Contrepois, M. Avina, et al., Personal aging markers and ageotypes revealed by deep longitudinal profiling, Nat. Med. 26 (2020) 83–90, https://doi.org/10.1038/s41591-019-0719-5eng
dcterms.referencesmsdonk Jm, Mechanisms underlying longevity: a genetic switch model of aging, Exp. Gerontol. 107 (2018) 136–139, el 1 de julio de.eng
dcterms.referencesA.K. Koliada, D.S. Krasnenkov, A.M. Vaiserman, Telomeric aging: mitotic clock or stress indicator? [Internet]. el 16 de marzo de, Front. Genet. (2015) 6. Disponible en, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4360757/.eng
dcterms.referencesZ. Wang, D.B. Rhee, J. Lu, C.T. Bohr, F. Zhou, H. Vallabhaneni, et al., Characterization of oxidative guanine damage and repair in mammalian telomeres [Internet]. el 13 de mayo de, PLoS Genet. (5) (2010) 6. Disponible en, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869316/.eng
dcterms.referencesZ. Wang, D.B. Rhee, J. Lu, C.T. Bohr, F. Zhou, H. Vallabhaneni, et al., Characterization of oxidative guanine damage and repair in mammalian telomeres [Internet]. el 13 de mayo de, PLoS Genet. (5) (2010) 6. Disponible en, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869316/.eng
dcterms.referencesM.P. Razgonova, A.M. Zakharenko, K.S. Golokhvast, M. Thanasoula, E. Sarandi, K. Nikolouzakis, et al., Telomerase and telomeres in aging theory and chronographic aging theory, Mol. Med. Rep. 22 (3) (2020) 1679–1694, septiembre de.eng
dcterms.referencesA. Vaiserman, D. Krasnienkov, Telomere length as a marker of biological age: state-of-the-art, open issues, and future perspectives [Internet], Front. Genet. (2021) [citado el 6 de junio de 2021];11. Disponible en, https://www.frontiersin.org/articles/10.3389/fgene.2020.630186/full#h6.eng
dcterms.referencesE. Coluzzi, S. Leone, A. Sgura, Oxidative stress induces telomere dysfunction and senescence by replication fork arrest [Internet]. el 3 de enero de, Cells (1) (2019) 8. Disponible en, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356380/.eng
dcterms.referencesE. Coluzzi, M. Colamartino, R. Cozzi, S. Leone, C. Meneghini, N. O’Callaghan, et al., Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells [Internet]. el 29 de octubre de, PLoS One (10) (2014) 9. Disponible en, https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4212976/.eng
dcterms.referencesJ.-H. Chen, C.N. Hales, S.E. Ozanne, DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res. 35 (22) (2007) 7417–7428, diciembre de.eng
dcterms.referencesM.A. Petr, T. Tulika, L.M. Carmona-Marin, M. Scheibye-Knudsen, Protecting the aging genome, Trends Cell Biol. 30 (2) (2020) 117–132, el 1 de febrero de.eng
dcterms.referencesO.A. Sedelnikova, I. Horikawa, D.B. Zimonjic, N.C. Popescu, W.M. Bonner, J.C. Barrett, Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks, Nat Cell Biol. 6 (2) (2004) 168–170, febrero de.eng
dcterms.referencesR. Mostoslavsky, K.F. Chua, D.B. Lombard, W.W. Pang, M.R. Fischer, L. Gellon, et al., Genomic instability and aging-like phenotype in the absence of mammalian SIRT6, Cell 124 (2) (2006) 315–329, el 27 de enero de.eng
dcterms.referencesB. Debrabant, M. Soerensen, F. Flachsbart, S. Dato, J. Mengel-From, T. Stevnsner, et al., Human longevity and variation in DNA damage response and repair: study of the contribution of sub-processes using competitive gene-set analysis, Eur. J. Hum. Gen. 22 (9) (2014) 1131–1136, septiembre de.eng
dcterms.referencesO. Altintas, S. Park, S.-J.V. Lee, The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster, BMB Rep. 49 (2) (2016) 81–92, el 29 de febrero de.eng
dcterms.referencesD. van Heemst, Insulin, IGF-1 and longevity, Ageing Dis. 1 (2) (2010) 147–157, el 26 de agosto de.eng
dcterms.referencesA. Bartke, J. Darcy, GH and ageing: pitfalls and new insights, Best Pract. b.Res. Clin. Endocrinol. Metab 31 (1) (2017) 113–125, febrero de.eng
dcterms.referencesA.F. Bokov, N. Garg, Y. Ikeno, S. Thakur, N. Musi, R.A. DeFronzo, et al., Does reduced IGF-1R signaling in Igf1r +/ mice alter aging? [Internet]. el 23 de noviembre de, PLoS One (11) (2011) 6. Disponible en, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223158/.eng
dcterms.references] K. Mao, G.F. Quipildor, T. Tabrizian, A. Novaj, F. Guan, R.O. Walters, et al., Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice, Nat. Commun. 9 (1) (2018) 1–12, el 19 de junio de.eng
dcterms.referencesY. Suh, G. Atzmon, M.-O. Cho, D. Hwang, B. Liu, D.J. Leahy, et al., Functionally significant insulin-like growth factor I receptor mutations in centenarians, Proc. Natl. Acad. Sci. U S A. 105 (9) (2008) 3438–3442, el 4 de marzo de.eng
dcterms.referencesS. H¨agg, J. Jylh¨av¨a, Sex differences in biological aging with a focus on human studies, Elife 10 (2021 May 13), e63425, https://doi.org/10.7554/eLife.63425eng
dcterms.referencesR. Martins, G.J. Lithgow, W. Link, Long live FOXO: unraveling the role of FOXO proteins in aging and longevity, Ageing Cell 15 (2) (2016) 196–207, abril de.eng
dcterms.referencesP. Sanese, G. Forte, V. Disciglio, V. Grossi, C. Simone, FOXO3 on the road to longevity: lessons from SNPs and chromatin hubs, Comp. Stru. Biotech. J. 17 (2019) 737–745, el 13 de junio de.eng
dcterms.referencesJ.-M. Bao, X.-L. Song, Y.-Q. Hong, H.-L. Zhu, C. Li, T. Zhang, et al., Association between FOXO3A gene polymorphisms and human longevity: a meta-analysis, Asian J. Androl. 16 (3) (2014) 446–452.eng
dcterms.referencesF. Flachsbart, J. Dose, L. Gentschew, C. Geismann, A. Caliebe, C. Knecht, et al., Identification and characterisation of two functional variants in the human longevity gene FOXO3, Nat. Commun. 8 (1) (2017) 1–12, el 12 de diciembre de.eng
dcterms.referencesP. Garagnani, J. Marquis, M. Delledonne, C. Pirazzini, E. Marasco, K.M. Kwiatkowska, et al., Whole-genome sequencing analysis of semi-supercentenarians. eLife [Internet]. 10. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096429/.eng
dcterms.referencesY.J. Kim, H.S. Kim, Y.R. Seo, Genomic approach to understand the association of DNA repair with longevity and healthy aging using genomic databases of oldest-old population [Internet]. el 3 de mayo de, Oxid. Med. Cell. Longev. (2018) 2018. Disponible en, https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC5960555/.eng
dcterms.referencesC. Giuliani, P. Garagnani, C. Franceschi, Genetics of human longevity within an eco-evolutionary nature-nurture framework, Circ. Res. 123 (2018) 745–772.eng
dcterms.referencesM. Revelas, A. Thalamuthu, C. Oldmeadow, T.J. Evans, N.J. Armstrong, J.B. Kwok, et al., Review and meta-analysis of genetic polymorphisms associated with exceptional human longevity, Mech. Ageing Dev. 175 (2018 Oct) 24–34, https://doi.org/10.1016/j.mad.2018.06.002.eng
dcterms.referencesI. Reinvang, T. Espeseth, L. Westlye, APOE-related biomarker profiles in non-pathological aging and early phases of Alzheimer’s disease, Neurosci. Biobehav. Rev. 37 (8) (2013) 1322–1335, el 1 de septiembre de.eng
dcterms.referencesH.N. Yassine, C.E. Finch, APOE alleles and diet in brain ageing and alzheimer’s disease [Internet], Front. Age. Neurosci. (2020) [citado el 6 de junio de 2021]; 12. Disponible en, https://www.frontiersin.org/articles/10.3389/fnagi.2020.00150/full.eng
dcterms.referencesA. Montagne, D.A. Nation, A.P. Sagare, G. Barisano, M.D. Sweeney, A. Chakhoyan, et al., APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline, Nature 581 (7806) (2020) 71–76, mayo de.eng
dcterms.referencesF. Bonomini, F. Filippini, T. Hayek, M. Aviram, S. Keidar, L.F. Rodella, et al., Apolipoprotein E and its role in aging and survival, Exp. Gerontol. 45 (2) (2010) 149–157, febrero de.eng
dcterms.referencesM. Shinohara, T. Kanekiyo, L. Yang, D. Linthicum, M. Shinohara, Y. Fu, et al., APOE2 eases cognitive decline during aging: clinical and preclinical evaluations, Ann. Neurol. 79 (5) (2016) 758–774, mayo de.eng
dcterms.referencesM. Shinohara, T. Kanekiyo, M. Tachibana, A. Kurti, M. Shinohara, Y. Fu, et al., APOE2 is associated with longevity independent of Alzheimer’s disease. eLife [Internet]. 9. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588231/.eng
dcterms.referencesD. Sinclair, P. Oberdoerffer, The Ageing Epigenome: Damaged Beyond Repair?, 2010, p. 20.eng
dcterms.referencesShireby GL, Davies JP, Francis PT, Burrage J, Walker EM, Neilson GWA, et al. Recalibrating The Epigenetic Clock: Implications For Assessing Biological Age In The Human Cortex. :13.eng
dcterms.referencesC.G. Bell, R. Lowe, P.D. Adams, A.A. Baccarelli, S. Beck, J.T. Bell, et al., DNA methylation aging clocks: challenges and recommendations, Genome Biol. 20 (1) (2019 Dec) 249.eng
dcterms.referencesJ. Franzen, T. Georgomanolis, A. Selich, C.-C. Kuo, R. St¨oger, L. Brant, et al., DNA methylation changes during long-term in vitro cell culture are caused by epigenetic drift, Commun. Biol. 4 (1) (2021) 598, diciembre deng
dcterms.referencesC. Huidobro, Aging epigenetics: causes and consequences, Mol. Aspect. Med. (2013) 17.eng
dcterms.referencesW. Mahmood, Aging-associated distinctive DNA methylation changes of LINE-1 retrotransposons in pure cell-free DNA from human blood, Sci. Rep. (2020) 12.eng
dcterms.referencesY. Quan, Blood cell DNA methylation of ageing-related ubiquitination gene DZIP3 can predict the onset of early stage colorectal cancer, Front. Oncol. 10 (2020) 12.eng
dcterms.referencesKlutstein M. Cause And Effect In Epigenetics – Where Lies The Truth, And How Can Experiments Reveal It? Epigenetic Self-Reinforcing Loops Obscure Causation In Cancer And Ageing. :12eng
dcterms.referencesR.F. Pérez, J.L. Fernandez-Morera, J. Romano-Garcia, E. Menendez-Torre, E. Delgado-Alvarez, M.F. Fraga, et al., DNA Methylomes and Epigenetic Age Acceleration Associations with Poor Metabolic Control in T1D, 2021, p. 8eng
dcterms.referencesCastillo-Fernandez J, Herrera-Puerta E, Demond H, Clark SJ, Hanna CW, Hemberger M, et al. Increased Transcriptome Variation And Localised DNA Methylation Changes In Oocytes From Aged Mice Revealed By Parallel Single-Cell Analysis. :14.eng
dcterms.referencesS. Horvath, DNA methylation age of human tissues and cell types, Genome Biol. 14 (10) (2013) R115.eng
dcterms.referencesM. Fatemi, A. Hermann, H. Gowher, A. Jeltsch, Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA: cooperation of Dnmt1 and Dnmt3a, Eur. J. Biochem. 269 (20) (2002) 4981–4984, octubre deeng
dcterms.referencesB.A. Benayoun, E.A. Pollina, A. Brunet, Epigenetic regulation of ageing: linking environmental inputs to genomic stability, Nat. Rev. Mol. Cell. Biol. 16 (10) (2015) 593–610, octubre deeng
dcterms.referencesM. Zampieri, F. Ciccarone, R. Calabrese, C. Franceschi, A. Bürkle, P. Caiafa, Reconfiguration of DNA methylation in ageing, Mechan. Agein. Develop. 151 (2015) 60–70, noviembre de.eng
dcterms.referencesS.-J. Yi, K. Kim, New insights into the role of histone changes in ageing, Int. J. Mol. Sci. (2020) 20.eng
dcterms.referencesS. Gonzalo, Epigenetic alterations in aging, J. Appl. Physiol. 109 (2010) 13.eng
dcterms.references] W. Dang, K.K. Steffen, R. Perry, J.A. Dorsey, F.B. Johnson, A. Shilatifard, et al., Histone H4 lysine 16 acetylation regulates cellular lifespan, Nature 459 (7248) (2009) 802–807, junio deeng
dcterms.references] W. Dang, K.K. Steffen, R. Perry, J.A. Dorsey, F.B. Johnson, A. Shilatifard, et al., Histone H4 lysine 16 acetylation regulates cellular lifespan, Nature 459 (7248) (2009) 802–807, junio deeng
dcterms.referencesJ. Feser, D. Truong, C. Das, J.J. Carson, J. Kieft, T. Harkness, et al., Elevated histone expression promotes life span extension, Mol. Cell 39 (5) (2010) 724–735, septiembre deeng
dcterms.referencesS. Han, A. Brunet, Histone Methylation Makes Its Mark On Longevity, 2013, p. 19.eng
dcterms.referencesA. Kirmizis, Histone modifications as an intersection between diet and longevity, Front. Genet. 10 (2019) 18.eng
dcterms.referencesYi S-J, Kim K. Histone Tail Cleavage As A Novel Epigenetic Regulatory Mechanism For Gene Expression. :8.eng
dcterms.referencesA.E. Kane, D.A. Sinclair, Epigenetic changes during ageing and their reprogramming potential, Crit. Rev. Biochem. Mol. Biol. 54 (1) (2019) 61–83, el 2 de enero deeng
dcterms.referencesG. Pegoraro, N. Kubben, U. Wickert, H. G¨ohler, K. Hoffmann, T. Misteli, Ageing-related chromatin defects through loss of the NURD complex, Nat. Cell Biol. 11 (10) (2009) 1261–1267, octubre de.eng
dcterms.referencesGuan Y, Zhang C, Lyu G, Huang X, Zhang X, Zhuang T, et al. Senescence-Activated Enhancer Landscape Orchestrates The Senescence-Associated Secretory Phenotype In Murine fibroblasts. :15.eng
dcterms.referencesT. Tchkonia, A.K. Palmer, J.L. Kirkland, New horizons: novel approaches to enhance healthspan through targeting cellular senescence and related ageing mechanisms, J. Clin. Endocrinol. (2020) 7.eng
dcterms.referencesR. Bahar, C.H. Hartmann, K.A. Rodriguez, A.D. Denny, R.A. Busuttil, M.E.T. Doll´e, et al., Increased cell-to-cell variation in gene expression in ageing mouse heart, Nature 441 (7096) (2006) 1011–1014, junio deeng
dcterms.referencesP. Oberdoerffer, D.A. Sinclair, The role of nuclear architecture in genomic instability and ageing, Nat. Rev. Mol. Cell Biol. 8 (9) (2007) 692–702, septiembre de.eng
dcterms.referencesJ.M. Sedivy, G. Banumathy, P.D. Adams, Ageing by epigenetics—a consequence of chromatin damage? Exp. Cell Res. 314 (9) (2008) 1909–1917, mayo de.eng
dcterms.referencesL.N. Booth, A. Brunet, The Ageing Epigenome, 2017, p. 36.eng
dcterms.referencesJ.E. Wilusz, H. Sunwoo, D.L. Spector, Long noncoding RNAs: functional surprises from the RNA world, Genes & Development 23 (13) (2009) 1494–1504, el 1 de julio de.eng
dcterms.referencesJ. Grillari, R. Grillari-Voglauer, Novel modulators of senescence, ageing, and longevity: small non-coding RNAs enter the stage, Exper. Ger. 45 (4) (2010) 302–311, abril de.eng
dcterms.referencesN.J. Lehrbach, C. Castro, K.J. Murfitt, C. Abreu-Goodger, J.L. Griffin, E.A. Miska, Post-developmental microRNA expression is required for normal physiology, and regulates ageing in parallel to insulin/IGF-1 signaling in C. elegans, RNA 18 (12) (2012) 2220–2235, el 1 de diciembre de.eng
dcterms.referencesA. De Lencastre, Z. Pincus, K. Zhou, M. Kato, S.S. Lee, F.J. Slack, MicroRNAs both promote and antagonize longevity in C. elegans, Curr. Biol. 20 (24) (2010) 2159–2168, diciembre de.eng
dcterms.referencesK. Szafranski, Non-coding RNA in neural function, disease, and ageing [Internet], Front Genet. (2015) [citado el 9 de julio de 2021];6. Disponible en, http:// journal.frontiersin.org/Article/10.3389/fgene.2015.00087/abstract.eng
dcterms.referencesB.F. Darst, R.L. Koscik, K.J. Hogan, S.C. Johnson, C.D. Engelman, Longitudinal plasma metabolomics of ageing and sex, Ageing 11 (4) (2019) 1262–1282, el 24 de febrero de.eng
dcterms.referencesJ. Chaudhuri, Y. Bains, S. Guha, A. Kahn, D. Hall, N. Bose, et al., The role of advanced glycation end products in ageing and metabolic diseases: bridging association and causality, Cell Metab. 28 (3) (2018) 337–352, el 4 de septiembre de.eng
dcterms.referencesI. Iatsenko, J.-P. Boquete, B. Lemaitre, Microbiota-derived lactate activates production of reactive oxygen species by the intestinal NADPH oxidase nox and shortens Drosophila lifespan, el 20 de noviembre de, Immunity 49 (5) (2018) 929–942. e5eng
dcterms.referencesM. Kozakiewicz, M. Kornatowski, O. Krzywi´nska, K. Kędziora-Kornatowska, Changes in the blood antioxidant defense of advanced age people, Clin. Inter. Ageing 14 (2019) 763–771, el 1 de mayo de.eng
dcterms.referencesMacronutrient-mediated inflammation and oxidative stress: Relevance to Insulin Resistance, Obesity, and Atherogenesis.eng
dcterms.referencesOxidative Stress In Neurodegenerative Diseases: From A Mitochondrial Point Of View. Cenini et al., 2019, https://doi.org/10.1155/2019/2105607. Article ID 2105607.eng
dcterms.referencesJ. Clin. Endocrinol. Metabol. ume 104 (Issue 12) (December 2019) 6118–6128, https://doi.org/10.1210/jc.2018-01833.eng
dcterms.referencesN.T. Moldogazieva, I.M. Mokhosoev, T.I. Mel’nikova, Y.B. Porozov, A.A. Terentiev, Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in ageing and age-related diseases, Oxid. Med. Cell. Longev. 2019 (2019) 3085756eng
dcterms.referencesE. Fouquerel, R.P. Barnes, S. Uttam, S.C. Watkins, M.P. Bruchez, P.L. Opresko, Targeted and persistent 8-oxoguanine base damage at telomeres promotes telomere loss and crisis, el 11 de julio de, Mol. Cell. 75 (1) (2019) 117–130. e6.eng
dcterms.referencesS. Stryeck, R. Birner-Gruenberger, T. Madl, Integrative metabolomics as emerging tool to study autophagy regulation, Microb. Cell 4 (8) (2017) 240–258, el 13 de julio de.eng
dcterms.referencesA. Metaxakis, C. Ploumi, N. Tavernarakis, Autophagy in age-associated neurodegeneration, Cells (5) (2018) 7, el 5 de mayo deeng
dcterms.referencesM. Pareja-Cajiao, H.M. Gransee, J.M. Stowe, S. Rana, G.C. Sieck, C.B. Mantilla, Age-related impairment of autophagy in cervical motor neurons, Exper. Ger. 144 (2021) 111193, febrero de.eng
dcterms.referencesM.C. Barbosa, R.A. Grosso, C.M. Fader, Hallmarks of Ageing: an Autophagic Perspective [Internet]. el 9 de enero de, Front Endocrinol, Lausanne, 2019 [citado el 2 de febrero de 2021];9. Disponible en, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333684/eng
dcterms.referencesK. Schmeisser, J.A. Parker, Pleiotropic effects of mTOR and autophagy during development and ageing [Internet], Front. Cell Dev. Biol. (2019) [citado el 10 de mayo de 2021];7. Disponible en, https://www.frontiersin.org/articles/10.3389/fcell.2019.00192/full.eng
dcterms.referencesL. Wang, J. Du, F. Zhao, Z. Chen, J. Chang, F. Qin, et al., Trillium tschonoskii maxim saponin mitigates D-galactose-induced brain ageing of rats through rescuing dysfunctional autophagy mediated by Rheb-mTOR signal pathway, Biomed. Pharmacother. 98 (2018) 516–522, febrero deeng
dcterms.referencesM. Fournet, F. Bont´e, A. Desmouli`ere, Glycation damage: a possible hub for major pathophysiological disorders and ageing, Ageing Dis. 9 (5) (2018) 880–900, octubre de.eng
dcterms.referencesS.S. Farhan, S.A. Hussain, Advanced glycation end products (AGEs) and their soluble receptors (sRAGE) as early predictors of reno-vascular complications in patients with uncontrolled type 2 diabetes mellitus, Diab. Metab. Syndr. 13 (4) (2019) 2457–2461, agosto de.eng
dcterms.referencesC.-S. Kim, S. Park, J. Kim, The role of glycation in the pathogenesis of ageing and its prevention through herbal products and physical exercise, J. Exer. Nutr. Biochem. 21 (3) (2017) 55–61, el 30 de septiembre de.eng
dcterms.referencesS.B. Bansode, R.N. Gacche, Glycation-induced modification of tissue-specific ECM proteins: a pathophysiological mechanism in degenerative diseases, Biochim. Biophys. Acta Gen. Subj. 1863 (11) (2019) 129411, noviembre deeng
dcterms.referencesY.X. Mao, W.J. Cai, X.Y. Sun, P.P. Dai, X.M. Li, Q. Wang, et al., RAGE-dependent mitochondria pathway: a novel target of silibinin against apoptosis of osteoblastic cells induced by advanced glycation end products, Cell Death & Dis. 9 (6) (2018) 1–14, el 4 de junio deeng
dcterms.referencesA. Grimm, A. Eckert, Brain ageing and neurodegeneration: from a mitochondrial point of view, J Neurochem. 143 (4) (2017) 418–431, noviembre de.eng
dcterms.referencesN. Nissanka, C.T. Moraes, Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease, FEBS Lett. 592 (5) (2018) 728–742, marzo de.eng
dcterms.referencesH. Li, J. Slone, L. Fei, T. Huang, mitochondrial DNA variants and common diseases: a mathematical model for the diversity of age-related mtDNA mutations, Cells (6) (2019) 8, el 18 de junio deeng
dcterms.referencesV. Eisner, M. Picard, G. Hajn´oczky, Mitochondrial dynamics in adaptive and maladaptive cellular stress responses, Nat Cell Biol. 20 (7) (2018) 755–765, julio de.eng
dcterms.referencesD. Sebasti´an, M. Palacín, A. Zorzano, Mitochondrial dynamics: coupling mitochondrial fitness with healthy ageing, Trends Mol. Med. 23 (3) (2017) 201–215, marzo de.eng
dcterms.referencesM. Khacho, A. Clark, D.S. Svoboda, J. Azzi, J.G. MacLaurin, C. Meghaizel, et al., Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program, Cell Stem Cell 19 (2) (2016) 232–247, el 4 de agosto deeng
dcterms.referencesO. Amartuvshin, C.-H. Lin, S.-C. Hsu, S.-H. Kao, A. Chen, W.-C. Tang, et al., Ageing shifts mitochondrial dynamics toward fission to promote germline stem cell loss, Ageing Cell 19 (8) (2020), e13191 agosto de.eng
dcterms.referencesA. Kankaanp¨a¨a, A. Tolvanen, S. Bollepalli, T. Leskinen, U.M. Kujala, J. Kaprio, et al., Leisure-time and occupational physical activity associates differently with epigenetic ageing, Med. Sci. Sports Exer. 53 (3) (2021) 487–495, abril de.eng
dcterms.referencesB.K. Pedersen, B. Saltin, Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases, Scand. J. Med. Sci. Sports 25 (2015) 1–72, diciembre deeng
dcterms.referencesL.F. Cherkas, The association between physical activity in leisure time and leukocyte telomere length, Arch Intern. Med. 168 (2) (2008) 154, el 28 de enero de.eng
dcterms.referencesJ. Denham, B.J. O’Brien, F.J. Charchar, Telomere length maintenance and cardio-metabolic disease prevention through exercise training, Sports Med. 46 (9) (2016) 1213–1237, septiembre de.eng
dcterms.referencesZ. Murlasits, R.G. Cutlip, K.B. Geronilla, K.M.K. Rao, W.F. Wonderlin, S.E. Alway, Resistance training increases heat shock protein levels in skeletal muscle of young and old rats. Experimental Gerontology, abril de 41 (4) (2006) 398–406.eng
dcterms.referencesA. Mancini, D. Vitucci, M.B. Randers, J.F. Schmidt, M. Hagman, T.R. Andersen, et al., Lifelong football training: effects on autophagy and healthy longevity promotion, Front Physiol. 10 (2019) 132, el 19 de febrero de.eng
dcterms.referencesY. Yang, X. Gao, A.C. Just, E. Colicino, C. Wang, B.A. Coull, et al., Smoking-related DNA methylation is associated with DNA methylation phenotypic age acceleration: the veterans affairs normative ageing study, IJERPH 16 (13) (2019) 2356, el 3 de julio deeng
dcterms.referencesR. Philibert, J.A. Mills, J.D. Long, S.E. Salisbury, A. Comellas, A. Gerke, et al., The Reversion Of Cg05575921 Methylation In Smoking Cessation: A Potential Tool For Incentivizing Healthy Ageing, 2020, p. 12eng
dcterms.referencesM.E. Levine, A.T. Lu, A. Quach, B.H. Chen, T.L. Assimes, S. Bandinelli, et al., An epigenetic biomarker of ageing for lifespan and healthspan, Ageing 10 (4) (2018) 573–591, el 18 de abril de.eng
dcterms.referencesM.-K. Lei, F.X. Gibbons, R.L. Simons, R.A. Philibert, S.R.H. Beach, The effect of tobacco smoking differs across indices of DNA methylation-based ageing in an african American sample: DNA methylation-based indices of smoking capture these effects, Genes 11 (3) (2020) 311, el 14 de marzo de.eng
dcterms.referencesP.A. van den Brandt, L. Brandts, Alcohol consumption in later life and reaching longevity: The Netherlands Cohort Study, Age and Ageing 49 (3) (2020) 395–402, el 27 de abril de.eng
dcterms.referencesE.L. Richard, D. Kritz-Silverstein, G.A. Laughlin, T.T. Fung, E. Barrett-Connor, L.K. McEvoy, Alcohol intake and cognitively healthy longevity in community- dwelling adults: the rancho bernardo study. Panza F, editor, JAD 59 (3) (2017) 803–814, el 29 de julio de.eng
dcterms.referencesA. Giacosa, R. Barale, L. Bavaresco, M.A. Faliva, V. Gerbi, C. La Vecchia, et al., Mediterranean way of drinking and longevity, Crit. Rev. Food Sci. Nutr. 56 (4) (2016) 635–640, el 11 de marzo de.eng
dcterms.referencesA. Luo, J. Jung, M. Longley, D.B. Rosoff, K. Charlet, C. Muench, et al., Epigenetic ageing is accelerated in alcohol use disorder and regulated by genetic variation in APOL2, Neuropsychopharmacol 45 (2) (2020) 327–336, enero de.eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
26_2023_GC_ART_Intrinsic-and-environmental.pdf
Tamaño:
1.55 MB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones