A decade of progress in type 2 diabetes and cardiovascular disease: advances in SGLT2 inhibitors and GLP-1 receptor agonists – a comprehensive review

datacite.rightshttp://purl.org/coar/access_right/c_abf2
dc.contributor.authorAristizábal-Colorado, David
dc.contributor.authorCorredor-Rengifo, David
dc.contributor.authorSierra Castillo, Santiago
dc.contributor.authorLópez-Corredor, carolina
dc.contributor.authorVernaza Trujillo, David Alexander
dc.contributor.authorWeir-Restrepo, Danilo
dc.contributor.authorIzquierdo-Condoy, Juan S.
dc.contributor.authorOrtiz-Prado, Esteban
dc.contributor.authorRico-Fontalvo, Jorge
dc.contributor.authorGómez-Mesa, Juan Esteban
dc.contributor.authorAbreu Lomba, Alin
dc.contributor.authorRivera Martínez, Wilfredo Antonio
dc.date.accessioned2025-07-10T20:30:54Z
dc.date.available2025-07-10T20:30:54Z
dc.date.issued2025
dc.description.abstractCardiovascular and renal complications remain leading causes of morbidity and mortality among individuals with type 2 diabetes mellitus (T2DM). Since 2015, large-scale cardiovascular outcome trials (CVOTs) have demonstrated that sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) significantly reduce the risk of major adverse cardiovascular events, cardiovascular mortality, and heart failure hospitalization in patients with T2DM and established cardiovascular disease or high-risk profiles. These findings—originating from landmark trials such as EMPA-REG OUTCOME, LEADER, and SUSTAIN-6—have led to substantial revisions in international guidelines from the European Society of Cardiology, American College of Cardiology, and American Heart Association, which now recommend the use of SGLT2i or GLP-1 RAs, often in conjunction with metformin. SGLT2i have shown robust effects in reducing heart failure hospitalization and slowing the progression of chronic kidney disease, while GLP-1 RAs have demonstrated superior efficacy in reducing atherothrombotic events, particularly non-fatal stroke. Additionally, emerging data supports the complementary use of both drug classes, revealing additive benefits on cardiovascular and renal outcomes without increased toxicity. This narrative review summarizes the mechanisms of action, clinical efficacy, safety profiles, and sex-specific outcomes associated with SGLT2i and GLP-1 RAs. It also highlights key evidence supporting their combined use and underscores their critical role in optimizing long-term outcomes in patients with T2DM and cardiovascular disease.eng
dc.format.mimetypepdf
dc.identifier.citationAristizábal-Colorado D, Corredor-Rengifo D, Sierra-Castillo S, López-Corredor C, Vernaza-Trujillo D-A, Weir-Restrepo D, Izquierdo-Condoy JS, Ortiz-Prado E, Rico-Fontalvo J, Gómez-Mesa J-E, Abreu-Lomba A and Rivera-Martínez W-A (2025) A decade of progress in type 2 diabetes and cardiovascular disease: advances in SGLT2 inhibitors and GLP-1 receptor agonists – a comprehensive review. Front. Endocrinol. 16:1605746. doi: 10.3389/fendo.2025.1605746eng
dc.identifier.doihttps://doi.org/10.3389/fendo.2025.1605746
dc.identifier.issn16642392 (Electrónico)
dc.identifier.urihttps://hdl.handle.net/20.500.12442/16821
dc.identifier.urlhttps://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2025.1605746/full
dc.language.isoeng
dc.publisherFrontiers Mediaeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceFrontiers in Endocrinologyeng
dc.sourceFront. Endocrinol.eng
dc.sourceVol. 16   No.   Año 2025spa
dc.subject.keywordsCardiovascular outcomeseng
dc.subject.keywordsSGLT2 inhibitorseng
dc.subject.keywordsGLP-1 agonistseng
dc.subject.keywordsCombination therapyeng
dc.subject.keywordsHeart failureeng
dc.subject.keywordsRenal outcomeseng
dc.titleA decade of progress in type 2 diabetes and cardiovascular disease: advances in SGLT2 inhibitors and GLP-1 receptor agonists – a comprehensive revieweng
dc.type.driverinfo:eu-repo/semantics/article
dc.type.spaArtículo científico
dcterms.referencesVos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. (2020) 396:1204–22. doi: 10.1016/S0140-6736(20)30925-9eng
dcterms.referencesCoronado F, Melvin SC, Bell RA, and Zhao G. Global responses to prevent, manage, and control cardiovascular diseases. Prev Chronic Dis. (2022) 19:E84. doi: 10.5888/pcd19.220347eng
dcterms.referencesSun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. (2022) 183. doi: 10.1016/j.diabres.2021.109119eng
dcterms.referencesShah AD, Langenberg C, Rapsomaniki E, Denaxas S, Pujades-Rodriguez M, Gale CP, et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people. Lancet Diabetes Endocrinol. (2015) 3:105–13. doi: 10.1016/S2213-8587(14)70219-0eng
dcterms.referencesDal Canto E, Ceriello A, Rydén L, Ferrini M, Hansen TB, Schnell O, et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol. (2019) 26:25–32. doi: 10.1177/2047487319878371eng
dcterms.referencesKaze AD, Santhanam P, Musani SK, Ahima R, and Echouffo-Tcheugui JB. Metabolic dyslipidemia and cardiovascular outcomes in type 2 diabetes mellitus: findings from the look AHEAD study. J Am Heart Assoc. (2021) 10:e016947. doi: 10.1161/JAHA.120.016947eng
dcterms.referencesAzam M, Sakinah LF, Kartasurya MI, Fibriana AI, Minuljo TT, and Aljunid SM. Prevalence and determinants of obesity among individuals with diabetes in Indonesia. F1000Research. (2022) 11:1063. doi: 10.12688/f1000research.125549.3eng
dcterms.referencesHaile TG, Mariye T, Tadesse DB, Gebremeskel GG, Asefa GG, and Getachew T. Prevalence of hypertension among type 2 diabetes mellitus patients in Ethiopia: a systematic review and meta-analysis. Int Health. (2023) 15:235–41. doi: 10.1093/inthealth/ihac060eng
dcterms.referencesRodríguez-Gutiérrez R and Montori VM. Glycemic control for patients with type 2 diabetes mellitus: our evolving faith in the face of evidence. Circ Cardiovasc Qual Outcomes. (2016) 9:504–12. doi: 10.1161/CIRCOUTCOMES.116.002901eng
dcterms.referencesUK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. (1998) 352:837–53. doi: 10.1016/S0140-6736(98)07019-6eng
dcterms.referencesThe DCCT Research Group. Diabetes Control and Complications Trial (DCCT): results of feasibility study. The DCCT Research Group. Diabetes Care. (1987) 10:1–19. doi: 10.2337/diacare.10.1.1eng
dcterms.referencesThe DCCT Research Group. Diabetes Control and Complications Trial (DCCT): results of feasibility study. The DCCT Research Group. Diabetes Care. (1987) 10:1–19. doi: 10.2337/diacare.10.1.1eng
dcterms.referencesHemmingsen B, Lund SS, Gluud C, Vaag A, Almdal T, Hemmingsen C, et al. Intensive glycaemic control for patients with type 2 diabetes: systematic review with meta-analysis and trial sequential analysis of randomised clinical trials. BMJ. (2011) 343:d6898. doi: 10.1136/bmj.d6898eng
dcterms.referencesMonami M, Candido R, Pintaudi B, Targher G, Mannucci E, and of the SID-AMD joint panel for Italian Guidelines on Treatment of Type 2 Diabetes. Improvement of glycemic control in type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis NMCD. (2021) 31:2539–46. doi: 10.1016/j.numecd.2021.05.010eng
dcterms.referencesAction to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, Goff DC, Bigger JT, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. (2008) 358:2545–59. doi: 10.1056/NEJMoa0802743eng
dcterms.referencesCrabtree T, Ogendo J-J, Vinogradova Y, Gordon J, and Idris I. Intensive glycemic control and macrovascular, microvascular, hypoglycemia complications and mortality in older (age ≥60years) or frail adults with type 2 diabetes: a systematic review and meta-analysis from randomized controlled trial and observation studies. Expert Rev Endocrinol Metab. (2022) 17:255–67. doi: 10.1080/17446651.2022.2079495eng
dcterms.referencesKilickap M, Kozluca V, Tan TS, and Akbulut Koyuncu IM. GLP-1 receptor agonists and SGLT-2 inhibitors in patients with versus without cardiovascular disease: A systematic review, meta-analysis, and trial sequential analysis. Angiology. (2024) 75:820–30. doi: 10.1177/00033197231183229eng
dcterms.referencesMarilly E, Cottin J, Cabrera N, Cornu C, Boussageon R, Moulin P, et al. SGLT2 inhibitors in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials balancing their risks and benefits. Diabetologia. (2022) 65:2000–10. doi: 10.1007/s00125-022-05773-8eng
dcterms.referencesPeronard R and Mayntz S. Comment on “SGLT2 inhibitors, and how they work beyond the glucosuric effect”. Am J Cardiovasc Drugs. (2024) 25:129–30. doi: 10.1007/s40256-024-00706-9eng
dcterms.referencesKosiborod MN, Abildstrøm SZ, Borlaug BA, Butler J, Rasmussen S, Davies M, et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N Engl J Med. (2023) 389:1069–84. doi: 10.1056/NEJMoa2306963eng
dcterms.referencesMarx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes: Developed by the task force on the management of cardiovascular disease in patients with diabetes of the European Society of Cardiology (ESC). Eur Heart J. (2023) 44:ehad192. doi: 10.1093/eurheartj/ehad192eng
dcterms.referencesDavies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. (2022) 45:2753–86. doi: 10.2337/dci22-0034eng
dcterms.referencesRieg T and Vallon V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia. (2018) 61:2079–86. doi: 10.1007/s00125-018-4654-7eng
dcterms.referencesHsia DS, Grove O, and Cefalu WT. An update on SGLT2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes. (2017) 24:73–9. doi: 10.1097/MED.0000000000000311eng
dcterms.referencesAristizábal-Colorado D, Ocampo-Posada M, Rivera-Martínez WA, Corredor-Rengifo D, Rico-Fontalvo J, Gómez-Mesa JE, et al. SGLT2 inhibitors and how they work beyond the glucosuric effect. State of the art. Am J Cardiovasc Drugs. (2024) 24:707–18. doi: 10.1007/s40256-024-00673-1eng
dcterms.referencesFonseca-Correa JI and Correa-Rotter R. Sodium-glucose cotransporter 2 inhibitors mechanisms of action: A review. Front Med. (2021) 8:777861. doi: 10.3389/fmed.2021.777861eng
dcterms.referencesPabel S, Hamdani N, Luedde M, and Sossalla S. SGLT2 inhibitors and their mode of action in heart failure-has the mystery been unravelled? Curr Heart Fail Rep. (2021) 18:315–28. doi: 10.1007/s11897-021-00529-8eng
dcterms.referencesHiraizumi M, Akashi T, Murasaki K, Kishida H, Kumanomidou T, Torimoto N, et al. Transport and inhibition mechanism of the human SGLT2-MAP17 glucose transporter. Nat Struct Mol Biol. (2024) 31:159–69. doi: 10.1038/s41594-023-01134-0eng
dcterms.referencesHeerspink HJL, Perkins BA, Fitchett DH, Husain M, and Cherney DZI. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. (2016) 134:752–72. doi: 10.1161/CIRCULATIONAHA.116.021887eng
dcterms.referencesAbdul-Ghani MA, DeFronzo RA, and Norton L. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans. Diabetes. (2013) 62:3324–8. doi: 10.2337/db13-0604eng
dcterms.referencesLam-Chung CE. Comprehensive review of SGLT2 inhibitors’ efficacy through their diuretic mode of action in diabetic patients. Front Endocrinol. (2023) 14:1174692. doi: 10.3389/fendo.2023.1174692eng
dcterms.referencesLi D, Wang T, Shen S, Fang Z, Dong Y, and Tang H. Urinary tract and genital infections in patients with type 2 diabetes treated with sodium-glucose co-transporter 2 inhibitors: A meta-analysis of randomized controlled trials. Diabetes Obes Metab. (2017) 19:348–55. doi: 10.1111/dom.12825eng
dcterms.referencesPittampalli S, Upadyayula S, Mekala HM, and Lippmann S. Risks vs benefits for SGLT2 inhibitor medications. Fed Pract. (2018) 35:45–8.eng
dcterms.referencesWatts NB, Bilezikian JP, Usiskin K, Edwards R, Desai M, Law G, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. (2016) 101:157–66. doi: 10.1210/jc.2015-3167eng
dcterms.referencesNeal B, Perkovic V, and Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. (2017) 377:2099. doi: 10.1056/NEJMc1712572eng
dcterms.referencesAristizábal-Colorado D, Ocampo-Posada M, Rivera-Martínez WA, Corredor-Rengifo D, Rico-Fontalvo J, Gómez-Mesa JE, et al. Author’s reply to Peronard and Mayntz: “SGLT2 inhibitors, and how they work beyond the glucosuric effect. ” Am J Cardiovasc Drugs. (2025) 25:131–3. doi: 10.1007/s40256-024-00707-8eng
dcterms.referencesAmerican Diabetes Association Professional Practice Committee. 13. Older adults: standards of care in diabetes-2025. Diabetes Care. (2025) 48:S266–82. doi: 10.2337/dc25-S013eng
dcterms.referencesDas SR, Everett BM, Birtcher KK, Brown JM, Januzzi JL, Kalyani RR, et al. 2020 Expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes: A report of the American College of Cardiology Solution set oversight committee. J Am Coll Cardiol. (2020) 76:1117–45. doi: 10.1016/j.jacc.2020.05.037eng
dcterms.referencesDavies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. (2018) 41:2669–701. doi: 10.2337/dci18-0033eng
dcterms.referencesMcGill JB and Subramanian S. Safety of sodium-glucose co-transporter 2 inhibitors. Am J Cardiol. (2019) 124 Suppl 1:S45–52. doi: 10.1016/j.amjcard.2019.10.029eng
dcterms.referencesPandey S, Mangmool S, and Parichatikanond W. Multifaceted roles of GLP-1 and its analogs: A review on molecular mechanisms with a cardiotherapeutic perspective. Pharm Basel Switz. (2023) 16:836. doi: 10.3390/ph16060836eng
dcterms.referencesMüller TD, Finan B, Bloom SR, D’Alessio D, Drucker DJ, Flatt PR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. (2019) 30:72–130. doi: 10.1016/j.molmet.2019.09.010eng
dcterms.referencesAndrikou E, Tsioufis C, Andrikou I, Leontsinis I, Tousoulis D, and Papanas N. GLP-1 receptor agonists and cardiovascular outcome trials: An update. Hell J Cardiol HJC Hell Kardiologike Epitheorese. (2019) 60:347–51. doi: 10.1016/j.hjc.2018.11.008eng
dcterms.referencesRico-Fontalvo J, Reina M, Soler MJ, Unigarro-Palacios M, Castañeda-González JP, Quintero JJ, et al. Kidney effects of Glucagon-Like Peptide 1 (GLP1): from molecular foundations to a pharmacophysiological perspective. J Bras Nefrol. (2024) 46:e20240101. doi: 10.1590/2175-8239-JBN-2024-0101eneng
dcterms.referencesDrucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. (2018) 27:740–56. doi: 10.1016/j.cmet.2018.03.001eng
dcterms.referencesKayaniyil S, Lozano-Ortega G, Bennett HA, Johnsson K, Shaunik A, Grandy S, et al. A network meta-analysis comparing exenatide once weekly with other GLP-1 receptor agonists for the treatment of type 2 diabetes mellitus. Diabetes Ther Res Treat Educ Diabetes Relat Disord. (2016) 7:27–43. doi: 10.1007/s13300-016-0155-1eng
dcterms.referencesHinnen D. Glucagon-like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spectr Publ Am Diabetes Assoc. (2017) 30:202–10. doi: 10.2337/ds16-0026eng
dcterms.referencesPauza AG, Thakkar P, Tasic T, Felippe I, Bishop P, Greenwood MP, et al. GLP1R attenuates sympathetic response to high glucose via carotid body inhibition. Circ Res. (2022) 130:694–707. doi: 10.1161/CIRCRESAHA.121.319874eng
dcterms.referencesMaack C, Kartes T, Kilter H, Schäfers H-J, Nickenig G, Böhm M, et al. Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation. (2003) 108:1567–74. doi: 10.1161/01.CIR.0000091084.46500.BBeng
dcterms.referencesFilippatos TD, Panagiotopoulou TV, and Elisaf MS. Adverse effects of GLP-1 receptor agonists. Rev Diabetes Stud RDS. (2014) 11:202–30. doi: 10.1900/RDS.2014.11.202eng
dcterms.referencesNuffield Department of Population Health Renal Studies Group, SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet Lond Engl. (2022) 400:1788–801. doi: 10.1016/S0140-6736(22)02074-8eng
dcterms.referencesAmerican Diabetes Association Professional Practice Committee. 9. Pharmacologic approaches to glycemic treatment: standards of care in diabetes-2025. Diabetes Care. (2025) 48:S181–206. doi: 10.2337/dc25-S009eng
dcterms.referencesLong B, Pelletier J, Koyfman A, and Bridwell RE. GLP-1 agonists: A review for emergency clinicians. Am J Emerg Med. (2024) 78:89–94. doi: 10.1016/j.ajem.2024.01.010eng
dcterms.referencesZhang J, Ma Y, Zu Q, Wang X, and Zhang Y. GLP-1 receptor agonist–induced diabetic ketoacidosis: A case report. Med (Baltimore). (2024) 103:e39799. doi: 10.1097/MD.0000000000039799eng
dcterms.referencesAkiyama H, Nishimura A, Morita N, and Yajima T. Evolution of sodium-glucose co-transporter 2 inhibitors from a glucose-lowering drug to a pivotal therapeutic agent for cardio-renal-metabolic syndrome. Front Endocrinol. (2023) 14:1111984. doi: 10.3389/fendo.2023.1111984eng
dcterms.referencesSeidu S, Alabraba V, Davies S, Newland-Jones P, Fernando K, Bain SC, et al. SGLT2 inhibitors - the new standard of care for cardiovascular, renal and metabolic protection in type 2 diabetes: A narrative review. Diabetes Ther Res Treat Educ Diabetes Relat Disord. (2024) 15:1099–124. doi: 10.1007/s13300-024-01550-5eng
dcterms.referencesZinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. (2015) 373:2117–28. doi: 10.1056/NEJMoa1504720eng
dcterms.referencesWiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. (2019) 380:347–57. doi: 10.1056/NEJMoa1812389eng
dcterms.referencesPerkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. (2019) 380:2295–306. doi: 10.1056/NEJMoa1811744eng
dcterms.referencesCannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. (2020) 383:1425–35. doi: 10.1056/NEJMoa2004967eng
dcterms.referencesSridhar VS, Bhatt DL, Odutayo A, Szarek M, Davies MJ, Banks P, et al. Sotagliflozin and kidney outcomes, kidney function, and albuminuria in type 2 diabetes and CKD: A secondary analysis of the SCORED trial. Clin J Am Soc Nephrol CJASN. (2024) 19:557–64. doi: 10.2215/CJN.0000000000000414eng
dcterms.referencesRolek B, Haber M, Gajewska M, Rogula S, Pietrasik A, and Gąsecka A. SGLT2 inhibitors vs. GLP-1 agonists to treat the heart, the kidneys and the brain. J Cardiovasc Dev Dis. (2023) 10:322. doi: 10.3390/jcdd10080322eng
dcterms.referencesMcMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. (2019) 381:1995–2008. doi: 10.1056/NEJMoa1911303eng
dcterms.referencesPacker M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. (2020) 383:1413–24. doi: 10.1056/NEJMoa2022190eng
dcterms.referencesAnker SD, Butler J, Filippatos GS, Jamal W, Salsali A, Schnee J, et al. Evaluation of the effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR-Preserved Trial. Eur J Heart Fail. (2019) 21:1279–87. doi: 10.1002/ejhf.1596eng
dcterms.referencesSolomon SD, McMurray JJV, Claggett B, de Boer RA, DeMets D, Hernandez AF, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. (2022) 387:1089–98. doi: 10.1056/NEJMoa2206286eng
dcterms.referencesBhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. (2021) 384:117–28. doi: 10.1056/NEJMoa2030183eng
dcterms.referencesMcGuire DK, Shih WJ, Cosentino F, Charbonnel B, Cherney DZI, Dagogo-Jack S, et al. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: A meta-analysis. JAMA Cardiol. (2021) 6:148–58. doi: 10.1001/jamacardio.2020.4511eng
dcterms.referencesVaduganathan M, Docherty KF, Claggett BL, Jhund PS, de Boer RA, Hernandez AF, et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet Lond Engl. (2022) 400:757–67. doi: 10.1016/S0140-6736(22)01429-5eng
dcterms.referencesVernaza-Trujillo DA, Bautista LYR, Espinosa CMR, Castillo S, Corredor-Rengifo D, Aristizabal-Colorado D, et al. Impact of SGLT2 inhibitors on preventing heart failure hospitalizations in Colombian patients with uncontrolled type 2 diabetes mellitus. Cureus. (2025) 17:1–13. doi: 10.7759/cureus.77725eng
dcterms.referencesVoors AA, Angermann CE, Teerlink JR, Collins SP, Kosiborod M, Biegus J, et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nat Med. (2022) 28:568–74. doi: 10.1038/s41591-021-01659-1eng
dcterms.referencesBiegus J, Voors AA, Collins SP, Kosiborod MN, Teerlink JR, Angermann CE, et al. Impact of empagliflozin on decongestion in acute heart failure: the EMPULSE trial. Eur Heart J. (2023) 44:41–50. doi: 10.1093/eurheartj/ehac530eng
dcterms.referencesMebazaa A, Davison B, Chioncel O, Cohen-Solal A, Diaz R, Filippatos G, et al. Safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure (STRONG-HF): a multinational, open-label, randomised, trial. Lancet Lond Engl. (2022) 400:1938–52. doi: 10.1016/S0140-6736(22)02076-1eng
dcterms.referencesRivera-Martínez W, Mejía-Cardona A, Salazar-Solarte A, Aristizabal-Colorado D, Garces-Villabon L, Pinillos-Senior O, et al. Impacto en desenlaces intrahospitalarios con el inició de un iSGLT2 en insuficiencia cardíaca aguda descompensada. Rev Colomb Cardiol. (2025) 32:78–89. doi: 10.24875/RCCAR.24000056eng
dcterms.referencesCox ZL, Collins SP, Hernandez GA, McRae AT, Davidson BT, Adams K, et al. Efficacy and safety of dapagliflozin in patients with acute heart failure. J Am Coll Cardiol. (2024) 83:1295–306. doi: 10.1016/j.jacc.2024.02.009eng
dcterms.referencesEcheverría LE, Rojas LZ, Serrano-García AY, Botero DR, Cantillo-Reines M, Jurado AM, et al. Impact of early SGLT2 inhibitors prescription on acute decompensated heart failure outcomes: insights from a real-world setting. Rev Esp Cardiol Engl Ed. (2023) 93(2):160–72. doi: 10.1016/j.rec.2025.02.006eng
dcterms.referencesRangaswami J, Bhalla V, de Boer IH, Staruschenko A, Sharp JA, Singh RR, et al. Cardiorenal protection with the newer antidiabetic agents in patients with diabetes and chronic kidney disease: A scientific statement from the American Heart Association. Circulation. (2020) 142:e265–86. doi: 10.1161/CIR.0000000000000920eng
dcterms.referencesPfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. (2015) 373:2247–57. doi: 10.1056/NEJMoa1509225eng
dcterms.referencesMarso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. (2016) 375:311–22. doi: 10.1056/NEJMoa1603827eng
dcterms.referencesMarso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. (2016) 375:1834–44. doi: 10.1056/NEJMoa1607141eng
dcterms.referencesHolman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. (2017) 377:1228–39. doi: 10.1056/NEJMoa1612917eng
dcterms.referencesRuff CT, Baron M, Im K, O’Donoghue ML, Fiedorek FT, and Sabatine MS. Subcutaneous infusion of exenatide and cardiovascular outcomes in type 2 diabetes: a non-inferiority randomized controlled trial. Nat Med. (2022) 28:89–95. doi: 10.1038/s41591-021-01584-3eng
dcterms.referencesGerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet Lond Engl. (2019) 394:121–30. doi: 10.1016/S0140-6736(19)31149-3eng
dcterms.referencesHusain M, Birkenfeld AL, Donsmark M, Dungan K, Eliaschewitz FG, Franco DR, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. (2019) 381:841–51. doi: 10.1056/NEJMoa1901118eng
dcterms.referencesMcGuire DK, Busui RP, Deanfield J, Inzucchi SE, Mann JFE, Marx N, et al. Effects of oral semaglutide on cardiovascular outcomes in individuals with type 2 diabetes and established atherosclerotic cardiovascular disease and/or chronic kidney disease: Design and baseline characteristics of SOUL, a randomized trial. Diabetes Obes Metab. (2023) 25:1932–41. doi: 10.1111/dom.15058eng
dcterms.referencesGerstein HC, Sattar N, Rosenstock J, Ramasundarahettige C, Pratley R, Lopes RD, et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N Engl J Med. (2021) 385:896–907. doi: 10.1056/NEJMoa2108269eng
dcterms.referencesHernandez AF, Green JB, Janmohamed S, D’Agostino RB, Granger CB, Jones NP, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet Lond Engl. (2018) 392:1519–29. doi: 10.1016/S0140-6736(18)32261-Xeng
dcterms.referencesGiugliano D, Scappaticcio L, Longo M, Caruso P, Maiorino MI, Bellastella G, et al. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol. (2021) 20:189. doi: 10.1186/s12933-021-01366-8eng
dcterms.referencesLee MMY, Kristensen SL, Gerstein HC, McMurray JJV, and Sattar N. Cardiovascular and mortality outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A meta-analysis with the FREEDOM cardiovascular outcomes trial. Diabetes Metab Syndr. (2022) 16:102382. doi: 10.1016/j.dsx.2021.102382eng
dcterms.referencesKristensen SL, Rørth R, Jhund PS, Docherty KF, Sattar N, Preiss D, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. (2019) 7:776–85. doi: 10.1016/S2213-8587(19)30249-9eng
dcterms.referencesMcGuire DK, Marx N, Mulvagh SL, Deanfield JE, Inzucchi SE, Pop-Busui R, et al. Oral semaglutide and cardiovascular outcomes in high-risk type 2 diabetes. N Engl J Med. (2025) 392:2001–12. doi: 10.1056/NEJMoa2501006eng
dcterms.referencesParab P, Chaudhary P, Mukhtar S, Moradi A, Kodali A, Okoye C, et al. Role of glucagon-like peptide-1 (GLP-1) receptor agonists in cardiovascular risk management in patients with type 2 diabetes mellitus: A systematic review. Cureus. (2023) 15:e45487. doi: 10.7759/cureus.45487eng
dcterms.referencesVergès B, Aboyans V, Angoulvant D, Boutouyrie P, Cariou B, Hyafil F, et al. Protection against stroke with glucagon-like peptide-1 receptor agonists: a comprehensive review of potential mechanisms. Cardiovasc Diabetol. (2022) 21:242. doi: 10.1186/s12933-022-01686-3eng
dcterms.referencesLi J, Ji C, Zhang W, Lan L, and Ge W. Effect of new glucose-lowering drugs on stroke in patients with type 2 diabetes: A systematic review and Meta-analysis. J Diabetes Complications. (2023) 37:108362. doi: 10.1016/j.jdiacomp.2022.108362eng
dcterms.referencesNagahisa T and Saisho Y. Cardiorenal protection: potential of SGLT2 inhibitors and GLP-1 receptor agonists in the treatment of type 2 diabetes. Diabetes Ther Res Treat Educ Diabetes Relat Disord. (2019) 10:1733–52. doi: 10.1007/s13300-019-00680-5eng
dcterms.referencesHeerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou F-F, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. (2020) 383:1436–46. doi: 10.1056/NEJMoa2024816eng
dcterms.referencesThe EMPA-KIDNEY Collaborative Group, Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, et al. Empagliflozin in patients with chronic kidney disease. N Engl J Med. (2023) 388:117–27. doi: 10.1056/NEJMoa2204233eng
dcterms.referencesGerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet Lond Engl. (2019) 394:131–8. doi: 10.1016/S0140-6736(19)31150-Xeng
dcterms.referencesPratley RE, Tuttle KR, Rossing P, Rasmussen S, Perkovic V, Nielsen OW, et al. Effects of semaglutide on heart failure outcomes in diabetes and chronic kidney disease in the FLOW trial. J Am Coll Cardiol. (2024) 84:1615–28. doi: 10.1016/j.jacc.2024.08.004eng
dcterms.referencesRivera FB, Tang VAS, De Luna DV, Lerma EV, Vijayaraghavan K, Kazory A, et al. Sex differences in cardiovascular outcomes of SGLT-2 inhibitors in heart failure randomized controlled trials: A systematic review and meta-analysis. Am Heart Hournal Plus Cardiol Res Pract. (2023) 26:100261. doi: 10.1016/j.ahjo.2023.100261eng
dcterms.referencesSingh AK and Singh R. Gender difference in cardiovascular outcomes with SGLT-2 inhibitors and GLP-1 receptor agonist in type 2 diabetes: A systematic review and meta-analysis of cardio-vascular outcome trials. Diabetes Metab Syndr. (2020) 14:181–7. doi: 10.1016/j.dsx.2020.02.012eng
dcterms.referencesClegg LE, Penland RC, BaChina S, Boulton DW, Thuresson M, Heerspink HJL, et al. Effects of exenatide and open-label SGLT2 inhibitor treatment, given in parallel or sequentially, on mortality and cardiovascular and renal outcomes in type 2 diabetes: insights from the EXSCEL trial. Cardiovasc Diabetol. (2019) 18:138. doi: 10.1186/s12933-019-0942-xeng
dcterms.referencesLam CSP, Ramasundarahettige C, Branch KRH, Sattar N, Rosenstock J, Pratley R, et al. Efpeglenatide and clinical outcomes with and without concomitant sodium-glucose cotransporter-2 inhibition use in type 2 diabetes: exploratory analysis of the AMPLITUDE-O trial. Circulation. (2022) 145:565–74. doi: 10.1161/CIRCULATIONAHA.121.057934eng
dcterms.referencesNeves JS, Borges-Canha M, Vasques-Nóvoa F, Green JB, Leiter LA, Granger CB, et al. GLP-1 receptor agonist therapy with and without SGLT2 inhibitors in patients with type 2 diabetes. J Am Coll Cardiol. (2023) 82:517–25. doi: 10.1016/j.jacc.2023.05.048eng
dcterms.referencesArnott C, Neuen BL, Heerspink HJL, Figtree GA, Kosiborod M, Lam CS, et al. The effects of combination canagliflozin and glucagon-like peptide-1 receptor agonist therapy on intermediate markers of cardiovascular risk in the CANVAS program. Int J Cardiol. (2020) 318:126–9. doi: 10.1016/j.ijcard.2020.06.011eng
dcterms.referencesCahn A, Wiviott SD, Mosenzon O, Murphy SA, Goodrich EL, Yanuv I, et al. Cardiorenal outcomes with dapagliflozin by baseline glucose-lowering agents: Post hoc analyses from DECLARE-TIMI 58. Diabetes Obes Metab. (2021) 23:29–38. doi: 10.1111/dom.14179eng
dcterms.referencesRiley DR, Essa H, Austin P, Preston F, Kargbo I, Ibarburu GH, et al. All-cause mortality and cardiovascular outcomes with sodium-glucose Co-transporter 2 inhibitors, glucagon-like peptide-1 receptor agonists and with combination therapy in people with type 2 diabetes. Diabetes Obes Metab. (2023) 25:2897–909. doi: 10.1111/dom.15185eng
dcterms.referencesMa H, Lin Y-H, Dai L-Z, Lin C-S, Huang Y, and Liu S-Y. Efficacy and safety of GLP-1 receptor agonists versus SGLT-2 inhibitors in overweight/obese patients with or without diabetes mellitus: a systematic review and network meta-analysis. BMJ Open. (2023) 13:e061807. doi: 10.1136/bmjopen-2022-061807eng
dcterms.referencesLi C, Luo J, Jiang M, and Wang K. The efficacy and safety of the combination therapy with GLP-1 receptor agonists and SGLT-2 inhibitors in type 2 diabetes mellitus: A systematic review and meta-analysis. Front Pharmacol. (2022) 13. doi: 10.3389/fphar.2022.838277eng
dcterms.referencesGuo M, Gu J, Teng F, Chen J, Ma X, Chen Q, et al. The efficacy and safety of combinations of SGLT2 inhibitors and GLP-1 receptor agonists in the treatment of type 2 diabetes or obese adults: a systematic review and meta-analysis. Endocrine. (2020) 67:294–304. doi: 10.1007/s12020-019-02175-6eng
dcterms.referencesPatoulias D, Stavropoulos K, Imprialos K, Katsimardou A, Kalogirou M-S, Koutsampasopoulos K, et al. Glycemic efficacy and safety of glucagon-like peptide-1 receptor agonist on top of sodium-glucose co-transporter-2 inhibitor treatment compared to sodium-glucose co-transporter-2 inhibitor alone: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. (2019) 158:107927. doi: 10.1016/j.diabres.2019.107927eng
dcterms.referencesAhmad A and Sabbour H. Effectiveness and safety of the combination of sodium-glucose transport protein 2 inhibitors and glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of observational studies. Cardiovasc Diabetol. (2024) 23:99. doi: 10.1186/s12933-024-02192-4eng
dcterms.referencesGarcía-Vega D, Cinza-Sanjurjo S, Eiras S, and González-Juanatey JR. Combined sodium-glucose-transporters inhibitors and glucagon-like-peptide receptor agonist compared with monotherapy improves long-term survival: A real-world registry. Am J Med. (2024) 137:761–769.e1. doi: 10.1016/j.amjmed.2024.04.032eng
dcterms.referencesMarfella R, Prattichizzo F, Sardu C, Rambaldi PF, Fumagalli C, Marfella LV, et al. GLP-1 receptor agonists-SGLT-2 inhibitors combination therapy and cardiovascular events after acute myocardial infarction: an observational study in patients with type 2 diabetes. Cardiovasc Diabetol. (2024) 23:10. doi: 10.1186/s12933-023-02118-eng
dcterms.referencesSimms-Williams N, Treves N, Yin H, Lu S, Yu O, Pradhan R, et al. Effect of combination treatment with glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors on incidence of cardiovascular and serious renal events: population based cohort study. BMJ. (2024) 385:e078242. doi: 10.1136/bmj-2023-078242eng
dcterms.referencesMarx N, Deanfield JE, Mann JFE, Arechavaleta R, Bain SC, Bajaj HS, et al. Oral semaglutide and cardiovascular outcomes in people with type 2 diabetes, according to SGLT2i use: prespecified analyses of the SOUL randomized trial. Circulation. (2025) 151:1639–50. doi: 10.1161/CIRCULATIONAHA.125.074545eng
oaire.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
2.83 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones