A decade of progress in type 2 diabetes and cardiovascular disease: advances in SGLT2 inhibitors and GLP-1 receptor agonists – a comprehensive review
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.contributor.author | Aristizábal-Colorado, David | |
dc.contributor.author | Corredor-Rengifo, David | |
dc.contributor.author | Sierra Castillo, Santiago | |
dc.contributor.author | López-Corredor, carolina | |
dc.contributor.author | Vernaza Trujillo, David Alexander | |
dc.contributor.author | Weir-Restrepo, Danilo | |
dc.contributor.author | Izquierdo-Condoy, Juan S. | |
dc.contributor.author | Ortiz-Prado, Esteban | |
dc.contributor.author | Rico-Fontalvo, Jorge | |
dc.contributor.author | Gómez-Mesa, Juan Esteban | |
dc.contributor.author | Abreu Lomba, Alin | |
dc.contributor.author | Rivera Martínez, Wilfredo Antonio | |
dc.date.accessioned | 2025-07-10T20:30:54Z | |
dc.date.available | 2025-07-10T20:30:54Z | |
dc.date.issued | 2025 | |
dc.description.abstract | Cardiovascular and renal complications remain leading causes of morbidity and mortality among individuals with type 2 diabetes mellitus (T2DM). Since 2015, large-scale cardiovascular outcome trials (CVOTs) have demonstrated that sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) significantly reduce the risk of major adverse cardiovascular events, cardiovascular mortality, and heart failure hospitalization in patients with T2DM and established cardiovascular disease or high-risk profiles. These findings—originating from landmark trials such as EMPA-REG OUTCOME, LEADER, and SUSTAIN-6—have led to substantial revisions in international guidelines from the European Society of Cardiology, American College of Cardiology, and American Heart Association, which now recommend the use of SGLT2i or GLP-1 RAs, often in conjunction with metformin. SGLT2i have shown robust effects in reducing heart failure hospitalization and slowing the progression of chronic kidney disease, while GLP-1 RAs have demonstrated superior efficacy in reducing atherothrombotic events, particularly non-fatal stroke. Additionally, emerging data supports the complementary use of both drug classes, revealing additive benefits on cardiovascular and renal outcomes without increased toxicity. This narrative review summarizes the mechanisms of action, clinical efficacy, safety profiles, and sex-specific outcomes associated with SGLT2i and GLP-1 RAs. It also highlights key evidence supporting their combined use and underscores their critical role in optimizing long-term outcomes in patients with T2DM and cardiovascular disease. | eng |
dc.format.mimetype | ||
dc.identifier.citation | Aristizábal-Colorado D, Corredor-Rengifo D, Sierra-Castillo S, López-Corredor C, Vernaza-Trujillo D-A, Weir-Restrepo D, Izquierdo-Condoy JS, Ortiz-Prado E, Rico-Fontalvo J, Gómez-Mesa J-E, Abreu-Lomba A and Rivera-Martínez W-A (2025) A decade of progress in type 2 diabetes and cardiovascular disease: advances in SGLT2 inhibitors and GLP-1 receptor agonists – a comprehensive review. Front. Endocrinol. 16:1605746. doi: 10.3389/fendo.2025.1605746 | eng |
dc.identifier.doi | https://doi.org/10.3389/fendo.2025.1605746 | |
dc.identifier.issn | 16642392 (Electrónico) | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/16821 | |
dc.identifier.url | https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2025.1605746/full | |
dc.language.iso | eng | |
dc.publisher | Frontiers Media | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Frontiers in Endocrinology | eng |
dc.source | Front. Endocrinol. | eng |
dc.source | Vol. 16 No. Año 2025 | spa |
dc.subject.keywords | Cardiovascular outcomes | eng |
dc.subject.keywords | SGLT2 inhibitors | eng |
dc.subject.keywords | GLP-1 agonists | eng |
dc.subject.keywords | Combination therapy | eng |
dc.subject.keywords | Heart failure | eng |
dc.subject.keywords | Renal outcomes | eng |
dc.title | A decade of progress in type 2 diabetes and cardiovascular disease: advances in SGLT2 inhibitors and GLP-1 receptor agonists – a comprehensive review | eng |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.spa | Artículo científico | |
dcterms.references | Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. (2020) 396:1204–22. doi: 10.1016/S0140-6736(20)30925-9 | eng |
dcterms.references | Coronado F, Melvin SC, Bell RA, and Zhao G. Global responses to prevent, manage, and control cardiovascular diseases. Prev Chronic Dis. (2022) 19:E84. doi: 10.5888/pcd19.220347 | eng |
dcterms.references | Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. (2022) 183. doi: 10.1016/j.diabres.2021.109119 | eng |
dcterms.references | Shah AD, Langenberg C, Rapsomaniki E, Denaxas S, Pujades-Rodriguez M, Gale CP, et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people. Lancet Diabetes Endocrinol. (2015) 3:105–13. doi: 10.1016/S2213-8587(14)70219-0 | eng |
dcterms.references | Dal Canto E, Ceriello A, Rydén L, Ferrini M, Hansen TB, Schnell O, et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol. (2019) 26:25–32. doi: 10.1177/2047487319878371 | eng |
dcterms.references | Kaze AD, Santhanam P, Musani SK, Ahima R, and Echouffo-Tcheugui JB. Metabolic dyslipidemia and cardiovascular outcomes in type 2 diabetes mellitus: findings from the look AHEAD study. J Am Heart Assoc. (2021) 10:e016947. doi: 10.1161/JAHA.120.016947 | eng |
dcterms.references | Azam M, Sakinah LF, Kartasurya MI, Fibriana AI, Minuljo TT, and Aljunid SM. Prevalence and determinants of obesity among individuals with diabetes in Indonesia. F1000Research. (2022) 11:1063. doi: 10.12688/f1000research.125549.3 | eng |
dcterms.references | Haile TG, Mariye T, Tadesse DB, Gebremeskel GG, Asefa GG, and Getachew T. Prevalence of hypertension among type 2 diabetes mellitus patients in Ethiopia: a systematic review and meta-analysis. Int Health. (2023) 15:235–41. doi: 10.1093/inthealth/ihac060 | eng |
dcterms.references | Rodríguez-Gutiérrez R and Montori VM. Glycemic control for patients with type 2 diabetes mellitus: our evolving faith in the face of evidence. Circ Cardiovasc Qual Outcomes. (2016) 9:504–12. doi: 10.1161/CIRCOUTCOMES.116.002901 | eng |
dcterms.references | UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. (1998) 352:837–53. doi: 10.1016/S0140-6736(98)07019-6 | eng |
dcterms.references | The DCCT Research Group. Diabetes Control and Complications Trial (DCCT): results of feasibility study. The DCCT Research Group. Diabetes Care. (1987) 10:1–19. doi: 10.2337/diacare.10.1.1 | eng |
dcterms.references | The DCCT Research Group. Diabetes Control and Complications Trial (DCCT): results of feasibility study. The DCCT Research Group. Diabetes Care. (1987) 10:1–19. doi: 10.2337/diacare.10.1.1 | eng |
dcterms.references | Hemmingsen B, Lund SS, Gluud C, Vaag A, Almdal T, Hemmingsen C, et al. Intensive glycaemic control for patients with type 2 diabetes: systematic review with meta-analysis and trial sequential analysis of randomised clinical trials. BMJ. (2011) 343:d6898. doi: 10.1136/bmj.d6898 | eng |
dcterms.references | Monami M, Candido R, Pintaudi B, Targher G, Mannucci E, and of the SID-AMD joint panel for Italian Guidelines on Treatment of Type 2 Diabetes. Improvement of glycemic control in type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis NMCD. (2021) 31:2539–46. doi: 10.1016/j.numecd.2021.05.010 | eng |
dcterms.references | Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, Goff DC, Bigger JT, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. (2008) 358:2545–59. doi: 10.1056/NEJMoa0802743 | eng |
dcterms.references | Crabtree T, Ogendo J-J, Vinogradova Y, Gordon J, and Idris I. Intensive glycemic control and macrovascular, microvascular, hypoglycemia complications and mortality in older (age ≥60years) or frail adults with type 2 diabetes: a systematic review and meta-analysis from randomized controlled trial and observation studies. Expert Rev Endocrinol Metab. (2022) 17:255–67. doi: 10.1080/17446651.2022.2079495 | eng |
dcterms.references | Kilickap M, Kozluca V, Tan TS, and Akbulut Koyuncu IM. GLP-1 receptor agonists and SGLT-2 inhibitors in patients with versus without cardiovascular disease: A systematic review, meta-analysis, and trial sequential analysis. Angiology. (2024) 75:820–30. doi: 10.1177/00033197231183229 | eng |
dcterms.references | Marilly E, Cottin J, Cabrera N, Cornu C, Boussageon R, Moulin P, et al. SGLT2 inhibitors in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials balancing their risks and benefits. Diabetologia. (2022) 65:2000–10. doi: 10.1007/s00125-022-05773-8 | eng |
dcterms.references | Peronard R and Mayntz S. Comment on “SGLT2 inhibitors, and how they work beyond the glucosuric effect”. Am J Cardiovasc Drugs. (2024) 25:129–30. doi: 10.1007/s40256-024-00706-9 | eng |
dcterms.references | Kosiborod MN, Abildstrøm SZ, Borlaug BA, Butler J, Rasmussen S, Davies M, et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N Engl J Med. (2023) 389:1069–84. doi: 10.1056/NEJMoa2306963 | eng |
dcterms.references | Marx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes: Developed by the task force on the management of cardiovascular disease in patients with diabetes of the European Society of Cardiology (ESC). Eur Heart J. (2023) 44:ehad192. doi: 10.1093/eurheartj/ehad192 | eng |
dcterms.references | Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. (2022) 45:2753–86. doi: 10.2337/dci22-0034 | eng |
dcterms.references | Rieg T and Vallon V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia. (2018) 61:2079–86. doi: 10.1007/s00125-018-4654-7 | eng |
dcterms.references | Hsia DS, Grove O, and Cefalu WT. An update on SGLT2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes. (2017) 24:73–9. doi: 10.1097/MED.0000000000000311 | eng |
dcterms.references | Aristizábal-Colorado D, Ocampo-Posada M, Rivera-Martínez WA, Corredor-Rengifo D, Rico-Fontalvo J, Gómez-Mesa JE, et al. SGLT2 inhibitors and how they work beyond the glucosuric effect. State of the art. Am J Cardiovasc Drugs. (2024) 24:707–18. doi: 10.1007/s40256-024-00673-1 | eng |
dcterms.references | Fonseca-Correa JI and Correa-Rotter R. Sodium-glucose cotransporter 2 inhibitors mechanisms of action: A review. Front Med. (2021) 8:777861. doi: 10.3389/fmed.2021.777861 | eng |
dcterms.references | Pabel S, Hamdani N, Luedde M, and Sossalla S. SGLT2 inhibitors and their mode of action in heart failure-has the mystery been unravelled? Curr Heart Fail Rep. (2021) 18:315–28. doi: 10.1007/s11897-021-00529-8 | eng |
dcterms.references | Hiraizumi M, Akashi T, Murasaki K, Kishida H, Kumanomidou T, Torimoto N, et al. Transport and inhibition mechanism of the human SGLT2-MAP17 glucose transporter. Nat Struct Mol Biol. (2024) 31:159–69. doi: 10.1038/s41594-023-01134-0 | eng |
dcterms.references | Heerspink HJL, Perkins BA, Fitchett DH, Husain M, and Cherney DZI. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. (2016) 134:752–72. doi: 10.1161/CIRCULATIONAHA.116.021887 | eng |
dcterms.references | Abdul-Ghani MA, DeFronzo RA, and Norton L. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans. Diabetes. (2013) 62:3324–8. doi: 10.2337/db13-0604 | eng |
dcterms.references | Lam-Chung CE. Comprehensive review of SGLT2 inhibitors’ efficacy through their diuretic mode of action in diabetic patients. Front Endocrinol. (2023) 14:1174692. doi: 10.3389/fendo.2023.1174692 | eng |
dcterms.references | Li D, Wang T, Shen S, Fang Z, Dong Y, and Tang H. Urinary tract and genital infections in patients with type 2 diabetes treated with sodium-glucose co-transporter 2 inhibitors: A meta-analysis of randomized controlled trials. Diabetes Obes Metab. (2017) 19:348–55. doi: 10.1111/dom.12825 | eng |
dcterms.references | Pittampalli S, Upadyayula S, Mekala HM, and Lippmann S. Risks vs benefits for SGLT2 inhibitor medications. Fed Pract. (2018) 35:45–8. | eng |
dcterms.references | Watts NB, Bilezikian JP, Usiskin K, Edwards R, Desai M, Law G, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. (2016) 101:157–66. doi: 10.1210/jc.2015-3167 | eng |
dcterms.references | Neal B, Perkovic V, and Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. (2017) 377:2099. doi: 10.1056/NEJMc1712572 | eng |
dcterms.references | Aristizábal-Colorado D, Ocampo-Posada M, Rivera-Martínez WA, Corredor-Rengifo D, Rico-Fontalvo J, Gómez-Mesa JE, et al. Author’s reply to Peronard and Mayntz: “SGLT2 inhibitors, and how they work beyond the glucosuric effect. ” Am J Cardiovasc Drugs. (2025) 25:131–3. doi: 10.1007/s40256-024-00707-8 | eng |
dcterms.references | American Diabetes Association Professional Practice Committee. 13. Older adults: standards of care in diabetes-2025. Diabetes Care. (2025) 48:S266–82. doi: 10.2337/dc25-S013 | eng |
dcterms.references | Das SR, Everett BM, Birtcher KK, Brown JM, Januzzi JL, Kalyani RR, et al. 2020 Expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes: A report of the American College of Cardiology Solution set oversight committee. J Am Coll Cardiol. (2020) 76:1117–45. doi: 10.1016/j.jacc.2020.05.037 | eng |
dcterms.references | Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. (2018) 41:2669–701. doi: 10.2337/dci18-0033 | eng |
dcterms.references | McGill JB and Subramanian S. Safety of sodium-glucose co-transporter 2 inhibitors. Am J Cardiol. (2019) 124 Suppl 1:S45–52. doi: 10.1016/j.amjcard.2019.10.029 | eng |
dcterms.references | Pandey S, Mangmool S, and Parichatikanond W. Multifaceted roles of GLP-1 and its analogs: A review on molecular mechanisms with a cardiotherapeutic perspective. Pharm Basel Switz. (2023) 16:836. doi: 10.3390/ph16060836 | eng |
dcterms.references | Müller TD, Finan B, Bloom SR, D’Alessio D, Drucker DJ, Flatt PR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. (2019) 30:72–130. doi: 10.1016/j.molmet.2019.09.010 | eng |
dcterms.references | Andrikou E, Tsioufis C, Andrikou I, Leontsinis I, Tousoulis D, and Papanas N. GLP-1 receptor agonists and cardiovascular outcome trials: An update. Hell J Cardiol HJC Hell Kardiologike Epitheorese. (2019) 60:347–51. doi: 10.1016/j.hjc.2018.11.008 | eng |
dcterms.references | Rico-Fontalvo J, Reina M, Soler MJ, Unigarro-Palacios M, Castañeda-González JP, Quintero JJ, et al. Kidney effects of Glucagon-Like Peptide 1 (GLP1): from molecular foundations to a pharmacophysiological perspective. J Bras Nefrol. (2024) 46:e20240101. doi: 10.1590/2175-8239-JBN-2024-0101en | eng |
dcterms.references | Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. (2018) 27:740–56. doi: 10.1016/j.cmet.2018.03.001 | eng |
dcterms.references | Kayaniyil S, Lozano-Ortega G, Bennett HA, Johnsson K, Shaunik A, Grandy S, et al. A network meta-analysis comparing exenatide once weekly with other GLP-1 receptor agonists for the treatment of type 2 diabetes mellitus. Diabetes Ther Res Treat Educ Diabetes Relat Disord. (2016) 7:27–43. doi: 10.1007/s13300-016-0155-1 | eng |
dcterms.references | Hinnen D. Glucagon-like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spectr Publ Am Diabetes Assoc. (2017) 30:202–10. doi: 10.2337/ds16-0026 | eng |
dcterms.references | Pauza AG, Thakkar P, Tasic T, Felippe I, Bishop P, Greenwood MP, et al. GLP1R attenuates sympathetic response to high glucose via carotid body inhibition. Circ Res. (2022) 130:694–707. doi: 10.1161/CIRCRESAHA.121.319874 | eng |
dcterms.references | Maack C, Kartes T, Kilter H, Schäfers H-J, Nickenig G, Böhm M, et al. Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation. (2003) 108:1567–74. doi: 10.1161/01.CIR.0000091084.46500.BB | eng |
dcterms.references | Filippatos TD, Panagiotopoulou TV, and Elisaf MS. Adverse effects of GLP-1 receptor agonists. Rev Diabetes Stud RDS. (2014) 11:202–30. doi: 10.1900/RDS.2014.11.202 | eng |
dcterms.references | Nuffield Department of Population Health Renal Studies Group, SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet Lond Engl. (2022) 400:1788–801. doi: 10.1016/S0140-6736(22)02074-8 | eng |
dcterms.references | American Diabetes Association Professional Practice Committee. 9. Pharmacologic approaches to glycemic treatment: standards of care in diabetes-2025. Diabetes Care. (2025) 48:S181–206. doi: 10.2337/dc25-S009 | eng |
dcterms.references | Long B, Pelletier J, Koyfman A, and Bridwell RE. GLP-1 agonists: A review for emergency clinicians. Am J Emerg Med. (2024) 78:89–94. doi: 10.1016/j.ajem.2024.01.010 | eng |
dcterms.references | Zhang J, Ma Y, Zu Q, Wang X, and Zhang Y. GLP-1 receptor agonist–induced diabetic ketoacidosis: A case report. Med (Baltimore). (2024) 103:e39799. doi: 10.1097/MD.0000000000039799 | eng |
dcterms.references | Akiyama H, Nishimura A, Morita N, and Yajima T. Evolution of sodium-glucose co-transporter 2 inhibitors from a glucose-lowering drug to a pivotal therapeutic agent for cardio-renal-metabolic syndrome. Front Endocrinol. (2023) 14:1111984. doi: 10.3389/fendo.2023.1111984 | eng |
dcterms.references | Seidu S, Alabraba V, Davies S, Newland-Jones P, Fernando K, Bain SC, et al. SGLT2 inhibitors - the new standard of care for cardiovascular, renal and metabolic protection in type 2 diabetes: A narrative review. Diabetes Ther Res Treat Educ Diabetes Relat Disord. (2024) 15:1099–124. doi: 10.1007/s13300-024-01550-5 | eng |
dcterms.references | Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. (2015) 373:2117–28. doi: 10.1056/NEJMoa1504720 | eng |
dcterms.references | Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. (2019) 380:347–57. doi: 10.1056/NEJMoa1812389 | eng |
dcterms.references | Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. (2019) 380:2295–306. doi: 10.1056/NEJMoa1811744 | eng |
dcterms.references | Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. (2020) 383:1425–35. doi: 10.1056/NEJMoa2004967 | eng |
dcterms.references | Sridhar VS, Bhatt DL, Odutayo A, Szarek M, Davies MJ, Banks P, et al. Sotagliflozin and kidney outcomes, kidney function, and albuminuria in type 2 diabetes and CKD: A secondary analysis of the SCORED trial. Clin J Am Soc Nephrol CJASN. (2024) 19:557–64. doi: 10.2215/CJN.0000000000000414 | eng |
dcterms.references | Rolek B, Haber M, Gajewska M, Rogula S, Pietrasik A, and Gąsecka A. SGLT2 inhibitors vs. GLP-1 agonists to treat the heart, the kidneys and the brain. J Cardiovasc Dev Dis. (2023) 10:322. doi: 10.3390/jcdd10080322 | eng |
dcterms.references | McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. (2019) 381:1995–2008. doi: 10.1056/NEJMoa1911303 | eng |
dcterms.references | Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. (2020) 383:1413–24. doi: 10.1056/NEJMoa2022190 | eng |
dcterms.references | Anker SD, Butler J, Filippatos GS, Jamal W, Salsali A, Schnee J, et al. Evaluation of the effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR-Preserved Trial. Eur J Heart Fail. (2019) 21:1279–87. doi: 10.1002/ejhf.1596 | eng |
dcterms.references | Solomon SD, McMurray JJV, Claggett B, de Boer RA, DeMets D, Hernandez AF, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. (2022) 387:1089–98. doi: 10.1056/NEJMoa2206286 | eng |
dcterms.references | Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. (2021) 384:117–28. doi: 10.1056/NEJMoa2030183 | eng |
dcterms.references | McGuire DK, Shih WJ, Cosentino F, Charbonnel B, Cherney DZI, Dagogo-Jack S, et al. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: A meta-analysis. JAMA Cardiol. (2021) 6:148–58. doi: 10.1001/jamacardio.2020.4511 | eng |
dcterms.references | Vaduganathan M, Docherty KF, Claggett BL, Jhund PS, de Boer RA, Hernandez AF, et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet Lond Engl. (2022) 400:757–67. doi: 10.1016/S0140-6736(22)01429-5 | eng |
dcterms.references | Vernaza-Trujillo DA, Bautista LYR, Espinosa CMR, Castillo S, Corredor-Rengifo D, Aristizabal-Colorado D, et al. Impact of SGLT2 inhibitors on preventing heart failure hospitalizations in Colombian patients with uncontrolled type 2 diabetes mellitus. Cureus. (2025) 17:1–13. doi: 10.7759/cureus.77725 | eng |
dcterms.references | Voors AA, Angermann CE, Teerlink JR, Collins SP, Kosiborod M, Biegus J, et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nat Med. (2022) 28:568–74. doi: 10.1038/s41591-021-01659-1 | eng |
dcterms.references | Biegus J, Voors AA, Collins SP, Kosiborod MN, Teerlink JR, Angermann CE, et al. Impact of empagliflozin on decongestion in acute heart failure: the EMPULSE trial. Eur Heart J. (2023) 44:41–50. doi: 10.1093/eurheartj/ehac530 | eng |
dcterms.references | Mebazaa A, Davison B, Chioncel O, Cohen-Solal A, Diaz R, Filippatos G, et al. Safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure (STRONG-HF): a multinational, open-label, randomised, trial. Lancet Lond Engl. (2022) 400:1938–52. doi: 10.1016/S0140-6736(22)02076-1 | eng |
dcterms.references | Rivera-Martínez W, Mejía-Cardona A, Salazar-Solarte A, Aristizabal-Colorado D, Garces-Villabon L, Pinillos-Senior O, et al. Impacto en desenlaces intrahospitalarios con el inició de un iSGLT2 en insuficiencia cardíaca aguda descompensada. Rev Colomb Cardiol. (2025) 32:78–89. doi: 10.24875/RCCAR.24000056 | eng |
dcterms.references | Cox ZL, Collins SP, Hernandez GA, McRae AT, Davidson BT, Adams K, et al. Efficacy and safety of dapagliflozin in patients with acute heart failure. J Am Coll Cardiol. (2024) 83:1295–306. doi: 10.1016/j.jacc.2024.02.009 | eng |
dcterms.references | Echeverría LE, Rojas LZ, Serrano-García AY, Botero DR, Cantillo-Reines M, Jurado AM, et al. Impact of early SGLT2 inhibitors prescription on acute decompensated heart failure outcomes: insights from a real-world setting. Rev Esp Cardiol Engl Ed. (2023) 93(2):160–72. doi: 10.1016/j.rec.2025.02.006 | eng |
dcterms.references | Rangaswami J, Bhalla V, de Boer IH, Staruschenko A, Sharp JA, Singh RR, et al. Cardiorenal protection with the newer antidiabetic agents in patients with diabetes and chronic kidney disease: A scientific statement from the American Heart Association. Circulation. (2020) 142:e265–86. doi: 10.1161/CIR.0000000000000920 | eng |
dcterms.references | Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. (2015) 373:2247–57. doi: 10.1056/NEJMoa1509225 | eng |
dcterms.references | Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. (2016) 375:311–22. doi: 10.1056/NEJMoa1603827 | eng |
dcterms.references | Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. (2016) 375:1834–44. doi: 10.1056/NEJMoa1607141 | eng |
dcterms.references | Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. (2017) 377:1228–39. doi: 10.1056/NEJMoa1612917 | eng |
dcterms.references | Ruff CT, Baron M, Im K, O’Donoghue ML, Fiedorek FT, and Sabatine MS. Subcutaneous infusion of exenatide and cardiovascular outcomes in type 2 diabetes: a non-inferiority randomized controlled trial. Nat Med. (2022) 28:89–95. doi: 10.1038/s41591-021-01584-3 | eng |
dcterms.references | Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet Lond Engl. (2019) 394:121–30. doi: 10.1016/S0140-6736(19)31149-3 | eng |
dcterms.references | Husain M, Birkenfeld AL, Donsmark M, Dungan K, Eliaschewitz FG, Franco DR, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. (2019) 381:841–51. doi: 10.1056/NEJMoa1901118 | eng |
dcterms.references | McGuire DK, Busui RP, Deanfield J, Inzucchi SE, Mann JFE, Marx N, et al. Effects of oral semaglutide on cardiovascular outcomes in individuals with type 2 diabetes and established atherosclerotic cardiovascular disease and/or chronic kidney disease: Design and baseline characteristics of SOUL, a randomized trial. Diabetes Obes Metab. (2023) 25:1932–41. doi: 10.1111/dom.15058 | eng |
dcterms.references | Gerstein HC, Sattar N, Rosenstock J, Ramasundarahettige C, Pratley R, Lopes RD, et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N Engl J Med. (2021) 385:896–907. doi: 10.1056/NEJMoa2108269 | eng |
dcterms.references | Hernandez AF, Green JB, Janmohamed S, D’Agostino RB, Granger CB, Jones NP, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet Lond Engl. (2018) 392:1519–29. doi: 10.1016/S0140-6736(18)32261-X | eng |
dcterms.references | Giugliano D, Scappaticcio L, Longo M, Caruso P, Maiorino MI, Bellastella G, et al. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol. (2021) 20:189. doi: 10.1186/s12933-021-01366-8 | eng |
dcterms.references | Lee MMY, Kristensen SL, Gerstein HC, McMurray JJV, and Sattar N. Cardiovascular and mortality outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A meta-analysis with the FREEDOM cardiovascular outcomes trial. Diabetes Metab Syndr. (2022) 16:102382. doi: 10.1016/j.dsx.2021.102382 | eng |
dcterms.references | Kristensen SL, Rørth R, Jhund PS, Docherty KF, Sattar N, Preiss D, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. (2019) 7:776–85. doi: 10.1016/S2213-8587(19)30249-9 | eng |
dcterms.references | McGuire DK, Marx N, Mulvagh SL, Deanfield JE, Inzucchi SE, Pop-Busui R, et al. Oral semaglutide and cardiovascular outcomes in high-risk type 2 diabetes. N Engl J Med. (2025) 392:2001–12. doi: 10.1056/NEJMoa2501006 | eng |
dcterms.references | Parab P, Chaudhary P, Mukhtar S, Moradi A, Kodali A, Okoye C, et al. Role of glucagon-like peptide-1 (GLP-1) receptor agonists in cardiovascular risk management in patients with type 2 diabetes mellitus: A systematic review. Cureus. (2023) 15:e45487. doi: 10.7759/cureus.45487 | eng |
dcterms.references | Vergès B, Aboyans V, Angoulvant D, Boutouyrie P, Cariou B, Hyafil F, et al. Protection against stroke with glucagon-like peptide-1 receptor agonists: a comprehensive review of potential mechanisms. Cardiovasc Diabetol. (2022) 21:242. doi: 10.1186/s12933-022-01686-3 | eng |
dcterms.references | Li J, Ji C, Zhang W, Lan L, and Ge W. Effect of new glucose-lowering drugs on stroke in patients with type 2 diabetes: A systematic review and Meta-analysis. J Diabetes Complications. (2023) 37:108362. doi: 10.1016/j.jdiacomp.2022.108362 | eng |
dcterms.references | Nagahisa T and Saisho Y. Cardiorenal protection: potential of SGLT2 inhibitors and GLP-1 receptor agonists in the treatment of type 2 diabetes. Diabetes Ther Res Treat Educ Diabetes Relat Disord. (2019) 10:1733–52. doi: 10.1007/s13300-019-00680-5 | eng |
dcterms.references | Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou F-F, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. (2020) 383:1436–46. doi: 10.1056/NEJMoa2024816 | eng |
dcterms.references | The EMPA-KIDNEY Collaborative Group, Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, et al. Empagliflozin in patients with chronic kidney disease. N Engl J Med. (2023) 388:117–27. doi: 10.1056/NEJMoa2204233 | eng |
dcterms.references | Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet Lond Engl. (2019) 394:131–8. doi: 10.1016/S0140-6736(19)31150-X | eng |
dcterms.references | Pratley RE, Tuttle KR, Rossing P, Rasmussen S, Perkovic V, Nielsen OW, et al. Effects of semaglutide on heart failure outcomes in diabetes and chronic kidney disease in the FLOW trial. J Am Coll Cardiol. (2024) 84:1615–28. doi: 10.1016/j.jacc.2024.08.004 | eng |
dcterms.references | Rivera FB, Tang VAS, De Luna DV, Lerma EV, Vijayaraghavan K, Kazory A, et al. Sex differences in cardiovascular outcomes of SGLT-2 inhibitors in heart failure randomized controlled trials: A systematic review and meta-analysis. Am Heart Hournal Plus Cardiol Res Pract. (2023) 26:100261. doi: 10.1016/j.ahjo.2023.100261 | eng |
dcterms.references | Singh AK and Singh R. Gender difference in cardiovascular outcomes with SGLT-2 inhibitors and GLP-1 receptor agonist in type 2 diabetes: A systematic review and meta-analysis of cardio-vascular outcome trials. Diabetes Metab Syndr. (2020) 14:181–7. doi: 10.1016/j.dsx.2020.02.012 | eng |
dcterms.references | Clegg LE, Penland RC, BaChina S, Boulton DW, Thuresson M, Heerspink HJL, et al. Effects of exenatide and open-label SGLT2 inhibitor treatment, given in parallel or sequentially, on mortality and cardiovascular and renal outcomes in type 2 diabetes: insights from the EXSCEL trial. Cardiovasc Diabetol. (2019) 18:138. doi: 10.1186/s12933-019-0942-x | eng |
dcterms.references | Lam CSP, Ramasundarahettige C, Branch KRH, Sattar N, Rosenstock J, Pratley R, et al. Efpeglenatide and clinical outcomes with and without concomitant sodium-glucose cotransporter-2 inhibition use in type 2 diabetes: exploratory analysis of the AMPLITUDE-O trial. Circulation. (2022) 145:565–74. doi: 10.1161/CIRCULATIONAHA.121.057934 | eng |
dcterms.references | Neves JS, Borges-Canha M, Vasques-Nóvoa F, Green JB, Leiter LA, Granger CB, et al. GLP-1 receptor agonist therapy with and without SGLT2 inhibitors in patients with type 2 diabetes. J Am Coll Cardiol. (2023) 82:517–25. doi: 10.1016/j.jacc.2023.05.048 | eng |
dcterms.references | Arnott C, Neuen BL, Heerspink HJL, Figtree GA, Kosiborod M, Lam CS, et al. The effects of combination canagliflozin and glucagon-like peptide-1 receptor agonist therapy on intermediate markers of cardiovascular risk in the CANVAS program. Int J Cardiol. (2020) 318:126–9. doi: 10.1016/j.ijcard.2020.06.011 | eng |
dcterms.references | Cahn A, Wiviott SD, Mosenzon O, Murphy SA, Goodrich EL, Yanuv I, et al. Cardiorenal outcomes with dapagliflozin by baseline glucose-lowering agents: Post hoc analyses from DECLARE-TIMI 58. Diabetes Obes Metab. (2021) 23:29–38. doi: 10.1111/dom.14179 | eng |
dcterms.references | Riley DR, Essa H, Austin P, Preston F, Kargbo I, Ibarburu GH, et al. All-cause mortality and cardiovascular outcomes with sodium-glucose Co-transporter 2 inhibitors, glucagon-like peptide-1 receptor agonists and with combination therapy in people with type 2 diabetes. Diabetes Obes Metab. (2023) 25:2897–909. doi: 10.1111/dom.15185 | eng |
dcterms.references | Ma H, Lin Y-H, Dai L-Z, Lin C-S, Huang Y, and Liu S-Y. Efficacy and safety of GLP-1 receptor agonists versus SGLT-2 inhibitors in overweight/obese patients with or without diabetes mellitus: a systematic review and network meta-analysis. BMJ Open. (2023) 13:e061807. doi: 10.1136/bmjopen-2022-061807 | eng |
dcterms.references | Li C, Luo J, Jiang M, and Wang K. The efficacy and safety of the combination therapy with GLP-1 receptor agonists and SGLT-2 inhibitors in type 2 diabetes mellitus: A systematic review and meta-analysis. Front Pharmacol. (2022) 13. doi: 10.3389/fphar.2022.838277 | eng |
dcterms.references | Guo M, Gu J, Teng F, Chen J, Ma X, Chen Q, et al. The efficacy and safety of combinations of SGLT2 inhibitors and GLP-1 receptor agonists in the treatment of type 2 diabetes or obese adults: a systematic review and meta-analysis. Endocrine. (2020) 67:294–304. doi: 10.1007/s12020-019-02175-6 | eng |
dcterms.references | Patoulias D, Stavropoulos K, Imprialos K, Katsimardou A, Kalogirou M-S, Koutsampasopoulos K, et al. Glycemic efficacy and safety of glucagon-like peptide-1 receptor agonist on top of sodium-glucose co-transporter-2 inhibitor treatment compared to sodium-glucose co-transporter-2 inhibitor alone: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. (2019) 158:107927. doi: 10.1016/j.diabres.2019.107927 | eng |
dcterms.references | Ahmad A and Sabbour H. Effectiveness and safety of the combination of sodium-glucose transport protein 2 inhibitors and glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of observational studies. Cardiovasc Diabetol. (2024) 23:99. doi: 10.1186/s12933-024-02192-4 | eng |
dcterms.references | García-Vega D, Cinza-Sanjurjo S, Eiras S, and González-Juanatey JR. Combined sodium-glucose-transporters inhibitors and glucagon-like-peptide receptor agonist compared with monotherapy improves long-term survival: A real-world registry. Am J Med. (2024) 137:761–769.e1. doi: 10.1016/j.amjmed.2024.04.032 | eng |
dcterms.references | Marfella R, Prattichizzo F, Sardu C, Rambaldi PF, Fumagalli C, Marfella LV, et al. GLP-1 receptor agonists-SGLT-2 inhibitors combination therapy and cardiovascular events after acute myocardial infarction: an observational study in patients with type 2 diabetes. Cardiovasc Diabetol. (2024) 23:10. doi: 10.1186/s12933-023-02118- | eng |
dcterms.references | Simms-Williams N, Treves N, Yin H, Lu S, Yu O, Pradhan R, et al. Effect of combination treatment with glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors on incidence of cardiovascular and serious renal events: population based cohort study. BMJ. (2024) 385:e078242. doi: 10.1136/bmj-2023-078242 | eng |
dcterms.references | Marx N, Deanfield JE, Mann JFE, Arechavaleta R, Bain SC, Bajaj HS, et al. Oral semaglutide and cardiovascular outcomes in people with type 2 diabetes, according to SGLT2i use: prespecified analyses of the SOUL randomized trial. Circulation. (2025) 151:1639–50. doi: 10.1161/CIRCULATIONAHA.125.074545 | eng |
oaire.version | info:eu-repo/semantics/publishedVersion |