Herramienta tecnológica portátil para favorecer el monitoreo y control de la presión arterial
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
dc.contributor.advisor | Méndez Torrenegra, Fernando | |
dc.contributor.advisor | Ochoa Pertuz, Carlos | |
dc.contributor.author | Rodríguez Barrios, Vanessa Susana | |
dc.date.accessioned | 2022-01-28T18:40:28Z | |
dc.date.available | 2022-01-28T18:40:28Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Se observa que la hipertensión arterial es una enfermedad de alto riesgo, pues es una de las principales causas de muerte en el mundo, ya que al ser una enfermedad circulatoria puede causar daños en diferentes órganos del cuerpo, siendo los más comunes el cerebro y el corazón, por lo que un hipertenso puede tener ataques cerebro o cardiovasculares. Asimismo, la hipertensión arterial tampoco tiene cura, pero debe ser tratada minuciosamente, por medio de monitoreo de los signos vitales (principalmente la presión arterial), y de incluso más variables. También se considera dentro del tratamiento que el paciente pueda realizar autocuidado y telemonitoreo en casa, pues existe una alta tasa de ausentismo en los centros de salud. Para lo anterior se han realizado investigaciones recientes que han creado y probado diferentes herramientas tecnológicas como dispositivos digitales o aplicaciones móviles que puedan mantener al paciente monitoreado y controlado diariamente, en algunos incluso en tiempo real. Nótese que la tendencia actual está en migrar el procesamiento hacia el dispositivo, sin embargo, los algoritmos actuales requieren niveles de procesamiento y memoria con exigencias superiores a la que pueden brindar una herramienta portátil. Desde el enfoque del diseño, es necesario determinar las arquitecturas algorítmicas adecuadas, en el contexto de las restricciones de funcionamiento que manejan los dispositivos wearables de salud. | spa |
dc.description.abstract | It is observed that arterial hypertension is a high-risk disease, and of the main causes of death in the world, it’s classified as a circulatory disease and it can cause damage to different organs of the body, most commonly being the brain and the heart, so that a hypertensive person can suffer from strokes or cardiovascular attacks. Arterial hypertension has no cure, it must be treated thoroughly by monitoring vital signs (mainly blood pressure) and even more variables. It is also considered within the treatment that the patient can perform self-care and telemonitoring at home, since there is a high rate of absenteeism in health centers. For this, a recent research has been carried out and also tested different technological tools such as digital devices or mobile applications that can keep the patient monitored and controlled daily, and in some cases, in real time. Nowadays the current trend is to migrate the processing of data to the device, however, current algorithms require levels of processing and memory with higher capacities than a portable tool can provide. From the design approach, it is necessary to determine the appropriate algorithmic architectures, in the context of the operating restrictions handled by wearable health devices. This proposal presents the design and development of an alternative solution, which, from computer science, allows estimating the presence of arterial hypertension. The design context is the use of low-cost hardware, easy access and limited level of processing | eng |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/9324 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ingenierías | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Presión arterial | spa |
dc.subject | Hipertensión | spa |
dc.subject | Monitoreo | spa |
dc.subject | Control | spa |
dc.subject | Herramienta Portátil | spa |
dc.subject | Deep Learning | eng |
dc.subject | CNN | eng |
dc.subject | Blood Pressure | eng |
dc.subject | Hypertension | eng |
dc.subject | Monitoring | eng |
dc.subject | Control | eng |
dc.subject | Portable Tool | eng |
dc.title | Herramienta tecnológica portátil para favorecer el monitoreo y control de la presión arterial | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.spa | Trabajo de grado máster | spa |
dcterms.references | Acosta, G. A. (2018). de riesgo cardiovascular en pacientes con hipertensión arterial Evaluación de vitamina D ,. 1. https://search.proquest.com/openview/c540a3f8aaaa8d901f075b7e57ea9d51/1?pqorigsite=gscholar&cbl=1216408 | spa |
dcterms.references | Alberto, V. S. J., & Gutiérrez Rubby Casallas. (2006). Fundamentos de Programación: Aprendizaje Activo Basado en Casos: Un enfoque Moderno Usando Java, Uml, objetos y Eclipse. Pearson Educación. | spa |
dcterms.references | Alkhatib, M., Hafiane, A., & Vieyres, P. (2021). Merged 1D-2D Deep Convolutional Neural Networks for Nerve Detection in Ultrasound Images. 2020 25th International Conference on Pattern Recognition (ICPR), 4774–4780. https://doi.org/10.1109/ICPR48806.2021.9412988 | eng |
dcterms.references | Azizjon, M., Jumabek, A., & Kim, W. (2020). 1D CNN based network intrusion detection with normalization on imbalanced data. In 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 218–224. https://doi.org/10.1109/ICAIIC48513.2020.9064976 | eng |
dcterms.references | Baek, S., Jang, J., & Yoon, S. (2019). End-to-end blood pressure prediction via fully convolutional networks. IEEE Access, 7, 185458–185468. https://doi.org/10.1109/ACCESS.2019.2960844 | eng |
dcterms.references | Baque Quimis, Y. R., & Tomala Cantos, K. F. (2018). Tesis. Recuperado a partir de http://repositorio.ug.edu.ec/handle/redug/33824 | eng |
dcterms.references | Bernal, E., Campa, S., Carlos, G., & Espinilla, M. (2018). IoT y Ambientes Inteligentes – Aplicación a pacientes diabéticos e hipertensos en modalidad domiciliaria IoT by Smart Enviroments – Aplication to diabetic and hypertensive patients in domiciliary modality Technological model of monitoring and follow-up. | eng |
dcterms.references | Berrondo, A. (2020). DETECCIÓN DE CARRETERAS EN IMÁGENES DE RECONOCIMIENTO REMOTO MEDIANTE DEEP LEARNING. Grado de Ingeniería Informática. Computación. Facultad de Informática. Universidad del País Vasco. España. | spa |
dcterms.references | Briot, A., Viswanath, P., & Yogamani, S. (2018). Analysis of Efficient CNN Design Techniques for Semantic Segmentation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 776–77609. https://doi.org/10.1109/CVPRW.2018.00109 | eng |
dcterms.references | Bui, K., Oh, H., Yi, H. (2020). "Traffic Density Classification Using Sound Datasets: An Empirical Study on Traffic Flow at Asymmetric Roads," in IEEE Access, vol. 8, pp. 125671-125679, 2020, doi: 10.1109/ACCESS.2020.30079 | eng |
dcterms.references | Bui, N., Pham, N., Barnitz, J. J., Zou, Z., Nguyen, P., Truong, H., Kim, T., Farrow, N., Nguyen, A., Xiao, J., Deterding, R., Dinh, T., & Vu, T. (2019). eBP : A Wearable System For Frequent and Comfortable Blood Pressure Monitoring From User ’ s Ear. The 25th Annual International Conference on Mobile Computing and Networking, 53. | eng |
dcterms.references | Buldakova, T. I., & Sokolova, A. V. (2019). Network Services for Interaction of the Telemedicine System Users. 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA), 387–391. https://doi.org/10.1109/SUMMA48161.2019.8947552 | eng |
dcterms.references | Burton, W. (2019). 2D or 3D? A Simple Comparison of Convolutional Neural Networks for Automatic Segmentation of Cardiac Imaging. Towards Data Science. Obtenido de https://towardsdatascience.com/2d-or-3d-a-simple-comparison-of-convolutional-neuralnetworks-for-automatic-segmentation-of-625308f52aa7 | eng |
dcterms.references | Cardona Arias, J., & LLanes Agudelo, O. (2013). Hipertensión arterial y sus factores de riesgo en indígenas Emberá-Cham. Revista CES Medicina, 27(1), 31–43. | spa |
dcterms.references | Carek, A. M., & Inan, O. T. (2017). Robust Sensing of Distal Pulse Waveforms on a Modified Weighing Scale for Ubiquitous Pulse Transit Time Measurement. IEEE Transactions on Biomedical Circuits and Systems, 11(4), 765–772. https://doi.org/10.1109/TBCAS.2017.2683801 | eng |
dcterms.references | Carek, A. M., Jung, H., & Inan, O. T. (2020). A Reflective Photoplethysmogram Array and Channel Selection Algorithm for Weighing Scale Based Blood Pressure Measurement. IEEE Sensors Journal, 20(7), 3849–3858. https://doi.org/10.1109/JSEN.2019.2960063 | eng |
dcterms.references | Carrizo, E. (2018, August 30). Cómo la tecnología y la conectividad cambiará a la medicina en los próximos años. La Tercera. http://ezproxy.unisimon.edu.co/newspapers/cómo-latecnología-y-conectividad-cambiará/docview/2289221964/se-2?accountid=45648 | spa |
dcterms.references | Castillo, O. D. D., Ayala, L. J. P., Perez, A. L. C., Jimenez, J. M. C., Castano, Y. L. C., & Munoz-Sarmiento, D. M. (2019). Supervised learning system for detection of cardiac arrhythmias based on electrocardiographic data. 2019 IEEE International Conference on E-Health Networking, Application & Services (HealthCom), 1–4. https://doi.org/10.1109/HealthCom46333.2019.9009601 | eng |
dcterms.references | Caulfield, B. M., and S. C. Donnelly. May, 2013. “What Is Connected Health and Why Will It Change Your Practice?” Quarterly Journal of Medicine 106 (8): 703–707. | eng |
dcterms.references | Cerrato, P., & Halamka, J. (2019). Mobile Apps. The Transformative Power of Mobile Medicine, 69–88. https://doi.org/10.1016/b978-0-12-814923-2.00004-0 | eng |
dcterms.references | Chan, Cooper, Hosanee, Welykholowa, Kyriacou, Zheng, Allen, Abbott, Lovell, Fletcher, & Elgendi. (2019). Multi-Site Photoplethysmography Technology for Blood Pressure Assessment: Challenges and Recommendations. Journal of Clinical Medicine, 8(11), 1827. https://doi.org/10.3390/jcm8111827 | eng |
dcterms.references | Chandrasekhar, A., Yavarimanesh, M., Natarajan, K., Hahn, J. O., & Mukkamala, R. (2020). PPG Sensor Contact Pressure Should Be Taken into Account for Cuff-Less Blood Pressure Measurement. IEEE Transactions on Biomedical Engineering, 67(11), 3134– 3140. https://doi.org/10.1109/TBME.2020.2976989 | eng |
dcterms.references | Chaubey, V., Nair, M. S., & Pillai, G. N. (2019). Gene Expression Prediction Using a Deep 1D Convolution Neural Network. 2019 IEEE Symposium Series on Computational Intelligence (SSCI), 1383–1389. https://doi.org/10.1109/SSCI44817.2019.9002669 | eng |
dcterms.references | Che, X., Li, M., Kang, W., Lai, F., & Wang, J. (2019). Continuous Blood Pressure Estimation from Two-Channel PPG Parameters by XGBoost. 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2707–2712. https://doi.org/10.1109/ROBIO49542.2019.8961600 | eng |
dcterms.references | Chen, M. (2018). “Presión Sanguínea”. A.D.A.M. Inc. Biblioteca Nacional de Medicina de Estados Unidos (NIH). Obtenido de MedlinePlus: https://medlineplus.gov/spanish/ency/esp_imagepages/9124.htm | spa |
dcterms.references | Chen, X., Zhu, J., Jiang, J., & Tsui, C. Y. (2020). Tight compression: Compressing CNN model tightly through unstructured pruning and simulated annealing based permutation. Proceedings - Design Automation Conference, 2020-July, 1–6. https://doi.org/10.1109/DAC18072.2020.9218701 | eng |
dcterms.references | Chen, Y., & Chen, W. (2018). Finger ECG based Two-phase Authentication Using 1D Convolutional Neural Networks. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 336–339. https://doi.org/10.1109/EMBC.2018.8512263 | eng |
dcterms.references | Cheuk, K. W., Anderson, H., Agres, K., & Herremans, D. (2020). nnAudio: An on-the-Fly GPU Audio to Spectrogram Conversion Toolbox Using 1D Convolutional Neural Networks. IEEE Access, 8, 161981–162003. https://doi.org/10.1109/ACCESS.2020.3019084 | eng |
dcterms.references | Clara, F., Casarini, A., Blanco G., Corral, P., Tusman, G., Scandura, A., Meschino, G. (2010). Identificación de hipertensos recientes mediante análisis de onda de pulso radial. Revista de la Federación Argentina de Cardiología. Recuperado el 2 de diciembre de 2021 de ResearchGate en https://www.researchgate.net/publication/224048693_IDENTIFICACION_DE_HIPERTE NSOS_RECIENTES_MEDIANTE_ANALISIS_DE_ONDA_DE_PULSO_RADIAL | spa |
dcterms.references | Coelho, J. C., Ferretti-Rebustini, R. E. de L., Suemoto, C. K., Leite, R. E. P., Jacob-Filho, W., & Pierin, A. M. G. (2019). Hypertension is the underlying cause of death assessed at the autopsy of individuals. Revista Da Escola de Enfermagem Da U S P, 53, e03457. https://doi.org/10.1590/S1980-220X2018006103457 | eng |
dcterms.references | Cuidemos Nuestro Corazón. (2019). Liga Colombiana Contra El Infarto y La Hipertensión. https://colombiacorazon.com/2019/08/28/cuidemos-nuestro-corazon-2/ | spa |
dcterms.references | De, I., Newswire, P. R., America, S., York, N., & York, N. (2005). Los principales expertos en enfermedades cardiovasculares instan a la comunidad médica a practicar una gestión de riesgo cardiovascular completa. 3–5. | spa |
dcterms.references | DEGBEDZUI, D. K., YÜKSEL, M. E., & Farah Malik, A. E. (2020). Preterm Birth Prediction by Classification of Spectral Features of Electrohysterography Signals using 1D Convolutional Neural Network: Preliminary Results. 2020 28th Signal Processing and Communications Applications Conference (SIU), 1–4. https://doi.org/10.1109/SIU49456.2020.9302195 | eng |
dcterms.references | Deng, Y. (2019). Deep Learning on Mobile Devices-A Review. https://doi.org/10.13140/RG.2.2.15012.12167 | eng |
dcterms.references | Di Rienzo, M., Vaini, E., Castiglioni, P., Merati, G., Meriggi, P., Parati, G., Faini, A., & Rizzo, F. (2013). Wearable seismocardiography: Towards a beat-by-beat assessment of cardiac mechanics in ambulant subjects. Autonomic Neuroscience, 178(1–2), 50–59. https://doi.org/10.1016/j.autneu.2013.04.005 | eng |
dcterms.references | Dodge, Y. (2003). The Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9 | eng |
dcterms.references | Ech-Cherif, A., Misbhauddin, M., & Ech-Cherif, M. (2019). Deep Neural Network Based Mobile Dermoscopy Application for Triaging Skin Cancer Detection. 2nd International Conference on Computer Applications and Information Security, ICCAIS 2019, 1–6. https://doi.org/10.1109/CAIS.2019.8769517 | eng |
dcterms.references | Elnour, M., Meskin, N., & Khan, K. M. (2020). Hybrid Attack Detection Framework for Industrial Control Systems using 1D-Convolutional Neural Network and Isolation Forest. 2020 IEEE Conference on Control Technology and Applications (CCTA), 877–884. https://doi.org/10.1109/CCTA41146.2020.9206394 | eng |
dcterms.references | Eren, L. (2017). Bearing Fault Detection by One-Dimensional Convolutional Neural Networks. Mathematical Problems in Engineering, 2017, 1–9. https://doi.org/10.1155/2017/8617315 | eng |
dcterms.references | Esmeralda Vazquez, Maria Guadalupe Treviño, Cinthia Patricia Ibarra Gonzalez, Olga Lidia Banda Gonzalez, Vásquez Salazar, María Guadalupe Rangel trejo, N. E. (2011). Control metabólico de los adultos mayores con padecimientos de. 1, 22–29. | spa |
dcterms.references | Farmacéutico, G. C., Mar, M. M., Práctica, G., Implantar, P., En, S., Farmacia, S. U., La, C., & La, V. O. Z. D. E. (2013). Ofrecer servicios para generar demanda. 1–3. | spa |
dcterms.references | Ferroukhi, M., Acef, L., Attari, M., & Ouahabi, A. (2019). Robust and reliable PPG and ECG integrated biosensor. 2019 6th International Conference on Image and Signal Processing and Their Applications (ISPA), 1–5. https://doi.org/10.1109/ISPA48434.2019.8966922 | eng |
dcterms.references | Franquis, B. (2017). Hipertensos están más expuestos a los infartos. Nacional, 1–2 | spa |
dcterms.references | Gallardo, A., Franco, P., Urtubey, X. (2019). “Experiencia de pacientes con diabetes e hipertensión que participan en un programa de telemonitoreo”. Rev CES Med 2019; 33(1): 31-41. | spa |
dcterms.references | Galván Vargas, C. G., Hernández Jiménez, L., Martín Hernández, P., Silva Rendón, A. J., Ramírez, J. M., Romo Cordero, X., & Rapalo Carbajal, D. N. (2019). Valoración de la variabilidad de la frecuencia cardiaca en pacientes con hipertensión arterial sistémica tratados mediante ablación renal por radiofrecuencia. Serie de casos. In Rev. sanid. mil (pp. 5–6). | spa |
dcterms.references | Garg, P., Davenport, E., Murugesan, G., Wagner, B., Whitlow, C., Maldjian, J., & Montillo, A. (2017). Automatic 1D convolutional neural network-based detection of artifacts in MEG acquired without electrooculography or electrocardiography. 2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI), 1–4. https://doi.org/10.1109/PRNI.2017.7981506 | eng |
dcterms.references | Ghoshachandra, P., Limkriengkrai, C., Wimonsakcharoen, P., & Tangsripairoj, S. (2017). oHealth: A self-care android application for senior citizens with hypertension. 6th ICT International Student Project Conference: Elevating Community Through ICT, ICT-ISPC 2017, 2017-Janua, 1–5. https://doi.org/10.1109/ICT-ISPC.2017.8075318 | eng |
dcterms.references | Giannakakis, G., Trivizakis, E., Tsiknakis, M., & Marias, K. (2019). A novel multi-kernel 1D convolutional neural network for stress recognition from ECG. 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos, ACIIW 2019, 273–276. https://doi.org/10.1109/ACIIW.2019.8925020 | eng |
dcterms.references | Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23), e215–e220. https://doi.org/10.1161/01.CIR.101.23.e215 | eng |
dcterms.references | Gómez García, M. T., Troncoso Acevedo, M. F., Rodriguez Guzmán, M., Alegre de Montaner, R., Fernández Fernández, B., del Río Camacho, G., & González-Mangado, N. (2014). ¿Puede ser el tiempo de tránsito de pulso útil para detectar hipertensión arterial en pacientes remitidos a la unidad de sueño? Archivos de Bronconeumología, 50(7), 278– 284. https://doi.org/10.1016/j.arbres.2013.12.001 | eng |
dcterms.references | Han, Q., Liu, L., Zhao, Y., & Zhao, Y. (2020). Ecological Big Data Adaptive Compression Method Combining 1D Convolutional Neural Network and Switching Idea. IEEE Access, 8, 20270–20278. https://doi.org/10.1109/ACCESS.2020.2969216 | eng |
dcterms.references | Harvard Men’s Health Watch. (2019). Blood pressure and your brain. Harvard Health Publishing. Harvard Medical School. https://www.health.harvard.edu/heart-health/bloodpressure-and-your-brain | eng |
dcterms.references | Hasan, M. A., Munia, E. J., Pritom, S. K., Setu, M. H., Ali, M. T., & Fahim, S. C. (2020). Cardiac Arrhythmia Detection in an ECG Beat Signal Using 1D Convolution Neural Network. 2020 IEEE Region 10 Symposium (TENSYMP), 352–357. https://doi.org/10.1109/TENSYMP50017.2020.9230581 | eng |
dcterms.references | Helsinki (2018). “Crean en Finlandia una aplicación móvil que detecta infartos de miocardio”. EEE, La Razón Digital. Obtenido de http://www.larazon.com/index.php?_url=/sociedad/Ciencia_tecnologia/Aplicacion-movil-detectainfartos-miocardio-Finlandia_0_2590540937.html | spa |
dcterms.references | Hendrick, H., Zhi-Hao, W., Hsien-I, C., Pei-Lun, C., & Gwo-Jia, J. (2019). IOS mobile APP for tuberculosis detection based on chest X-ray image. Proceedings of ICAITI 2019 - 2nd International Conference on Applied Information Technology and Innovation: Exploring the Future Technology of Applied Information Technology and Innovation, 122–125. https://doi.org/10.1109/ICAITI48442.2019.8982152 | eng |
dcterms.references | Hermida, A.; López, J., Calvo, C. (2012). Medida no invasiva de la presión arterial central mediante tonometría por aplanamiento. Análisis de la onda de pulso. Unidad de Hipertensión y Riesgo Vascular. Servicio de Medicina Interna. Hospital Clínico Universitario de Santiago de Compostela (CHUS). SERGAS. Santiago de Compostela. Galicia Clínica, Sociedade Galega de Medicina Interna. Galicia Clin 2012; 73 (4): 161- 168. Recuperado el 2 de diciembre de 2021 de https://galiciaclinica.info/pdf/21/389.pdf | spa |
dcterms.references | Heydari, F., Ebrahim, M. P., Redoute, J.-M., Joe, K., Walker, K., & Rasit Yuce, M. (2020). A chest-based continuous cuffless blood pressure method: Estimation and evaluation using multiple body sensors. Information Fusion, 54, 119–127. https://doi.org/10.1016/j.inffus.2019.07.001 | eng |
dcterms.references | Hjellvik, V., Sakshaug, S., & Strøm, H. (2012). Body mass index, triglycerides, glucose, and blood pressure as predictors of type 2 diabetes in a middle-aged Norwegian cohort of men and women. Clinical epidemiology, 4, 213–224. https://doi.org/10.2147/CLEP.S31830 | eng |
dcterms.references | Hoang, N. S., Cai, Y., Lee, C.-W., Yang, Y. O., Chui, C.-K., & Heng Chua, M. C. (2019). Gait classification for Parkinson’s Disease using Stacked 2D and 1D Convolutional Neural Network. 2019 International Conference on Advanced Technologies for Communications (ATC), 44–49. https://doi.org/10.1109/ATC.2019.8924567 | eng |
dcterms.references | Hooman Sedghamiz (2021). Complete Pan Tompkins Implementation ECG QRS detector (https://www.mathworks.com/matlabcentral/fileexchange/45840-complete-pan-tompkinsimplementation-ecg-qrs-detector), MATLAB Central File Exchange. Retrieved September 2, 2021. | eng |
dcterms.references | Hosanee, M., Chan, G., Welykholowa, K., Cooper, R., Kyriacou, P. A., Zheng, D., Allen, J., Abbott, D., Menon, C., Lovell, N. H., Howard, N., Chan, W.-S., Lim, K., Fletcher, R., Ward, R., & Elgendi, M. (2020). Cuffless Single-Site Photoplethysmography for Blood Pressure Monitoring. Journal of Clinical Medicine, 9(3), 723. https://doi.org/10.3390/jcm9030723 | eng |
dcterms.references | Hossain Shuvo, M. M., Ahmed, N., Nouduri, K., & Palaniappan, K. (2020). A hybrid approach for human activity recognition with support vector machine and 1d convolutional neural network. Proceedings - Applied Imagery Pattern Recognition Workshop, 2020-Octob. https://doi.org/10.1109/AIPR50011.2020.9425332 | eng |
dcterms.references | Hui, Y., Yin, Z., Wu, M., & Li, D. (2021). Wearable Devices Acquired ECG Signals Detection Method Using 1D Convolutional Neural Network. 2021 15th International Symposium on Medical Information and Communication Technology (ISMICT), 81–85. https://doi.org/10.1109/ISMICT51748.2021.9434935 | eng |
dcterms.references | Hurtado de Barrera, Jacqueline & Morales, Marcos. (2000). Metodología de la investigación holística | spa |
dcterms.references | Hurtado de Barrera, J. (2010). Metodología de la investigación: guía para la comprensión holística de la ciencia (4 ed.). Caracas: Quirón Ediciones | spa |
dcterms.references | Hurtado de Barrera, J. (2016). Metodología de la Investigacion Holistica. Caracas,(Venezuela): Quiron Editores-CIEA Sypal. | spa |
dcterms.references | Ibrahim, B., & Jafari, R. (2019). Cuffless Blood Pressure Monitoring from an Array of Wrist Bio-Impedance Sensors Using Subject-Specific Regression Models: Proof of Concept. IEEE Transactions on Biomedical Circuits and Systems, 13(6), 1723–1735. https://doi.org/10.1109/TBCAS.2019.2946661 | eng |
dcterms.references | Imran, A. S., Kastrati, Z., Svendsen, T. K., & Kurti, A. (2019). Text-Independent Speaker ID Employing 2D-CNN for Automatic Video Lecture Categorization in a MOOC Setting. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 273–277. https://doi.org/10.1109/ICTAI.2019.00046 | eng |
dcterms.references | Ince, T., Kiranyaz, S., Eren, L., Askar, M., & Gabbouj, M. (2016). Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks. IEEE Transactions on Industrial Electronics, 63(11), 7067–7075. https://doi.org/10.1109/TIE.2016.2582729 | eng |
dcterms.references | Janjua, G., Guldenring, D., Finlay, D., & McLaughlin, J. (2017). Wireless chest wearable vital sign monitoring platform for hypertension. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 676201, 821–824. https://doi.org/10.1109/EMBC.2017.8036950 | eng |
dcterms.references | Jeong I., Bychkov D., Searson P. C. (2019). "Wearable Devices for Precision Medicine and Health State Monitoring," in IEEE Transactions on Biomedical Engineering, vol. 66, no. 5, pp. 1242-1258, doi: 10.1109/TBME.2018.2871638. | eng |
dcterms.references | Jia, F., Majumdar, S., & Ginsburg, B. (2021). MarbleNet: Deep 1D Time-Channel Separable Convolutional Neural Network for Voice Activity Detection. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 6818– 6822. https://doi.org/10.1109/ICASSP39728.2021.9414470 | eng |
dcterms.references | John M. (2012). “Cómo medir la presión arterial en casa”. Las Guías Sumarias de los Consumidores. Eisenberg Center for Clinical Decisions and Communications Science. Obtenido de https://www.ncbi.nlm.nih.gov/books/NBK97819/ | spa |
dcterms.references | Johnson AEW, Pollard TJ, Shen L, Lehman L, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, and Mark RG. MIMIC-III, a freely accessible critical care database. Scientific Data (2016). DOI: 10.1038/sdata.2016.35. Recuperado el 2 de diciembre de 2021 de MIMIIC en https://archive.physionet.org/physiobank/database/mimic3wdb/ | eng |
dcterms.references | Julius S, Kaciroti N, Egan BM, Nesbitt S, Michelson EL. (2008) Trial of Preventing Hypertension (TROPHY) Investigators. J Am Soc Hypertens. 2008 Jan-Feb;2(1):39- 43. | eng |
dcterms.references | Kim, C.-S., Carek, A. M., Mukkamala, R., Inan, O. T., & Hahn, J.-O. (2015). Ballistocardiogram as Proximal Timing Reference for Pulse Transit Time Measurement: Potential for Cuffless Blood Pressure Monitoring. IEEE Transactions on Biomedical Engineering, 62(11), 2657–2664. https://doi.org/10.1109/TBME.2015.2440291 | eng |
dcterms.references | Kim, S.-H., & Han, G.-T. (2019). 1D CNN Based Human Respiration Pattern Recognition using Ultra Wideband Radar. 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 411–414. https://doi.org/10.1109/ICAIIC.2019.8669000 | eng |
dcterms.references | Kiranyaz, S., Gastli, A., Ben-Brahim, L., Al-Emadi, N., & Gabbouj, M. (2019). Real-Time Fault Detection and Identification for MMC Using 1-D Convolutional Neural Networks. IEEE Transactions on Industrial Electronics, 66(11), 8760–8771. https://doi.org/10.1109/TIE.2018.2833045 | eng |
dcterms.references | Kiranyaz, S., Ince, T., & Gabbouj, M. (2016). Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks. IEEE Transactions on Biomedical Engineering, 63(3), 664–675. https://doi.org/10.1109/TBME.2015.2468589 | eng |
dcterms.references | Kiranyaz, S., Ince, T., Hamila, R., & Gabbouj, M. (2015). Convolutional Neural Networks for patient-specific ECG classification. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2608–2611. https://doi.org/10.1109/EMBC.2015.7318926 | eng |
dcterms.references | Kirtana, R. N., & Lokeswari, Y. V. (2017). An IoT based remote HRV monitoring system for hypertensive patients. 2017 International Conference on Computer, Communication and Signal Processing (ICCCSP), 1–6. https://doi.org/10.1109/ICCCSP.2017.7944086 | eng |
dcterms.references | Kurowski, A., Zaporowski, S., & Czyzewski, A. (2020). 1D convolutional context-aware architectures for acoustic sensing and recognition of passing vehicle type. 2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 142–145. https://doi.org/10.23919/SPA50552.2020.9241256 | eng |
dcterms.references | Kvedar, J., Coye, M. J., & Everett, W. (2014). Connected health: a review of technologies and strategies to improve patient care with telemedicine and telehealth. Health affairs (Project Hope), 33(2), 194–199. https://doi.org/10.1377/hlthaff.2013.0992 | eng |
dcterms.references | La Organización Panamericana de la Salud y La Liga Mundial de la Hipertensión. (2018). Marco de Monitoreo y Evaluación para Programas de Control de Hipertensión. PAHO, iris. Obtenido de http://iris.paho.org/xmlui/handle/123456789/34910 | spa |
dcterms.references | Lamonaca, F., Carni, D. L., Spagnuolo, V., Grimaldi, G., Bonavolonta, F., Liccardo, A., Moriello, R. S. Lo, & Colaprico, A. (2019). A New Measurement System to Boost the IoMT for the Blood Pressure Monitoring. 2019 IEEE International Symposium on Measurements and Networking, M and N 2019 - Proceedings, 1–6. https://doi.org/10.1109/IWMN.2019.8805016 | eng |
dcterms.references | Landry C., Peterson S. D., Arami A. (2019). "Estimation of the Blood Pressure Waveform using Electrocardiography*," 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, pp. 7060-7063, doi: 10.1109/EMBC.2019.8856399 | eng |
dcterms.references | León, G., López, M., & Díaz, C. (2016). Técnica para una correcta toma de la presión arterial en el paciente ambulatorio. Revista de La Facultad de Medicina (México, 59(3), 49–55. | spa |
dcterms.references | Liau, J. C., & Ho, C. Y. (2019). Intelligence IoT(Internal of Things) Telemedicine Health Care Space System for the Elderly Living Alone. Proceedings of 2019 IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability, ECBIOS 2019, 13–14. https://doi.org/10.1109/ECBIOS.2019.8807821 | eng |
dcterms.references | Lim, C., Kim, J.-Y., & Nam, Y. (2020). ECG Signal Analysis for Patient with Metabolic Syndrome based on 1D-Convolution Neural Network. 2020 International Conference on Computational Science and Computational Intelligence (CSCI), 731–733. https://doi.org/10.1109/CSCI51800.2020.00134 | eng |
dcterms.references | Liu J., Yan B. P., Zhang Y., Ding X., Su P., Zhao N. (2019). "Multi-Wavelength Photoplethysmography Enabling Continuous Blood Pressure Measurement With Compact Wearable Electronics," in IEEE Transactions on Biomedical Engineering, vol. 66, no. 6, pp. 1514-1525, doi: 10.1109/TBME.2018.2874957 | eng |
dcterms.references | Lo Giudice, M., Varone, G., Ieracitano, C., Mammone, N., Bruna, A. R., Tomaselli, V., & Morabito, F. C. (2020). 1D Convolutional Neural Network approach to classify voluntary eye blinks in EEG signals for BCI applications. Proceedings of the International Joint Conference on Neural Networks, Ccd. https://doi.org/10.1109/IJCNN48605.2020.9207195 | eng |
dcterms.references | Manrique-Abril, F. G., Herrera-Amaya, G. M., Manrique-Abril, R. A., & Beltrán-Morera, J. (2018). Costos de un programa de atención primaria en salud para manejo dela hipertensión arterial en Colombia. Revista de Salud Pública, 20(4), 465–471. https://doi.org/10.15446/rsap.v20n4.64679 | spa |
dcterms.references | Manurung, B. E., Munggaran, H. R., Ramadhan, G. F., & Koesoema, A. P. (2019). Noninvasive blood glucose monitoring using near-infrared spectroscopy based on internet of things using machine learning. IEEE Region 10 Humanitarian Technology Conference, R10-HTC, 2019-Novem, 5–11. https://doi.org/10.1109/R10-HTC47129.2019.9042479 | eng |
dcterms.references | Martín F., Poo R. (2010). “Generalidades sobre domotica e inmótica” .Sensores para Domótica e Inmótica. Ingeniería de Sistemas y Automática, Universidad de Oviedo, España. Obtenido de http://isa.uniovi.es/docencia/AutomEdificios/transparencias/sensores.pdf | spa |
dcterms.references | Martínez Bello, M. (1995). Efectos del ruido por exposición laboral. Salud de Los Trabajadores, 3(2), 93–101. | spa |
dcterms.references | McLuhan M.l y B.R. Powers. (1993). La Aldea Global. (2 ed.) Barcelona: Gedisa, 203 p. | spa |
dcterms.references | Mehmood, K., Imran, H. A., & Latif, U. (2020). HARDenseNet: A 1D DenseNet Inspired Convolutional Neural Network for Human Activity Recognition with Inertial Sensors. 2020 IEEE 23rd International Multitopic Conference (INMIC), 1–6. https://doi.org/10.1109/INMIC50486.2020.9318067 | eng |
dcterms.references | Microsoft (2019). Seeing AI: Making the visual world more accessible. Recuperado el 11 de diciembre de 2021 en https://www.youtube.com/watch?v=DybczEDGKE&ab_channel=Microsoft) | eng |
dcterms.references | Ministerio de Salud Pública del Ecuador (2019). Hipertensión Arterial. Guía de Práctica Clínica (GPC). Quito, Ecuador. Obtenido de https://www.salud.gob.ec/wpcontent/uploads/2019/06/gpc_hta192019.pdf | spa |
dcterms.references | Ministerio de Salud. (2017). DÍA MUNDIAL DE L A HIPERTENSIÓN ARTERIAL Colombia. 4, 11. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENT/diamundial-hipertension-2017.pdf | spa |
dcterms.references | MINTIC. (2017). Cifras Primer Trimestre de 2017. Ministerio de Las Telecomunicaciones, Colombia., 1–49. https://colombiatic.mintic.gov.co/602/articles-55212_archivo_pdf.pdf | spa |
dcterms.references | Mishra, A. (2018). Metrics to Evaluate your Machine Learning Algorithm. Towards Data Science. Recuperado el 2 de diciembre de 2021 de https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithmf10ba6e38234 | spa |
dcterms.references | Mishra, B., & Thakkar, N. (2017). Cuffless blood pressure monitoring using PTT and PWV methods. 2017 International Conference on Recent Innovations in Signal Processing and Embedded Systems (RISE), 395–401. https://doi.org/10.1109/RISE.2017.8378188 | eng |
dcterms.references | Mollura, M., Maria Polo, E., Lehman, L., & Barbieri, R. (2020). Assessment of Heart Rate Variability derived from Blood Pressure Pulse Recordings in Intensive Care Unit Patients. 2020 Computing in Cardiology Conference (CinC), 47, 1–4. https://doi.org/10.22489/cinc.2020.423 | eng |
dcterms.references | Moody, B., Moody, G., Villarroel, M., Clifford, G., & Silva, I. (2020). MIMIC-III Waveform Database Matched Subset (version 1.0). PhysioNet. https://doi.org/10.13026/c2294b | eng |
dcterms.references | Moody, G. (2019). WFDB Applications Guide. Tenth Edition. Harvard-MIT Division of Health Sciences and Technology. MIT Room E25-505A, Cambridge, MA 02139, USA. Recuperado de https://physionet.org/physiotools/wag/ | eng |
dcterms.references | Moshkova, A., Samorodov, A., Ivanova, E., & Fedotova, E. (2020). High Accuracy Discrimination of Parkinson’s Disease from Healthy Controls by Hand Movements Analysis Using LeapMotion Sensor and 1D Convolutional Neural Network. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), 62–65. https://doi.org/10.1109/USBEREIT48449.2020.9117736 | eng |
dcterms.references | Mousavi S. S., Charmi M., Firouzmand M., Hemmati M., Moghadam M. (2019). "A New Approach Based on Dynamical Model of The ECG Signal to Blood Pressure Estimation," 4th International Conference on Pattern Recognition and Image Analysis (IPRIA), Tehran, Iran, pp. 210-215, doi: 10.1109/PRIA.2019.8786016. | eng |
dcterms.references | Moya, L. (2018). Prologue. Revista Colombiana de Cardiologia, 25, 2–3. https://doi.org/10.1016/j.rccar.2018.10.002 | spa |
dcterms.references | Muralidhar, E. S., Gowtham, T. S., Jain, A., & Padmaveni, K. (2020). Development of Health Monitoring Application using Machine Learning on Android Platform. 2020 5th International Conference on Communication and Electronics Systems (ICCES), Icces, 1076–1085. https://doi.org/10.1109/ICCES48766.2020.9137969 | eng |
dcterms.references | Naciones Unidas (2020). "Envejecimiento". Asuntos que nos importan. Obtenido de las Naciones Unidas: https://www.un.org/es/sections/issues-depth/ageing/index.html | spa |
dcterms.references | Newman, J. L., Phillips, J. S., & Cox, S. J. (2021). 1D Convolutional Neural Networks for Detecting Nystagmus. IEEE Journal of Biomedical and Health Informatics, 25(5), 1814– 1823. https://doi.org/10.1109/JBHI.2020.3025381 | eng |
dcterms.references | Nidigattu, G. R., Mattela, G., & Jana, S. (2020). Non-invasive modeling of heart rate and blood pressure from a photoplethysmography by using machine learning techniques. 2020 International Conference on COMmunication Systems and NETworkS, COMSNETS 2020, 7–12. https://doi.org/10.1109/COMSNETS48256.2020.9027457 | eng |
dcterms.references | Nishikawa, K., Hirakawa, R., Kawano, H., Nakashi, K., & Nakatoh, Y. (2021). Detecting System Alzheimer’s Dementia by 1d CNN-LSTM in Japanese Speech. 2021 IEEE International Conference on Consumer Electronics (ICCE), 1–3. https://doi.org/10.1109/ICCE50685.2021.9427692 | eng |
dcterms.references | Notimex, A., City, M., & City, M. (2018). Telemedicina combina salud y tecnología. May, 1–2. | spa |
dcterms.references | Novack, G. (2020). Building a One Hot Encoding Layer with TensorFlow. Towards Data Science. Recuperado el 2 de diciembre de 2021 de https://towardsdatascience.com/building-a-one-hot-encoding-layer-with-tensorflowf907d686bf39 | eng |
dcterms.references | Organización Mundial de la Salud. (2015). "Organización Mundial de la Salud. Informe mundial sobre el envejecimiento y la salud. Ginebra: OMS; 2015. Disponible en: http://apps.who.int/iris/bitstream/10665/186466/1/9789240694873_spa.pdf | spa |
dcterms.references | Organización Mundial de la Salud. (2017, 17 mayo). Enfermedades cardiovasculares. https://www.who.int/es/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) | spa |
dcterms.references | Palatini P., Rosei EA, Casiglia E., Chalmers J., Ferrari R., Grassi G., Inoue T., Jelakovic B., Jensen M. T., Julius S., Kjeldsen S. G., Mancia G., Parati G., Pauletto P., Stella A., Zanchetti A. (2016). Management of the hypertensive patient with elevated heart rate: Statement of the Second Consensus Conference endorsed by the European Society of Hypertension. J Hypertens;34(5):813-821. doi:10.1097/HJH.0000000000000865 | eng |
dcterms.references | Pallas, R., Casanella, R., Gómez, J. (2017). Método y aparato para estimar el tiempo de tránsito del pulso aórtico a partir de intervalos temporales medidos entre puntos fiduciales del balistocardiograma. Oficina Española de Patentes y Marcas. España. Número de publicación 2 607 721. UNIVERSITAT POLITÉCNICA DE CATALUNYA. Recuperado de Google Patents el 31 de agosto de 2021 en https://patents.google.com/patent/ES2607721A1/es | spa |
dcterms.references | Pardasani, R., & Awasthi, N. (2020). Classification of 12 Lead ECG Signal Using 1DConvolutional Neural Network With Class Dependent Threshold. 2020 Computing in Cardiology, 1–4. https://doi.org/10.22489/CinC.2020.277 | eng |
dcterms.references | Patel, P., Ordunez, P., DiPette, D., Escobar, M. C., Hassell, T., Wyss, F., Hennis, A., Asma, S., & Angell, S. (2016). Improved Blood Pressure Control to Reduce Cardiovascular Disease Morbidity and Mortality: The Standardized Hypertension Treatment and Prevention Project. Journal of Clinical Hypertension, 18(12), 1284–1294. https://doi.org/10.1111/jch.12861 | eng |
dcterms.references | Peco, R. (2020). ¿QUÉ ES UNA ONDA DE PRESIÓN ARTERIAL? EL DR. JOSÉ MIGUEL ALONSO IÑIGO RESPONDE LA PREGUNTA. ANESTESIA Y CUIDADOS INTENSIVOS,ARTÍCULOS, CUIDADOS INTENSIVOS. VYGON. Campus VYGON. Recuperado el 2 de diciembre de 2021 de https://campusvygon.com/onda-de-presionarterial-dr-alonso/ | spa |
dcterms.references | Pelletier, C., Webb, G., & Petitjean, F. (2019). Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series. Remote Sensing, 11, 523. https://doi.org/10.3390/rs11050523 | eng |
dcterms.references | Perez, A. D., Perez, A. R., Diaz, G. O., Gil, P. C., & Quiroz, E. N. (2017). Interacción dinámica de factores de riesgo epidemiológicos presentes en los trastornos hipertensivos del embarazo: Un estudio piloto. Salud Uninorte, 33(1), 27–38. | spa |
dcterms.references | Perti, A., Singh, M. P., Panwar, H., & Tyagi, H. (2020). Face Recognition from Surveillance Using Sequnetial CNN-Model. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 372–376. https://doi.org/10.1109/ICRITO48877.2020.9197916 | eng |
dcterms.references | Physionet (s.f.). Overview. Open databases. Recuperado de Physionet el 14/08/2021 de https://www.physionet.org/about/database/ | eng |
dcterms.references | Plazas, M. (2008). "Uso de ambientes virtuales y selección de parámetros de medidas en la aplicación para el tratamiento de fobias". Ingeniería y Desarrollo | spa |
dcterms.references | Proskurov, V., Kurmukov, A., Pisov, M., & Belyaev, M. (2021). Fast Lung Localization in Computed Tomography by a 1D Detection Network. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), 173–176. https://doi.org/10.1109/USBEREIT51232.2021.9455083 | eng |
dcterms.references | Puig M., Moreno C. (2011). “Cuidados y calidad de vida en Vilafranca del Penedès: los mayores de 75 y más años atendidos por el servicio de atención domiciliaria y sus cuidadores familiares”. Valoración de enfermería a una persona mayor atendida en atención domiciliaria. Obtenido de http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1134- 928X2011000300005&lang=es | spa |
dcterms.references | Puuronen S., Vasilyeva E., Pechenizkiy M. and Tesanovic A. (2010), "A holistic framework for understanding acceptance of Remote Patient Management (RPM) systems by nonprofessional users," IEEE 23rd International Symposium on Computer-Based Medical Systems (CBMS), Perth, WA, 2010, pp. 426-431, doi: 10.1109/CBMS.2010.6042682. | eng |
dcterms.references | Qayyum, A., Khan, M. K. A. A., Mazher, M., & Suresh, M. (2018). Classification of EEG Learning and Resting States using 1D-Convolutional Neural Network for Cognitive Load Assesment. 2018 IEEE Student Conference on Research and Development (SCOReD), 1– 5. https://doi.org/10.1109/SCORED.2018.8711150 | eng |
dcterms.references | Qihang Yao, Ruxin Wang, Xiaomao Fan, Jikui Liu, Ye Li. (2020). Multi-class Arrhythmia detection from 12-lead varied-length ECG using Attention-based Time-Incremental Convolutional Neural Network, Information Fusion, Volume 53, 2020, Pages 174-182, ISSN 1566-2535, https://doi.org/10.1016/j.inffus.2019.06.024. (https://www.sciencedirect.com/science/article/pii/S1566253518307632) | eng |
dcterms.references | Qiu, C., Wu, T., Redoute, J. M., & Yuce, M. R. (2019). A Wireless Wearable Sensor Patch for the Real-Time Estimation of Continuous Beat-to-Beat Blood Pressure. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 6842–6845. https://doi.org/10.1109/EMBC.2019.8857446 | eng |
dcterms.references | Qosim, A. L., Kurniawan, F., Bahruddin, U., Mubaraq, Z., Suhartono, & Faisal, M. (2021). Analysis Classification Opinion of Policy Government Announces Cabinet Reshuffle on YouTube Comments Using 1D Convolutional Neural Networks. 3rd 2021 East Indonesia Conference on Computer and Information Technology, EIConCIT 2021, 30–35. https://doi.org/10.1109/EIConCIT50028.2021.9431884 | eng |
dcterms.references | Quintero-Cruz, M. V., Mantilla-Morrón, M., & Urina-Triana, M. (2018). La importancia de la evaluación de la fragilidad en el adulto mayor con enfermedad cardiovascular. LATINOAMERICANA DE HIPERTENSIÓN, 13(4), 368–373. ttp://saber.ucv.ve/ojs/index.php/rev_lh/article/view/15732 | spa |
dcterms.references | RAE (2020). Paciente. Real Academia Española. DeL. Asociación de Academias de la Lengua Española. Diccionario de la lengua española. Edición Tricentenario. Actualización 2020. Obtenido de https://dle.rae.es/paciente | spa |
dcterms.references | Rastegar, S., GholamHosseini, H., & Lowe, A. (2020). Non-invasive continuous blood pressure monitoring systems: current and proposed technology issues and challenges. Physical and Engineering Sciences in Medicine, 43(1), 11–28. https://doi.org/10.1007/s13246-019- 00813-x | eng |
dcterms.references | Real Academia Española. Paciente, 2020. Diccionario de la lengua española. Consultado en https://dle.rae.es/paciente | spa |
dcterms.references | RICHTEK (2018). ECG/PPG Measurement Solution. Technical Documents, Design Support. AN057. RICHTEK Designer. Obtenido de https://www.richtek.com/Design%20Support/Technical%20Document/AN057 | eng |
dcterms.references | Sabree Al-Gayar, S. M., Marin, I., Almalchy, M., Goga, N., Al-Habeeb, N., & Taslitschi, C. (2020). Implementation of MediCare Social Media System. 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 1–8. https://doi.org/10.1109/ECAI50035.2020.9223255 | eng |
dcterms.references | Sadat Fazel, A. (2019). Procesado de señales biomédicas para la estimación de la presión arterial. Grado en Ingeniería en Tecnologías de la Telecomunicación. Universidad de Alcalá. Escuela Politécnica Superior. Biblioteca Universidad de Alcalá: http://hdl.handle.net/10017/39426 | spa |
dcterms.references | Sagga, D., Echtioui, A., Khemakhem, R., & Ghorbel, M. (2020). Epileptic Seizure Detection using EEG Signals based on 1D-CNN Approach. 2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 51–56. https://doi.org/10.1109/STA50679.2020.9329321 | eng |
dcterms.references | Sánchez, B., González, G. (2017). “Ausentismo y complicaciones de salud en usuarios de programas de hipertensión arterial de Santa Marta (Colombia)”. Salud Uninorte, Barranquilla, Colombia. Obtenido de: http://www.scielo.org.co/pdf/sun/v33n2/2011- 7531-sun-33-02-00178.pdf | spa |
dcterms.references | Sánchez Serrano, Brigith, & González Ruiz, Gisela. (2017). Ausentismo y complicaciones de salud en usuarios de programas de hipertensión arterial de Santa Marta (Colombia). Revista Salud Uninorte, 33(2), 178-186. Retrieved December 14, 2021, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120- 55522017000200178&lng=en&tlng=es. | eng |
dcterms.references | Santiago Garcia, M. (2017). Estudio e implementación de algoritmos de Pulse Transit Time (PTT) para la obtención de medidas de presión arterial ambulatoria | spa |
dcterms.references | Schlesinger, O., Vigderhouse, N., Eytan, D., & Moshe, Y. (2020). Blood Pressure Estimation from PPG Signals Using Convolutional Neural Networks and Siamese Network. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2020-May, 1135–1139. https://doi.org/10.1109/ICASSP40776.2020.9053446 | eng |
dcterms.references | Sesso, H. D. , Stampfer, M. J., Rosner, B., Hennekens, C. H., Gaziano, J. M. , Manson, J. E., Glynn R. J. (2000). Systolic and Diastolic Blood Pressure, Pulse Pressure, and Mean Arterial Pressure as Predictors of Cardiovascular Disease Risk in Men. AHA Journals, Hypertension, Vol. 36, No. 5. Hypertension. 2000;36:801–807 de https://doi.org/10.1161/01.HYP.36.5.801 | eng |
dcterms.references | Shaikh, S., Waghole, D., Kumbhar, P., Kotkar, V., & Awaghade, P. (2017). Patient monitoring system using IoT. 2017 International Conference on Big Data, IoT and Data Science (BID), 2018-Janua, 177–181. https://doi.org/10.1109/BID.2017.8336594 | eng |
dcterms.references | Shimazaki, S., Kawanaka, H., Ishikawa, H., Inoue, K., & Oguri, K. (2019). Cuffless Blood Pressure Estimation from only the Waveform of Photoplethysmography using CNN. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 5042–5045. https://doi.org/10.1109/EMBC.2019.8856706 | eng |
dcterms.references | Sociedad Española de Nefrología (2016). “Hipertensión arterial esencial”. Nefrología al Día. Obtenido de: https://www.nefrologiaaldia.org/es-articulo-articulo-hipertension-arterialesencial-23 | spa |
dcterms.references | Song, K., Chung, K. Y., & Chang, J. H. (2020). Cuffless Deep Learning-Based Blood Pressure Estimation for Smart Wristwatches. IEEE Transactions on Instrumentation and Measurement, 69(7), 4292–4302. https://doi.org/10.1109/TIM.2019.2947103 | eng |
dcterms.references | Sood, S.K., Mahajan, I. (2019). IoT-fog-based healthcare framework to identify and control hypertension attack. IEEE Internet Things J. 6(2), 1920–1927. https://doi.org/10.1109/JIOT.2018.2871630 | eng |
dcterms.references | Suarez Leon, A. A., & Nunez Alvarez, J. R. (2019). 1D Convolutional Neural Network for Detecting Ventricular Heartbeats. IEEE Latin America Transactions, 17(12), 1970–1977. https://doi.org/10.1109/TLA.2019.9011541 | eng |
dcterms.references | Suriyal, S., Druzgalski, C., & Gautam, K. (2018). Mobile assisted diabetic retinopathy detection using deep neural network. 2018 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges, GMEPE/PAHCE 2018, 562, 1–4. https://doi.org/10.1109/GMEPE-PAHCE.2018.8400760 | eng |
dcterms.references | Tan, P. S., Lim, K. M., Lee, C. P., & Tan, C. H. (2020). Acoustic Event Detection with MobileNet and 1D-Convolutional Neural Network. 2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), 1–6. https://doi.org/10.1109/IICAIET49801.2020.9257865 | eng |
dcterms.references | Techentin, R. W., Felton, C. L., Schlotman, T. E., Gilbert, B. K., Joyner, M. J., Curry, T. B., Convertino, V. A., Holmes, D. R., & Haider, C. R. (2019). 1D Convolutional Neural Networks for Estimation of Compensatory Reserve from Blood Pressure Waveforms. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2169–2173. https://doi.org/10.1109/EMBC.2019.8857116 | eng |
dcterms.references | Torres, J. (s.f.). “Hacer Estimaciones Estadísticas”. Uso de técnicas estadísticas para el análisis de datos. Coursera. Tecnológico de Monterrey, México. | spa |
dcterms.references | Trejo Ortíz, P. M., Araujo Espino, R., Orozco Gómez, C., Mollinedo Montaño, F. E., Piña Fernández, H. D., Hernández Barrios, F., & Barrios Calderón, J. M. (2012). Factores de riesgo cardiovascular según la etapa de cambio conductual en personal de enfermería. Revista CUIDARTE, 3(1). https://doi.org/10.15649/cuidarte.v3i1.31 | spa |
dcterms.references | Van Dalen, D. B., & Meyer, W. J. (2006). Síntesis de Estrategia de la investigación descriptiva. Manual de técnica de la investigación educacional. | spa |
dcterms.references | Villamarín P. (s.f.). Árboles de decisión – Clasificación. ISIS3301: Inteligencia de Negocios. Departamento de Ingeniería de Sistemas y Computación. Universidad de los Andes. Bogotá, Colombia. | spa |
dcterms.references | Wan, J., Chen, B., Xu, B., Liu, H., & Jin, L. (2019). Convolutional neural networks for radar HRRP target recognition and rejection. EURASIP Journal on Advances in Signal Processing, 2019(1), 5. https://doi.org/10.1186/s13634-019-0603-y | eng |
dcterms.references | Wang, D., Yang, X., Liu, X., Fang, S., Ma, L., & Li, L. (2020). Photoplethysmography based stratification of blood pressure using multi information fusion artificial neural network. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June, 1113–1119. https://doi.org/10.1109/CVPRW50498.2020.00146 | eng |
dcterms.references | World Health Organization Global Observatory for eHealth. (2010). Telemedicine: Opportunities and developments in Member States. Observatory, 2, 96. https://doi.org/10.4258/hir.2012.18.2.153 | eng |
dcterms.references | World Health Organization. (2020). ESPECIFICACIONES TÉCNICAS DE LA OMS PARA DISPOSITIVOS AUTOMÁTICOS DE MEDICIÓN DE LA PRESIÓN ARTERIAL NO INVASIVOS Y CON BRAZALETE. https://iris.paho.org/bitstream/handle/10665.2/53145/9789275323052_spa.pdf?sequence= 1&isAllowed=y | spa |
dcterms.references | Xiaolin, L., Cardiff, B., & John, D. (2020). A 1D Convolutional Neural Network for Heartbeat Classification from Single Lead ECG. 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 1–2. https://doi.org/10.1109/ICECS49266.2020.9294838 | eng |
dcterms.references | Yadhav, S. Y., Senthilkumar, T., Jayanthy, S., & Kovilpillai, J. J. A. (2020). Plant Disease Detection and Classification using CNN Model with Optimized Activation Function. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), 564–569. https://doi.org/10.1109/ICESC48915.2020.9155815 | eng |
dcterms.references | Yang, C., & Tavassolian, N. (2018). Pulse transit time measurement using seismocardiogram, photoplethysmogram, and acoustic recordings: Evaluation and comparison. IEEE Journal of Biomedical and Health Informatics, 22(3), 733–740. https://doi.org/10.1109/JBHI.2017.2696703 | eng |
dcterms.references | Yetisen, A. K., Martinez-Hurtado, J. L., Ünal, B., Khademhosseini, A., Butt, H. (2018). Wearables in medicine. Advanced Materials, 30(33), 1706910 | eng |
dcterms.references | Yousefian, P., Shin, S., Mousavi, A., Kim, C.-S., Mukkamala, R., Jang, D.-G., Ko, B.-H., Lee, J., Kwon, U. K., Kim, Y. H., & Hahn, J.-O. (2019). The Potential of Wearable Limb Ballistocardiogram in Blood Pressure Monitoring via Pulse Transit Time. Scientific Reports, 9(1), 10666. https://doi.org/10.1038/s41598-019-46936-9 | eng |
dcterms.references | Yu, J., Zhang, C., Wang, S. (2021). Multichannel one-dimensional convolutional neural network-based feature learning for fault diagnosis of industrial processes. Neural Comput & Applic 33, 3085–3104 (2021). https://doi.org/10.1007/s00521-020-05171-4 | eng |
dcterms.references | Yury & Joel (2018). Pulse Transit Time. Tutorial Pulse Sensor. Arduino. PulseSensor. World Famous Electronics llc. Obtenido de https://pulsesensor.com/pages/pulse-transit-time | eng |
dcterms.references | Zahid, M. U., Kiranyaz, S., Ince, T., Devecioglu, O. C., Chowdhury, M. E. H., Khandakar, A., Tahir, A., & Gabbouj, M. (2021). Robust R-Peak Detection in Low-Quality Holter ECGs using 1D Convolutional Neural Network. IEEE Transactions on Biomedical Engineering, 1. https://doi.org/10.1109/TBME.2021.3088218 | eng |
dcterms.references | Zamarrón-López, E. I., Guerrero-Gutiérrez, M. A., Nieto-Pérez, O. R., Ramírez-Gutiérrez, Á. E., & Hernández-Villalón, C. E. (2019). Electrocardiografía dirigida para áreas críticas II. In Intensive Qare (Issue June). https://doi.org/10.13140/RG.2.2.34672.51206 | eng |
dcterms.references | Zhang, A., Lipton, Z., Li, M., Smola, A., Werness, B., Hu, R., Zhang, S., Tay, Y., Dagar, A., Tang, Y. (2021). “15.3. Sentiment Analysis: Using Convolutional Neural Networks”. Dive into Deep Learning. Obtenido de https://d2l.ai/chapter_natural-language-processingapplications/sentiment-analysis-cnn.html | eng |
dcterms.references | Zhang, Q., Zhou, D., & Zeng, X. (2017). Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals. BioMedical Engineering OnLine, 16(1), 23. https://doi.org/10.1186/s12938-017-0317-z | eng |
dcterms.references | Zhong, D., Yian, Z., Lanqing, W., Junhua, D., & Jiaxuan, H. (2020). Continuous blood pressure measurement platform: A wearable system based on multidimensional perception data. IEEE Access, 8, 10147–10158. https://doi.org/10.1109/ACCESS.2020.2965245 | eng |
dcterms.references | Мартыненко, Э. (2020). How does Keras 1d convolution layer work with word embeddings - text classification problem? (Filters, kernel size, and all hyperparameter). Java. Javaer101. Obtenido de https://www.javaer101.com/en/article/994241.html | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | spa |
sb.programa | Maestría en Ingeniería de Sistemas y Computación | spa |
sb.sede | Sede Barranquilla | spa |