Señales Fotopletismográficas para estimar la presión arterial
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
dc.contributor.author | Rodríguez Márquez, Roy Darwin | |
dc.date.accessioned | 2021-03-12T18:25:28Z | |
dc.date.available | 2021-03-12T18:25:28Z | |
dc.date.issued | 2021 | |
dc.description.abstract | En la práctica clínica surgen problemas de riesgos en la salud del paciente con el método arterial y de credibilidad con el esfigmomanómetro por no ser continuo De esta forma se están realizando muchas investigaciones con otros métodos para la medición de la presión arterial, aunque están todavía en estudio y no está confirmada su eficacia. En este proyecto se propone un método para estimación, que a partir de la señal fotopletismográfica se pueda medir los valores de presión sistólica y diastólica. Para ello se utiliza un modelo sistémico la cual nos llevara a la interacción con el problema y a la determinación de los elementos fundamentales involucrados en el objeto de estudio El enfoque propuesto para esta investigación. Se utilizarán Redes Neuronales Convolucionales como técnica de Aprendizaje Profundo dentro del campo de la Inteligencia Artificial para acometer la tarea de realizar estimaciones de la presión arterial utilizando como entrada señales fotoplestimográficas (PPG) obtenidas de manera continua y no invasiva mediante un dispositivo físico de lectura adosado a un paciente. Realizar estimaciones implica que la salida son predicciones (un problema de regresión en Inteligencia Artificial) de los valores de presión arterial sistólica (SBP: Sistolic Blood Pressure) y presión arterial diastólica (DBP: Diastolic Blood Pressure), elementos que componen lo que se conoce como presión arteria. Para realizar dichas estimaciones se requiere una profunda fase de entrenamiento en el que el Modelo Propuesto de Red Neuronal Convolucional aprenda de manera inteligente y supervisada los elementos y características que permiten relacionar los datos de entrada con los datos de salida. | spa |
dc.description.abstract | The traditional method of blood pressure monitoring performed in patients with unstable hemodynamic states is invasive. This method can generate risks and complications in patients as evidenced in the following studies. Research conducted by Scheer, Bernd Volker et al where a study was conducted in the literature from 1978 to 2001 of the complications and risks in the cannulation of the artery for hemodynamic monitoring of patients. | eng |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/7171 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ingenierías | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Fotoplestimográficas (PPG) | spa |
dc.subject | Aprendizaje profundo | spa |
dc.subject | Presión arterial | spa |
dc.subject | Photoplethysmographic (PPG) | eng |
dc.subject | Deep learning | eng |
dc.subject | Blood pressure | eng |
dc.title | Señales Fotopletismográficas para estimar la presión arterial | spa |
dc.type.driver | info:eu-repo/semantics/other | spa |
dc.type.spa | Otros | spa |
dcterms.references | Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 28(3). https://doi.org/10.1088/0967- 3334/28/3/R01 | eng |
dcterms.references | Arangure, L. (2013). Actualización , implementación y evaluación de guía de manejo de inserción de línea arterial para enfermeras, con la utilización de dispositivo trayecto largo, bajo monitorización ecográfica en la unidad de cuidado intensivo médico de la fundación cardio . Tesis, 103. http://intellectum.unisabana.edu.co:8080/jspui/bitstream/10818/10409/1/Lina María Arangure Burgos(TESIS).pdf | spa |
dcterms.references | Bedford, R. F., & Wollman, H. (1973). Complications of percutaneous radial-artery cannulation: an objective prospective study in man. In Anesthesiology (Vol. 38, Issue 3, pp. 228–236). https://doi.org/10.1097/00000542-197303000-00006 | eng |
dcterms.references | Blasco, S., Blasco, N., Blasco, B., Recuenco, N., Aranda, T., & Carralero, R. (2011). Estudio comparativo de la presión arterial invasiva frente a la presión arterial no invasiva . Valoración de la diferencia . Comparative study of invasive blood pressure versus non-invasive blood pressure. Enfermeria Global, 24(December 2008), 85–93. | eng |
dcterms.references | Dehghanojamahalleh, S., & Kaya, M. (2019). Sex-Related Differences in Photoplethysmography Signals Measured from Finger and Toe. IEEE Journal of Translational Engineering in Health and Medicine, 7(September). https://doi.org/10.1109/JTEHM.2019.2938506 | eng |
dcterms.references | Gaurav, A., Maheedhar, M., Tiwari, V. N., & Narayanan, R. (2016). Cuff-less PPG based continuous blood pressure monitoring - A smartphone based approach. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2016-Octob(August), 607–610. https://doi.org/10.1109/EMBC.2016.7590775 | eng |
dcterms.references | Geddes LA. (1991). Handbook of blood pressure measurement. | eng |
dcterms.references | Géron, A. (n.d.). Hands-On Machine Learning with Scikit-Learn and TensorFlow. O’Reilly Media. | eng |
dcterms.references | Gupta, B. (n.d.). Monitoring in the ICU Anaesthesia Update in. 37–42. | eng |
dcterms.references | Hebal, F., Sparks, H. T., Rychlik, K. L., Bone, M., Tran, S., & Barsness, K. A. (2018). Pediatric arterial catheters : Complications and associated risk factors. Journal of Pediatric Surgery, 53(4), 794–797. https://doi.org/10.1016/j.jpedsurg.2017.08.057 | eng |
dcterms.references | Hermida Amejeiras, D. A., Enrique Lopez Paz, D. J., & Calvo Gómez, D. C. (2012). Medida no invasiva de la presión arterial central mediante tonometría por aplanamiento. Análisis de la onda de pulso. Galicia Clínica, 73(4), 161. https://doi.org/10.22546/21/389 | spa |
dcterms.references | Hernández Gárciga, F. F., & González Chacón, Y. (2015). Presión del pulso y su relación con el riesgo cardiovascular incrementado. Revista Cubana de Investigaciones Biomedicas, 34(3), 245–253. | spa |
dcterms.references | Hu, S., Azorin-Peris, V., & Zheng, J. (2013). Opto-physiological modeling applied to photoplethysmographic cardiovascular assessment. Journal of Healthcare Engineering, 4(4), 505–528. https://doi.org/10.1260/2040-2295.4.4.505 | eng |
dcterms.references | Hussain, S., Gaftandzhieva, S., Maniruzzaman, M., Doneva, R., & Muhsin, Z. F. (2020). Regression analysis of student academic performance using deep learning. Education and Information Technologies. https://doi.org/10.1007/s10639-020- 10241-0 | eng |
dcterms.references | Island, M. (1993). Mejdsla. 19. | spa |
dcterms.references | Kaur, B., Kaur, S., Yaddanapudi, L. N., & Singh, N. V. (2019). Comparison between invasive and noninvasive blood pressure measurements in critically ill patients receiving inotropes. Blood Pressure Monitoring, 24(1), 24–29. https://doi.org/10.1097/MBP.0000000000000358 | eng |
dcterms.references | Khalid, S. G., Zhang, J., Chen, F., & Zheng, D. (2018). Blood Pressure Estimation Using Photoplethysmography Only : Comparison between Different Machine Learning Approaches. Healthcare Engineering, 2018. | eng |
dcterms.references | Kurylyak, Y., Barbe, K., Lamonaca, F., Grimaldi, D., & Van Moer, W. (2013). Photoplethysmogram-based Blood pressure evaluation using Kalman filtering and Neural Networks. MeMeA 2013 - IEEE International Symposium on Medical Measurements and Applications, Proceedings, May 2014, 170–174. https://doi.org/10.1109/MeMeA.2013.6549729 | eng |
dcterms.references | Labrosse, M. R. (2018). Cardiovascular Mechanics (CRC Press). | spa |
dcterms.references | Lakhal, K., Ehrmann, S., & Boulain, T. (2018). Noninvasive BP Monitoring in the Critically Ill: Time to Abandon the Arterial Catheter? Chest, 153(4), 1023–1039. https://doi.org/10.1016/j.chest.2017.10.030 | eng |
dcterms.references | Lakhal, K., Martin, M., Ehrmann, S., Faiz, S., Rozec, B., & Boulain, T. (2018). Noninvasive blood pressure monitoring with an oscillometric brachial cuff: impact of arrhythmia. Journal of Clinical Monitoring and Computing, 32(4), 707–715. https://doi.org/10.1007/s10877-017-0067-2 | eng |
dcterms.references | Lehman, L. H., Saeed, M., Gad, A., Colleges, I., Health, F., Talmor, D., Israel, B., Medical, D., Malhotra, A., & Diego, S. (2013). Methods of Blood Pressure Measurement in the ICU. January 2018. https://doi.org/10.1097/CCM.0b013e318265ea46 | eng |
dcterms.references | Liévano Martínez, F., & Londoño, J. E. (2012). El pensamiento sistémico como herramienta metodológica para la resolución de problemas. Revista Soluciones de Postgrado EIA, 8, 43–65. | spa |
dcterms.references | Liu D, Gorges M, Jenkins, S. (2012). The University of Queensland Vital Signs Dataset: Development of an Accessible Repository of Anesthesia Patient Monitoring Data for ResearchNo Title. Anesth Analg, 584–589. https://doi.org/doi:10.1213/ANE.0b013e318241f7c0 | eng |
dcterms.references | Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., & Pietikäinen, M. (2020). Deep Learning for Generic Object Detection: A Survey. International Journal of Computer Vision, 128(2), 261–318. https://doi.org/10.1007/s11263-019-01247-4 | eng |
dcterms.references | Martínez, G., Howard, N., Abbott, D., Lim, K., & Ward, R. (2018). Can Photoplethysmography Replace Arterial Blood Pressure in the Assessment of Blood Pressure ? Clinical Medicine, Cvd, 1–13. https://doi.org/10.3390/jcm7100316 | eng |
dcterms.references | Méndez, P., & Ibarra, J. (2014). Implementación de una red neuronal de convolución para el reconocimiento de poses en imágenes de rostros. ACI Avances En Ciencias e Ingenierías, 6(2), 1–6. https://doi.org/10.18272/aci.v6i2.167 | spa |
dcterms.references | Mendoza, K. C. (2012). Radial artery catheterism for invasive monitoring: Preventing complications, a challenge in anesthesia. Revista Colombiana de Anestesiologia, 40(4), 262–265. https://doi.org/10.1016/j.rca.2012.05.014 | eng |
dcterms.references | Mousavi, S. S., Firouzmand, M., Charmi, M., Hemmati, M., Moghadam, M., & Ghorbani, Y. (2019). Blood pressure estimation from appropriate and inappropriate PPG signals using A whole-based method. Biomedical Signal Processing and Control, 47, 196–206. https://doi.org/10.1016/j.bspc.2018.08.022 | eng |
dcterms.references | Penáz, J. (1992). Criteria for set point estimation in the volume clamp method of blood pressure measurement. Physiological Research / Academia Scientiarum Bohemoslovaca, 41(1), 5–10. | eng |
dcterms.references | Perloff, D., Grim, C., Flack, J., & Frohlich, E. D. (2012). AHA Medical / Scientific Statement Human Blood Pressure Determination by Sphygmomanometry. Library, 2460–2470. https://doi.org/10.1161/01.CIR.88.5.2460 | eng |
dcterms.references | Peterson, L. H., Dripps, R. D., & Risman, G. C. (1949). A method for recording the arterial pressure pulse and blood pressure in man. American Heart Journal, 37(5), 771–782. https://doi.org/10.1016/0002-8703(49)90175-1 | eng |
dcterms.references | Ray, S., Rogers, L., Noren, D. P., Dhar, R., Nadel, S., Peters, M. J., & Inwald, D. P. (2017). Risk of over-diagnosis of hypotension in children: a comparative analysis of over 50,000 blood pressure measurements. Intensive Care Medicine, 43(10), 1540–1541. https://doi.org/10.1007/s00134-017-4843-8 | eng |
dcterms.references | Rostami, G., Hamid, M., & Jalaeikhoo, H. (2017). Impact of the BCR-ABL1 fusion transcripts on different responses to Imatinib and disease recurrence in Iranian patients with Chronic Myeloid Leukemia. Gene, 627(1), 202–206. https://doi.org/10.1016/j.gene.2017.06.018 | eng |
dcterms.references | Sato, T., Nishinaga, M., Kawamoto, A., Ozawa, T., & Takatsuji, H. (1993). Accuracy of a continuous blood pressure monitor based on arterial tonometry. Hypertension, 21(6 I), 866–874. https://doi.org/10.1161/01.hyp.21.6.866 | eng |
dcterms.references | Scheer, B. V., Perel, A., & Pfeiffer, U. J. (2002). Clinical review: Complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Critical Care, 6(3), 198–204. https://doi.org/10.1186/cc1489 | eng |
dcterms.references | Suárez, O. V. (2017). Revista Cubana de medicina intensiva y emergencias. Revista Cubana de Medicina Intensiva y Emergencias, 17(1), 99–106. http://www.revmie.sld.cu/index.php/mie/article/view/408/pdf_82 | spa |
dcterms.references | Yoo, S.-Y. (2019). Reliability and Validity of Non-invasive Blood. | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | spa |
sb.programa | Maestría en Ingeniería de Sistemas y Computación | spa |
sb.sede | Sede Barranquilla | spa |