Método basado en inteligencia artificial para la calibración de sensores force sensitive resistor (FSR) orientado a la determinación de presiones plantares estáticas en la pisada
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
dc.contributor.advisor | Moreno Trillos, Silvia Carolina | |
dc.contributor.advisor | Paredes Madrid, Leonel José | |
dc.contributor.author | Álvarez Gutiérrez, Edwin Leonel | |
dc.date.accessioned | 2025-08-13T15:12:44Z | |
dc.date.available | 2025-08-13T15:12:44Z | |
dc.date.issued | 2025 | |
dc.description.abstract | La investigación desarrolla una solución tecnológica innovadora para mejorar la precisión de los sensores piezorresistivos tipo FSR Force Sensitive Resistor en aplicaciones orientadas a la medición de presión plantar estática. Estos dispositivos, ampliamente utilizados por su bajo costo, asequibilidad, portabilidad y flexibilidad han sobresalido en los últimos años en comparación con tecnologías piezocapacitivas o piezoeléctricas. No obstante, presentan limitaciones significativas derivadas de fenómenos como la histéresis, el creep o deriva temporal, la no linealidad y la baja reproducibilidad, los cuales afectan de forma directa la exactitud y consistencia de las mediciones. Bajo el marco del paradigma positivista y mediante una metodología aplicada-experimental con enfoque cuantitativo, se diseñó un sistema híbrido que combina técnicas de medición multivoltaje y multisensor con modelos avanzados de inteligencia artificial, entre ellos redes neuronales artificiales (ANN), redes de memoria a largo y corto plazo (LSTM) y redes GRU. Estos modelos fueron integrados con métodos matemáticos clásicos para compensar los errores característicos de los sensores FSR. La validación del sistema se llevó a cabo en condiciones controladas, evaluando un total de 48 sensores pertenecientes a tres marcas comerciales: FlexiForce®, Interlink® y Peratech®. Para la experimentación se utilizó un sistema mecatrónico de ensayos mecánicos que permitió aplicar variaciones de carga y voltaje, reproduciendo así diferentes escenarios de operación conforme a la aplicación definida. Los datos adquiridos fueron procesados para desarrollar y entrenar los algoritmos de compensación de errores, abordando específicamente los efectos asociados al comportamiento viscoelástico del material conductor de este tipo de sensores. Los resultados evidenciaron que el sistema propuesto supera a los métodos tradicionales en precisión. Para la compensación de la histéresis, el modelo ANN mostró el mejor rendimiento, reduciendo el error desde valores iniciales entre el 6 % y el 9 % hasta menos del 1.5 % en algunos casos, con errores medios inferiores al 2.5 % en sensores FlexiForce® y Peratech®. Esto supone una mejora notable respecto a lo reportado por fabricantes y estudios previos. En el caso del creep, el modelo LSTM fue el más efectivo, alcanzando un error cuadrático medio (RMSE) de 0.0032 y un error porcentual medio de apenas 0.49 %. Su capacidad para modelar secuencias temporales lo convirtió en la opción más precisa para este tipo de error, ya que el creep se manifiesta como una variación lenta y dependiente del tiempo bajo carga constante. El modelo GRU, aunque con menor complejidad y exigencia computacional que LSTM, presentó un desempeño competitivo. Obtuvo un coeficiente de determinación R² de 0.9953 y errores medios en el rango del 3 % al 4 %. Esto lo posiciona como una alternativa viable para implementaciones en sistemas embebidos de bajo consumo energético, donde los recursos de hardware son limitados. El análisis comparativo entre las diferentes tecnologías de sensores reveló comportamientos distintivos. FlexiForce® presentó una respuesta más estable y repetible en las mediciones, lo que facilitó la corrección de errores y la obtención de resultados consistentes. Interlink® mostró mayor susceptibilidad a la histéresis, pero esta fue significativamente mitigada mediante el uso de ANN. Peratech®, por su parte, ofreció una respuesta inicial favorable, la cual fue optimizada utilizando modelos multivoltaje que mejoraron su linealidad y precisión. En todos los casos evaluados, los modelos basados en inteligencia artificial superaron las técnicas convencionales para compensar errores estáticos de los sensores FSR bajo condiciones de operación variables. Esta mejora se tradujo en una estimación de fuerza más fiable y robusta, lo que representa un avance importante en aplicaciones como la medición de presiones plantares, donde la exactitud es crítica para la interpretación clínica y biomecánica. La investigación concluye proponiendo como línea futura el desarrollo de una implementación embebida de los algoritmos desarrollados, con el fin de evaluar su desempeño en condiciones reales de uso. Esto permitiría validar la viabilidad práctica del sistema y su potencial integración en dispositivos portátiles o de monitoreo continuo, beneficiando tanto la investigación biomédica como la instrumentación de bajo costo para el diagnóstico y seguimiento de la salud plantar | spa |
dc.description.abstract | This doctoral dissertation presents an innovative technological solution aimed at improving the accuracy of piezoresistive sensors of the FSR —Force Sensitive Resistor— type in applications focused on static plantar pressure measurement. These devices, widely used for their low cost, affordability, portability, and flexibility, have stood out in recent years compared to piezocapacitive and piezoelectric technologies. Nevertheless, they exhibit significant limitations arising from phenomena such as hysteresis, creep (or temporal drift), non-linearity, and low reproducibility, all of which directly affect the accuracy and consistency of measurements. Within the framework of the positivist paradigm, and following an applied–experimental methodology with a quantitative approach, a hybrid system was designed that combines multi-voltage and multi-sensor measurement techniques with advanced artificial intelligence models, including artificial neural networks (ANN), long short-term memory networks (LSTM), and gated recurrent units (GRU). These models were integrated with classical mathematical methods to compensate for the characteristic errors of FSR sensors. System validation was carried out under controlled conditions, evaluating a total of 48 sensors from three commercial brands: FlexiForce®, Interlink®, and Peratech®. For the experiments, a mechatronic mechanical testing system was used to apply variations in load and voltage, thus reproducing different operational scenarios according to the defined application. The acquired data were processed to develop and train errorcompensation algorithms, specifically addressing the effects associated with the viscoelastic behavior of the conductive material in this type of sensor. The results showed that the proposed system outperformed traditional methods in terms of accuracy. For hysteresis compensation, the ANN model achieved the best performance, reducing error from initial values between 6% and 9% to less than 1.5% in some cases, with mean errors below 2.5% for FlexiForce® and Peratech® sensors. This represents a significant improvement over the figures reported by manufacturers and previous studies. In the case of creep, the LSTM model proved to be the most effective, reaching a root mean square error (RMSE) of 0.0032 and an average percentage error of only 0.49%. Its ability to model temporal sequences made it the most accurate option for this type of error, given that creep manifests as a slow, time-dependent variation under constant load. The GRU model, while less complex and computationally demanding than LSTM, demonstrated competitive performance. It achieved a coefficient of determination (R²) of 0.9953 and mean errors ranging from 3% to 4%, positioning it as a viable alternative for implementation in low-power embedded systems where hardware resources are limited. The comparative analysis of the different sensor technologies revealed distinctive behaviors. FlexiForce® exhibited a more stable and repeatable measurement response, facilitating error correction and the achievement of consistent results. Interlink® showed greater susceptibility to hysteresis, but this was significantly mitigated through the use of ANN. Peratech®, on the other hand, delivered a favorable initial response, which was further optimized using multivoltage models that improved its linearity and accuracy. In all cases evaluated, AIbased models outperformed conventional techniques in compensating for the static errors of FSR sensors under variable operating conditions. This improvement translated into a more reliable and robust force estimation, representing a significant advancement in applications such as plantar pressure measurement, where accuracy is critical for both clinical and biomechanical interpretation. As a future line of work, this dissertation proposes the development of an embedded implementation of the developed algorithms to evaluate their performance under real operating conditions. This would make it possible to validate the practical feasibility of the system and its potential integration into portable or continuous monitoring devices, benefiting both biomedical research and low-cost instrumentation for the diagnosis and monitoring of plantar health. | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/16882 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ingenierías | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Inteligencia Artificial | spa |
dc.subject | Calibración | spa |
dc.subject | Creep | spa |
dc.subject | Resistencias de detección de fuerza FSR | spa |
dc.subject | Histéresis | spa |
dc.subject.keywords | Artificial Intelligence | eng |
dc.subject.keywords | Calibration | eng |
dc.subject.keywords | Creep | eng |
dc.subject.keywords | Force Sensing Resistors FSRs | eng |
dc.subject.keywords | Hysteresis | eng |
dc.title | Método basado en inteligencia artificial para la calibración de sensores force sensitive resistor (FSR) orientado a la determinación de presiones plantares estáticas en la pisada | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
dc.type.spa | Tesis de doctorado | |
dcterms.references | Abdul Razak, A. H., Zayegh, A., Begg, R. K., & Wahab, Y. (2012c). Foot Plantar Pressure Measurement System: A Review. Sensors 2012, Vol. 12, Pages 9884- 9912, 12(7), 9884–9912. https://doi.org/10.3390/S120709884 | eng |
dcterms.references | Abu-Faraj, Z. O., Harris, G. F., Chang, A. H., & Shereff, M. J. (1996). Evaluation of a rehabilitative pedorthic: Plantar pressure alterations with scaphoid pad application. IEEE Transactions on Rehabilitation Engineering, 4(4), 328–336. https://doi.org/10.1109/86.547934 | eng |
dcterms.references | Aigner, R., & Stöckl, A. (2023). Machine Learning Based Compensation for Inconsistencies in Knitted Force Sensors. https://arxiv.org/abs/2306.12129v2 | eng |
dcterms.references | Almassri, A. M. M., Hasan, W. Z. W., Ahmad, S. A., Shafie, S., Wada, C., & Horio, K. (2018a). Self-Calibration Algorithm for a Pressure Sensor with a Real-Time Approach Based on an Artificial Neural Network. Sensors 2018, Vol. 18, Page 2561, 18(8), 2561. https://doi.org/10.3390/S18082561 | eng |
dcterms.references | Almassri, A. M. M., Hasan, W. Z. W., Wada, C., & Horio, K. (2020). Evaluation of a commercial force sensor for real time applications. ICIC Express Letters, Part B: Applications, 11(5), 421–426. https://doi.org/10.24507/ICICELB.11.05.421 | eng |
dcterms.references | Antwi-Afari, M. F., Qarout, Y., Herzallah, R., Anwer, S., Umer, W., Zhang, Y., & Manu, P. (2022). Deep learning-based networks for automated recognition and classification of awkward working postures in construction using wearable insole sensor data. Automation in Construction, 136, 104181. https://doi.org/10.1016/J.AUTCON.2022.104181 | eng |
dcterms.references | Arndt, A. (2003). Correction for sensor creep in the evaluation of long-term plantar pressure data. Journal of Biomechanics, 36(12), 1813–1817. https://doi.org/10.1016/S0021-9290(03)00229-X | eng |
dcterms.references | Avagnina, L. (2007). El examen biomecánico mediante plataformas baropodométricas. Revista Internacional de Ciencias Podológicas, ISSN 1887- 7249, Vol. 1, No . 1, 2007, Págs. 45-48, 1(1), 45–48. https://dialnet.unirioja.es/servlet/articulo?codigo=2737507&info=resumen&idio ma=ENG | spa |
dcterms.references | Balberg, I., Azulay, D., Toker, D., & Millo, O. (2012). PERCOLATION AND TUNNELING IN COMPOSITE MATERIALS. Https://Doi.Org/10.1142/S0217979204025336, 18(15), 2091–2121. https://doi.org/10.1142/S0217979204025336 | eng |
dcterms.references | Bamberg, S. J. M., Benbasat, A. Y., Scarborough, D. M., Krebs, D. E., & Paradiso, J. A. (2008). Gait analysis using a shoe-integrated wireless sensor system. IEEE Transactions on Information Technology in Biomedicine, 12(4), 413–423. https://doi.org/10.1109/TITB.2007.899493 | eng |
dcterms.references | Baumfeld, D., Baumfeld, T., Da Rocha, R. L., Macedo, B., Raduan, F., Zambelli, R., Alves Silva, T. A., & Nery, C. (2017). Reliability of Baropodometry on the Evaluation of Plantar Load Distribution: A Transversal Study. BioMed Research International, 2017. https://doi.org/10.1155/2017/5925137 | eng |
dcterms.references | Blades, S., Jensen, M., Stellingwerff, T., Hundza, S., & Klimstra, M. (2023). Characterization of the Kinetyx SI Wireless Pressure-Measuring Insole during Benchtop Testing and Running Gait. Sensors 2023, Vol. 23, Page 2352, 23(4), 2352. https://doi.org/10.3390/S23042352 | eng |
dcterms.references | Buis, A. W. P., & Convery, P. (1997). Calibration problems encountered while monitoring stump/socket interface pressures with force sensing resistors: Techniques adopted to minimise inaccuracies. Prosthetics and Orthotics International, 21(3), 179–182. https://doi.org/10.3109/03093649709164552 | eng |
dcterms.references | Burnie, L., Chockalingam, N., Holder, A., Claypole, T., Kilduff, L., & Bezodis, N. (2023). Commercially available pressure sensors for sport and health applications: A comparative review. The Foot, 56, 102046. https://doi.org/10.1016/J.FOOT.2023.102046 | eng |
dcterms.references | Burnie, L., Chockalingam, N., Holder, A., Claypole, T., Kilduff, L., & Bezodis, N. (2024). Testing protocols and measurement techniques when using pressure sensors for sport and health applications: A comparative review. The Foot, 59, 102094. https://doi.org/10.1016/J.FOOT.2024.102094 | eng |
dcterms.references | Cao, J., & Zhang, X. (2020). Modulating the percolation network of polymer nanocomposites for flexible sensors. Journal of Applied Physics, 128(22), 220901. https://doi.org/10.1063/5.0033652 | eng |
dcterms.references | Castellini, C., & Ravindra, V. (2014). A wearable low-cost device based upon Force-Sensing Resistors to detect single-finger forces. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 199–203. https://doi.org/10.1109/BIOROB.2014.6913776 | eng |
dcterms.references | Castro, F., Savaris, W., Araujo, R., Costa, A., Sanches, M., & De Carvalho, A. (2020). Plantar Pressure Measurement System with Improved Isolated Drive Feedback Circuit and ANN: Development and Characterization. IEEE Sensors Journal, 20(19), 11034–11043. https://doi.org/10.1109/JSEN.2020.2998700 | eng |
dcterms.references | Cavanagh, P. R., & Ae, M. (1980). A technique for the display of pressure distributions beneath the foot. Journal of Biomechanics, 13(2), 69–75. https://doi.org/10.1016/0021-9290(80)90180-3 | eng |
dcterms.references | Cavanagh, P. R., Rodgers, M. M., & Liboshi, A. (1987). Pressure distribution under symptom-free feet during barefoot standing. Foot & Ankle, 7(5), 262–278. https://doi.org/10.1177/107110078700700502 | eng |
dcterms.references | Chen, J. L., Dai, Y. N., Grimaldi, N. S., Lin, J. J., Hu, B. Y., Wu, Y. F., & Gao, S. (2022a). Plantar Pressure-Based Insole Gait Monitoring Techniques for Diseases Monitoring and Analysis: A Review. Advanced Materials Technologies, 7(1), 2100566. https://doi.org/10.1002/ADMT.202100566 | eng |
dcterms.references | Chen, J. L., Dai, Y. N., Grimaldi, N. S., Lin, J. J., Hu, B. Y., Wu, Y. F., & Gao, S. (2022b). Plantar Pressure-Based Insole Gait Monitoring Techniques for Diseases Monitoring and Analysis: A Review. Advanced Materials Technologies, 7(1). https://doi.org/10.1002/ADMT.202100566 | eng |
dcterms.references | Chen, J., Yu, Q., Cui, X., Dong, M., Zhang, J., Wang, C., Fan, J., Zhu, Y., & Guo, Z. (2019). An overview of stretchable strain sensors from conductive polymer nanocomposites. Journal of Materials Chemistry C, 7(38), 11710–11730. https://doi.org/10.1039/C9TC03655E | eng |
dcterms.references | Chinimilli, P. T., Wachtel, S. W., Polygerinos, P., & Zhang, W. (2017). Hysteresis Compensation for Ground Contact Force Measurement With Shoe-Embedded Air Pressure Sensors. ASME 2016 Dynamic Systems and Control Conference, DSCC 2016, 1. https://doi.org/10.1115/DSCC2016-9920 | eng |
dcterms.references | Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 1724–1734. https://doi.org/10.3115/V1/D14-1179 | eng |
dcterms.references | Choi, H. S., Lee, C. H., Shim, M., Han, J. I., & Baek, Y. S. (2018). Design of an Artificial Neural Network Algorithm for a Low-Cost Insole Sensor to Estimate the Ground Reaction Force (GRF) and Calibrate the Center of Pressure (CoP). Sensors 2018, Vol. 18, Page 4349, 18(12), 4349. https://doi.org/10.3390/S18124349 | eng |
dcterms.references | Choi, H. S., Shim, M., Lee, C. H., & Baek, Y. S. (2018). Estimating GRF(Ground Reaction Force) and Calibrating CoP(Center of Pressure) of an insole measured by an low-cost sensor with neural network. Proceedings - 2018 IEEE 18th International Conference on Bioinformatics and Bioengineering, BIBE 2018, 185–188. https://doi.org/10.1109/BIBE.2018.00043 | eng |
dcterms.references | Choi, Y. R., Lee, H. S., Kim, D. E., Lee, D. H., Kim, J. M., & Ahn, J. Y. (2014). The diagnostic value of pedobarography. Orthopedics, 37(12), e1063–e1067. https://doi.org/10.3928/01477447-20141124-52 | eng |
dcterms.references | Cui, F., Yue, Y., Zhang, Y., Zhang, Z., & Zhou, H. S. (2020). Advancing Biosensors with Machine Learning. ACS Sensors, 5(11), 3346–3364. https://doi.org/10.1021/ACSSENSORS.0C01424/ASSET/IMAGES/MEDIUM/SE 0C01424_0010.GIF | eng |
dcterms.references | Dabling, J. G., Filatov, A., & Wheeler, J. W. (2012a). Static and cyclic performance evaluation of sensors for human interface pressure measurement. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 162–165. https://doi.org/10.1109/EMBC.2012.6345896 | eng |
dcterms.references | Dabling, J. G., Filatov, A., & Wheeler, J. W. (2012b). Static and cyclic performance evaluation of sensors for human interface pressure measurement. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2012, 162–165. https://doi.org/10.1109/EMBC.2012.6345896 | eng |
dcterms.references | Darwich, A., Ismaiel, E., Al-Kayal, A., Ali, M., Masri, M., & Nazha, H. M. (2023). Recognizing Different Foot Deformities Using FSR Sensors by Static Classification of Neural Networks. Baghdad Science Journal, 20(6(Suppl.)), 2638–2638. https://doi.org/10.21123/BSJ.2023.8968 | eng |
dcterms.references | de Fazio, R., Perrone, E., Velázquez, R., De Vittorio, M., & Visconti, P. (2021). Development of a Self-Powered Piezo-Resistive Smart Insole Equipped with Low-Power BLE Connectivity for Remote Gait Monitoring. Sensors 2021, Vol. 21, Page 4539, 21(13), 4539. https://doi.org/10.3390/S21134539 | eng |
dcterms.references | De Rossi, S. M. M., Lenzi, T., Vitiello, N., Donati, M., Persichetti, A., Giovacchini, F., Vecchi, F., & Carrozza, M. C. (2011). Development of an in-shoe pressuresensitive device for gait analysis. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 5637–5640. https://doi.org/10.1109/IEMBS.2011.6091364 | eng |
dcterms.references | Duarte Forero, J., Valencia, G. E., & Obregón, L. G. (2018). Methodology of Calibration of FSR Sensor for Seat Occupancy Detection in Vehicles. Indian Journal of Science and Technology, 11(23), 1–7. https://doi.org/10.17485/IJST/2018/V11I23/126554 | eng |
dcterms.references | Elftman, H. (1934). A cinematic study of the distribution of pressure in the human foot. The Anatomical Record, 59(4), 481–491. https://doi.org/10.1002/AR.1090590409 | eng |
dcterms.references | Esposito, D., Centracchio, J., Andreozzi, E., Bifulco, P., & Gargiulo, G. D. (2022). Design and Evaluation of a Low-Cost Electromechanical System to Test Dynamic Performance of Force Sensors at Low Frequencies. Machines 2022, Vol. 10, Page 1017, 10(11), 1017. https://doi.org/10.3390/MACHINES10111017 | eng |
dcterms.references | Ferguson-Pell, M., Hagisawa, S., & Bain, D. (2000). Evaluation of a sensor for low interface pressure applications. Medical Engineering & Physics, 22(9), 657– 663. https://doi.org/10.1016/S1350-4533(00)00080-1 | eng |
dcterms.references | Fiorillo, A. S., Critello, C. D., & Pullano, A. S. (2018). Theory, technology and applications of piezoresistive sensors: A review. Sensors and Actuators A: Physical, 281, 156–175. https://doi.org/10.1016/J.SNA.2018.07.006 | eng |
dcterms.references | Flórez, J. A., & Velásquez, A. (2010). Calibration of force sensing resistors (fsr) for static and dynamic applications. 2010 IEEE ANDESCON Conference Proceedings, ANDESCON 2010. https://doi.org/10.1109/ANDESCON.2010.5633120 | eng |
dcterms.references | Fuchs, M. C. H. W., Hermans, M. M. N., Kars, H. J. J., Hendriks, J. G. E., & van der Steen, M. C. (2020). Plantar pressure distribution and wearing characteristics of three forefoot offloading shoes in healthy adult subjects. The Foot, 45, 101744. https://doi.org/10.1016/J.FOOT.2020.101744 | eng |
dcterms.references | Gao, S., Chen, J., Dai, Y., & Hu, B. (2022). Wearable systems based gait monitoring and analysis. Wearable Systems Based Gait Monitoring and Analysis, 1–238. https://doi.org/10.1007/978-3-030-97332-2/COVER | eng |
dcterms.references | Geiss, P. L. (2011). Creep Load Conditions. Handbook of Adhesion Technology, 875–902. https://doi.org/10.1007/978-3-642-01169-6_34 | eng |
dcterms.references | Giacomozzi, C. (2010). Hardware performance assessment recommendations and tools for baropodometric sensor systems. Annali Dell’Istituto Superiore Di Sanità. https://doi.org/10.4415/ANN_10_02_09 | eng |
dcterms.references | Giacomozzi, C., Keijsers, N., Pataky, T., & Rosenbaum, D. (2012a). International scientific consensus on medical plantar pressure measurement devices: technical requirements and performance. Annali Dell’Istituto Superiore Di Sanita, 48(3), 259–271. https://doi.org/10.4415/ANN_12_03_06 | eng |
dcterms.references | Giacomozzi, C., Keijsers, N., Pataky, T., & Rosenbaum, D. (2012b). International scientific consensus on medical plantar pressure measurement devices: technical requirements and performance. Annali Dell’Istituto Superiore Di Sanita, 48(3), 259–271. https://doi.org/10.4415/ANN_12_03_06 | eng |
dcterms.references | Giovanelli, D., & Farella, E. (2016). Force Sensing Resistor and Evaluation of Technology for Wearable Body Pressure Sensing. Journal of Sensors, 2016. https://doi.org/10.1155/2016/9391850 | eng |
dcterms.references | Golgouneh, A., & Dunne, L. E. (2024). A Review in On-Body Compression Using Soft Actuators and Sensors: Applications, Mechanisms, and Challenges. IEEE Reviews in Biomedical Engineering, 17, 166–179. https://doi.org/10.1109/RBME.2022.3220505 | eng |
dcterms.references | Gonçalves, C., Moreira, C., Ferreira, D., Neves, E., Bacelar, L., & Mourão, A. (2022). Footstep Classification Methodology using Piezoelectric Sensors Embedded in Insole. International Journal of Advanced Engineering Research and Science (IJAERS) Peer-Reviewed Journal, 9(12), 2456–1908. https://doi.org/10.22161/ijaers.912.44 | eng |
dcterms.references | Grandez, K., Bustamante, P., Solas, G., Gurutzeaga, I., & García-Alonso, A. (2009). Wearable wireless sensor for the gait monitorization of Parkinsonian patients. 2009 16th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2009, 215–218. https://doi.org/10.1109/ICECS.2009.5410974 | eng |
dcterms.references | Gupta, S., Jayaraman, R., Sidhu, S. S., Malviya, A., Chatterjee, S., Chhikara, K., Singh, G., & Chanda, A. (2023). Diabot: Development of a Diabetic Foot Pressure Tracking Device. J 2023, Vol. 6, Pages 32-47, 6(1), 32–47. https://doi.org/10.3390/J6010003 | eng |
dcterms.references | Hagen, M., Abraham, C., Ficklscherer, A., & Lahner, M. (2015). Biomechanical study of plantar pressures during walking in male soccer players with increased vs. normal hip alpha angles. Technology and Health Care : Official Journal of the European Society for Engineering and Medicine, 23(1), 93–100. https://doi.org/10.3233/THC-140877 | eng |
dcterms.references | Hall, R. S., Desmoulin, G. T., & Milner, T. E. (2008a). A technique for conditioning and calibrating force-sensing resistors for repeatable and reliable measurement of compressive force. Journal of Biomechanics, 41(16), 3492–3495. https://doi.org/10.1016/J.JBIOMECH.2008.09.031 | eng |
dcterms.references | Hall, R. S., Desmoulin, G. T., & Milner, T. E. (2008b). A technique for conditioning and calibrating force-sensing resistors for repeatable and reliable measurement of compressive force. Journal of Biomechanics, 41(16), 3492–3495. https://doi.org/10.1016/J.JBIOMECH.2008.09.031 | eng |
dcterms.references | Hausdorff, J. M., Ladin, Z., & Wei, J. Y. (1995). Footswitch system for measurement of the temporal parameters of gait. Journal of Biomechanics, 28(3), 347–351. https://doi.org/10.1016/0021-9290(94)00074-E | eng |
dcterms.references | He, Y., Lin, M., Wang, X., Liu, K., Liu, H., He, T., & Zhou, P. (2021). Textile-film sensors for a comfortable intelligent pressure-sensing insole. Measurement, 184, 109943. https://doi.org/10.1016/J.MEASUREMENT.2021.109943 | eng |
dcterms.references | Hennig, E. M., Cavanagh, P. R., Albert, H. T., & Macmillan, N. H. (1982). A piezoelectric method of measuring the vertical contact stress beneath the human foot. Journal of Biomedical Engineering, 4(3), 213–222. https://doi.org/10.1016/0141-5425(82)90005-X | eng |
dcterms.references | Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/NECO.1997.9.8.1735 | eng |
dcterms.references | Horky, A., Kherani, N. P., Xu, G., Tao, Z., Chen, X., Jiang, H., Kumar, M., Vasage, A., Kulkarni, G., Padhye, O., Kerkar, S., Gupta, M., & Singh, K. (2023). Calibration and optimization of FSR based smart walking assistance device. Engineering Research Express, 5(2), 025016. https://doi.org/10.1088/2631- 8695/ACCC0E | eng |
dcterms.references | Hsiao, H., Guan, J., & Weatherly, M. (2002). Accuracy and precision of two inshoe pressure measurement systems. Ergonomics, 45(8), 537–555. https://doi.org/10.1080/00140130210136963 | eng |
dcterms.references | Hughes, J. (1993a). The clinical use of pedobarography. Acta Orthopaedica Belgica, 59(1), 10–16. | eng |
dcterms.references | Hughes, J. (1993b). The clinical use of pedobarography. Acta Orthopaedica Belgica. | eng |
dcterms.references | Hung, K., Zhang, Y. T., & Tai, B. (2004). Wearable medical devices for tele-home healthcare. Conference Proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2004, 5384–5387. https://doi.org/10.1109/IEMBS.2004.1404503 | eng |
dcterms.references | Interlink Electronics, I. (2019). Interlink Electronics FSR Force Sensing Resistors. FSR Integration Guide. https://www.digikey.es/es/pdf/i/interlinkelectronics/interlink-electronics-fsr-force-sensing-resistors-integration-guide | eng |
dcterms.references | Jor, A., Das, S., Bappy, A. S., & Rahman, A. (2019). Foot Plantar Pressure Measurement Using Low Cost Force Sensitive Resistor (FSR): Feasibility Study. Journal of Scientific Research, 11(3), 311–319. https://doi.org/10.3329/JSR.V11I3.40581 | eng |
dcterms.references | Kalantari, M., Dargahi, J., Kövecses, J., Mardasi, M. G., & Nouri, S. (2012). A new approach for modeling piezoresistive force sensors based on semiconductive polymer composites. IEEE/ASME Transactions on Mechatronics, 17(3), 572–581. https://doi.org/10.1109/TMECH.2011.2108664 | eng |
dcterms.references | Kaur, P., Singh, G., & Kaur, P. (2018). An intelligent validation system for diagnostic and prognosis of ultrasound fetal growth analysis using Neuro-Fuzzy based on genetic algorithm. Egyptian Informatics Journal. https://doi.org/https://doi.org/10.1016/j.eij.2018.10.002 | eng |
dcterms.references | Kawasaki, R., & Katsura, S. (2023). Shoe-type Wearable Device for Measuring Ground Reaction Force and Center of Pressure. IEEE International Symposium on Industrial Electronics, 2023-June. https://doi.org/10.1109/ISIE51358.2023.10228059 | eng |
dcterms.references | Khandakar, A., Mahmud, S., Chowdhury, M. E. H., Reaz, M. B. I., Kiranyaz, S., Mahbub, Z. Bin, Md Ali, S. H., Bakar, A. A. A., Ayari, M. A., Alhatou, M., AbdulMoniem, M., & Faisal, M. A. A. (2022a). Design and Implementation of a Smart Insole System to Measure Plantar Pressure and Temperature. Sensors, 22(19), 7599. https://doi.org/10.3390/S22197599/S1 | eng |
dcterms.references | Khandakar, A., Mahmud, S., Chowdhury, M. E. H., Reaz, M. B. I., Kiranyaz, S., Mahbub, Z. Bin, Md Ali, S. H., Bakar, A. A. A., Ayari, M. A., Alhatou, M., AbdulMoniem, M., & Faisal, M. A. A. (2022b). Design and Implementation of a Smart Insole System to Measure Plantar Pressure and Temperature. Sensors, 22(19), 7599. https://doi.org/10.3390/S22197599/S1 | eng |
dcterms.references | Kirkpatrick, S. (1973). Percolation and Conduction. Reviews of Modern Physics, 45(4), 574. https://doi.org/10.1103/RevModPhys.45.574 | eng |
dcterms.references | Koch, M., Lunde, L. K., Ernst, M., Knardahl, S., & Veiersted, K. B. (2016). Validity and reliability of pressure-measurement insoles for vertical ground reaction force assessment in field situations. Applied Ergonomics, 53 Pt A, 44–51. https://doi.org/10.1016/J.APERGO.2015.08.011 | eng |
dcterms.references | Kokai, O., Kilbreath, S. L., McLaughlin, P., & Dylke, E. S. (2021). The accuracy and precision of interface pressure measuring devices: A systematic review. Https://Doi.Org/10.1177/02683555211008061, 36(9), 678–694. https://doi.org/10.1177/02683555211008061 | eng |
dcterms.references | Komi, E. R., Roberts, J. R., & Rothberg, S. J. (2007). Evaluation of thin, flexible sensors for time-resolved grip force measurement. Http://Dx.Doi.Org/10.1243/09544062JMES700, 221(12), 1687–1699. https://doi.org/10.1243/09544062JMES700 | eng |
dcterms.references | Kursun Bahadir, S. (2018). Identification and modeling of sensing capability of force sensing resistor integrated to E-textile structure. IEEE Sensors Journal, 18(23), 9770–9780. https://doi.org/10.1109/JSEN.2018.2871396 | eng |
dcterms.references | Kurt, I., & Vural, R. A. (2018). Force resistive sensor network calibration method via regression analysis. 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018, 1–4. https://doi.org/10.1109/SIU.2018.8404492 | eng |
dcterms.references | Lakho, R. A., Abro, Z. A., Chen, J., & Min, R. (2022). Smart Insole Based on Flexi Force and Flex Sensor for Monitoring Different Body Postures. Sensors 2022, Vol. 22, Page 5469, 22(15), 5469. https://doi.org/10.3390/S22155469 | eng |
dcterms.references | Lara-Barrios, C. M., Formento, P. C., Larrosa, E. M., & Blanco-Ortega, A. (2020). Evaluation of the offline classification error of human locomotion modes using virtual force-sensing resistor data. Proceedings - 2020 International Conference on Mechatronics, Electronics and Automotive Engineering, ICMEAE 2020, 161– 168. https://doi.org/10.1109/ICMEAE51770.2020.00035 | eng |
dcterms.references | Lata, A., & Mandal, N. (2020). ANN-based liquid level transmitter using force resistive sensor for minimisation of hysteresis and non-linearity error. IET Science, Measurement & Technology, 14(10), 923–930. https://doi.org/10.1049/IET-SMT.2020.0009 | eng |
dcterms.references | Lebosse, C., Renaud, P., Bayle, B., & De Mathelin, M. (2011). Modeling and evaluation of low-cost force sensors. IEEE Transactions on Robotics, 27(4), 815– 822. https://doi.org/10.1109/TRO.2011.2119850 | eng |
dcterms.references | Lescano, C. N., Rodrigo, R. H., & Rodrigo, S. E. (2015). Desarrollo de un sistema de registro dinámico de presiones plantares. Revista Iberoamericana de Ingeniería Mecánica, ISSN 1137-2729, Vol. 19, No 1, 2015, Págs. 49-58, 19(1), 49–58. https://dialnet.unirioja.es/servlet/articulo?codigo=5148845&info=resumen&idio ma=SPA | spa |
dcterms.references | Likitlersuang, J., Leineweber, M. J., & Andrysek, J. (2017). Evaluating and improving the performance of thin film force sensors within body and device interfaces. Medical Engineering & Physics, 48, 206–211. https://doi.org/10.1016/J.MEDENGPHY.2017.06.017 | eng |
dcterms.references | Lin, J. C., Liatsis, P., & Alexandridis, P. (2023). Flexible and Stretchable Electrically Conductive Polymer Materials for Physical Sensing Applications. Polymer Reviews, 63(1), 67–126. https://doi.org/10.1080/15583724.2022.2059673 | eng |
dcterms.references | Littlejohn, S. D. (2014). Background Theory. In Electrical Properties of Graphite Nanoparticles in Silicone: Flexible Oscillators and Electromechanical Sensing (pp. 5–38). Springer International Publishing. https://doi.org/10.1007/978-3-319- 00741-0_2 | eng |
dcterms.references | Lorkowski, J., Gawronska, K., & Pokorski, M. (2021). Pedobarography: A review on methods and practical use in foot disorders. Applied Sciences (Switzerland), 11(22). https://doi.org/10.3390/APP112211020 | eng |
dcterms.references | Lung, C. W., Mo, P. C., Cao, C., Zhang, K., Wu, F. L., Liau, B. Y., & Jan, Y. K. (2022). Effects of walking speeds and durations on the plantar pressure gradient and pressure gradient angle. BMC Musculoskeletal Disorders, 23(1), 823. https://doi.org/10.1186/S12891-022-05771-2/FIGURES/7 | eng |
dcterms.references | Luo, Z., Berglund, L., & An, K. (1998). Validation of F-Scan pressure sensor system: a technical note. Journal of Rehabilitation Research and Development | eng |
dcterms.references | Mahmoud, G. M., Aggag, G. A., & Gelany, S. A. (2021). An Investigation on the Techniques used in Force Calibration using Deadweights and Pressure Piston Gauge. Indian Journal of Pure & Applied Physics, 59, 537–543 | eng |
dcterms.references | Mahmud, S., Khandakar, A., Chowdhury, M. E. H., AbdulMoniem, M., Bin Ibne Reaz, M., Bin Mahbub, Z., Sadasivuni, K. K., Murugappan, M., & Alhatou, M. (2023). Fiber Bragg Gratings based smart insole to measure plantar pressure and temperature. Sensors and Actuators A: Physical, 350, 114092. https://doi.org/10.1016/J.SNA.2022.114092 | eng |
dcterms.references | Mainardi, F., & Spada, G. (2011). Creep, relaxation and viscosity properties for basic fractional models in rheology. The European Physical Journal Special Topics 2011 193:1, 193(1), 133–160. https://doi.org/10.1140/EPJST/E2011- 01387-1 | eng |
dcterms.references | Mann, R., Malisoux, L., Urhausen, A., Meijer, K., & Theisen, D. (2016). Plantar pressure measurements and running-related injury: A systematic review of methods and possible associations. Gait & Posture, 47, 1–9. https://doi.org/10.1016/J.GAITPOST.2016.03.016 | eng |
dcterms.references | Martínez-Barba, D. A., Martínez-Manuel, R., Daza-Benítez, L., & Vidal-Lesso, A. (2021). Development of Self-Calibrating Sensor Footwear and Relevance of InShoe Characterization on Accurate Plantar Pressure Distribution Measurements. IEEE Sensors Journal, 21(6), 8421–8431. https://doi.org/10.1109/JSEN.2020.3048611 | eng |
dcterms.references | Martínez-Cesteros, J., Medrano-Sánchez, C., Castellanos-Ramos, J., SánchezDurán, J. A., Plaza-García, I., Martínez-Cesteros, J., Medrano-Sánchez, C., Castellanos-Ramos, J., Sánchez-Durán, J. A., & Plaza-García, I. (2023). Creep and Hysteresis Compensation in Pressure-Sensitive Mats for Improving Centerof-Pressure Measurements. ISenJ, 23(23), 29585–29593. https://doi.org/10.1109/JSEN.2023.3324363 | eng |
dcterms.references | Martínez-Martí, F., Martínez-García, M. S., García-Díaz, S. G., García-Jiménez, J., Palma, A. J., & Carvajal, M. A. (2014). Embedded sensor insole for wireless measurement of gait parameters. Australasian Physical and Engineering Sciences in Medicine, 37(1), 25–35. https://doi.org/10.1007/S13246-013-0236- 7/TABLES/4 | eng |
dcterms.references | Mashagbeh, M. Al, Alzaben, H., Abutair, R., Farrag, R., Sarhan, L., & Alyaman, M. (2022a). Gait Cycle Monitoring System Based on Flexiforce Sensors. Inventions 2022, Vol. 7, Page 51, 7(3), 51. https://doi.org/10.3390/INVENTIONS7030051 | eng |
dcterms.references | Mashagbeh, M. Al, Alzaben, H., Abutair, R., Farrag, R., Sarhan, L., & Alyaman, M. (2022b). Gait Cycle Monitoring System Based on Flexiforce Sensors. Inventions 2022, Vol. 7, Page 51, 7(3), 51. https://doi.org/10.3390/INVENTIONS7030051 | eng |
dcterms.references | McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.1007/BF02478259/METRICS | eng |
dcterms.references | McLachlan, D. S., Blaszkiewicz, M., & Newnham, R. E. (1990). Electrical Resistivity of Composites. Journal of the American Ceramic Society, 73(8), 2187–2203. https://doi.org/10.1111/J.1151-2916.1990.TB07576.X | eng |
dcterms.references | McMillan, L. B., DI Pauli Von Treuheim, T., Murphy, A., Zengin, A., Ebeling, P. R., & Scott, D. (2019). Development and Validation of a Wearable Plantar Force Measurement Device. IEEE Sensors Journal, 19(11), 4008–4016. https://doi.org/10.1109/JSEN.2019.2896595 | eng |
dcterms.references | Micó-Amigo, M. E., & de Pablo Fernández, E. (2021). La evaluación de la marcha con nuevas tecnologías. MANUAL SEN DE. | spa |
dcterms.references | Morton, D. J. (1930). Structural factors in static disorders of the foot. The American Journal of Surgery, 9(2), 315–328. https://doi.org/10.1016/S0002- 9610(30)91100-2 | eng |
dcterms.references | Mun, F., & Choi, A. (2022a). Deep learning approach to estimate foot pressure distribution in walking with application for a cost-effective insole system. Journal of NeuroEngineering and Rehabilitation, 19(1), 1–14. https://doi.org/10.1186/S12984-022-00987-8/FIGURES/9 | eng |
dcterms.references | Mun, F., & Choi, A. (2022b). Deep learning approach to estimate foot pressure distribution in walking with application for a cost-effective insole system. Journal of Neuroengineering and Rehabilitation, 19(1). https://doi.org/10.1186/S12984- 022-00987-8 | eng |
dcterms.references | Muzaffar, S., & Elfadel, I. M. (2020). Self-Synchronized, Continuous Body Weight Monitoring Using Flexible Force Sensors and Ground Reaction Force Signal Processing. IEEE Sensors Journal, 20(18), 10886–10897. https://doi.org/10.1109/JSEN.2020.2994129 | eng |
dcterms.references | Naderizadeh, S., Santagiuliana, G., Tu, W., Marsh, D., Bilotti, E., & Busfield, J. J. C. (2023). Piezoresistive Elastomer Composites Used for Pressure Sensing. IEEE Sensors Journal, 23(16), 18013–18021. https://doi.org/10.1109/JSEN.2023.3292239 | eng |
dcterms.references | Nauman, S. (2021). Piezoresistive Sensing Approaches for Structural Health Monitoring of Polymer Composites—A Review. Eng 2021, Vol. 2, Pages 197-226, 2(2), 197–226. https://doi.org/10.3390/ENG2020013 | eng |
dcterms.references | Oubre, B., Lane, S., Holmes, S., Boyer, K., & Lee, S. I. (2022). Estimating Ground Reaction Force and Center of Pressure Using Low-Cost Wearable Devices. IEEE Transactions on Biomedical Engineering, 69(4), 1461–1468. https://doi.org/10.1109/TBME.2021.3120346 | eng |
dcterms.references | Padilla, A. H. (2006). Uso de la baropodometría. Orthotips AMOT, 2(4), 255– 261 | spa |
dcterms.references | Palacio, C., Paredes-Madrid, L., & Garzon, O. (2022). Statistical process control of commercial force-sensing resistors. Metrol. Meas. Syst, 29(3), 469– 481. https://doi.org/10.24425/mms.2022.142267 | eng |
dcterms.references | Paredes-Madrid, L., Fonseca, J., Matute, A., Velásquez, E. I. G., & Palacio, C. A. (2018). Self-Compensated Driving Circuit for Reducing Drift and Hysteresis in Force Sensing Resistors. Electronics 2018, Vol. 7, Page 146, 7(8), 146. https://doi.org/10.3390/ELECTRONICS7080146 | eng |
dcterms.references | Paredes-Madrid, L., Matute, A., Bareño, J. O., Vargas, C. A. P., & Velásquez, E. I. G. (2017). Underlying Physics of Conductive Polymer Composites and Force Sensing Resistors (FSRs). A Study on Creep Response and Dynamic Loading. Materials 2017, Vol. 10, Page 1334, 10(11), 1334. https://doi.org/10.3390/MA10111334 | eng |
dcterms.references | Paredes-Madrid, L., Matute, A., Cruz-Pacheco, A. F., Parra-Vargas, C. A., & Gutiérrez-Velásquez, E. I. (2018). Experimental characterization, modeling and compensation of hysteresis in force sensing resistors. DYNA, 85(205), 191–198. https://doi.org/10.15446/dyna.v85n205.66432 | eng |
dcterms.references | Paredes-Madrid, L., Matute, A., & Palacio, C. (2019). Understanding the effect of sourcing voltage and driving circuit in the repeatability of measurements in force sensing resistors (FSRs). Measurement Science and Technology, 30(11), 115101. https://doi.org/10.1088/1361-6501/AB3307 | eng |
dcterms.references | Paredes-Madrid, L., Matute, A., & Pena, A. (2017). Framework for a Calibration-Less Operation of Force Sensing Resistors at Different Temperatures. IEEE Sensors Journal, 17(13), 4133–4142. https://doi.org/10.1109/JSEN.2017.2706697 | eng |
dcterms.references | Paredes-Madrid, L., Palacio, C. A., Matute, A., & Parra Vargas, C. A. (2017). Underlying Physics of Conductive Polymer Composites and Force Sensing Resistors (FSRs) under Static Loading Conditions. Sensors 2017, Vol. 17, Page 2108, 17(9), 2108. https://doi.org/10.3390/S17092108 | eng |
dcterms.references | Park, J., Kim, M., Hong, I., Kim, T., Lee, E., Kim, E. A., Ryu, J. K., Jo, Y., Koo, J., Han, S., Koh, J. S., & Kang, D. (2019). Foot Plantar Pressure Measurement System Using Highly Sensitive Crack-Based Sensor. Sensors 2019, Vol. 19, Page 5504, 19(24), 5504. https://doi.org/10.3390/S19245504 | eng |
dcterms.references | Parmar, S., Khodasevych, I., & Troynikov, O. (2017). Evaluation of Flexible Force Sensors for Pressure Monitoring in Treatment of Chronic Venous Disorders. Sensors, 17(8), 1923. https://doi.org/10.3390/s17081923 | eng |
dcterms.references | Peña, A., Alvarez, E. L., Ayala Valderrama, D. M., Palacio, C., Bermudez, Y., & Paredes-Madrid, L. (2024). Usage of Machine Learning Techniques to Classify and Predict the Performance of Force Sensing Resistors. Sensors, 24(20), 6592. https://doi.org/10.3390/S24206592/S1 | eng |
dcterms.references | Perttunen, J., Kyröläinen, H., Komi, P. V., & Heinonen, A. (2000). Biomechanical loading in the triple jump. Journal of Sports Sciences, 18(5), 363– 370. https://doi.org/10.1080/026404100402421 | eng |
dcterms.references | Plageras, A. P., & Psannis, K. E. (2022). IoT-based health and emotion care system. ICT Express. https://doi.org/10.1016/J.ICTE.2022.03.008 | eng |
dcterms.references | Praet, S. F. E., & Louwerens, J. W. K. (2003a). The influence of shoe design on plantar pressures in neuropathic feet. Diabetes Care, 26(2), 441–445. https://doi.org/10.2337/DIACARE.26.2.441 | eng |
dcterms.references | Praet, S. F. E., & Louwerens, J. W. K. (2003b). The Influence of Shoe Design on Plantar Pressures in Neuropathic Feet. Diabetes Care, 26(2), 441–445. https://doi.org/10.2337/DIACARE.26.2.441 | eng |
dcterms.references | Prat Pastor, J., Alcántara, E., & Sánchez-Lacuesta, J. (1993). Biomecánica de la marcha humana normal y patológica. In Biomecánica de la marcha humana normal y patológica. Instituto de Biomecánica de Valencia. | spa |
dcterms.references | Quaney, B., Meyer, K., Cornwall, M. W., & McPoil, T. G. (1995). A comparison of the dynamic pedobarograph and EMED systems for measuring dynamic foot pressures. Foot & Ankle International, 16(9), 562–566. https://doi.org/10.1177/107110079501600909 | eng |
dcterms.references | Queen, R. M., Haynes, B. B., Hardaker, W. M., & Garrett, W. E. (2007). Forefoot loading during 3 athletic tasks. The American Journal of Sports Medicine, 35(4), 630–636. https://doi.org/10.1177/0363546506295938 | eng |
dcterms.references | Rahimi, M., Blaber, A. P., & Menon, C. (2016). Towards the evaluation of forcesensing resistors for in situ measurement of interface pressure during leg compression therapy. 2016 IEEE Healthcare Innovation Point-of-Care Technologies Conference, HI-POCT 2016, 25–28. https://doi.org/10.1109/HIC.2016.7797688 | eng |
dcterms.references | Rajendran, D., Ramalingame, R., Palaniyappan, S., Wagner, G., & Kanoun, O. (2021). Flexible Ultra-Thin Nanocomposite Based Piezoresistive Pressure Sensors for Foot Pressure Distribution Measurement. Sensors 2021, Vol. 21, Page 6082, 21(18), 6082. https://doi.org/10.3390/S21186082 | eng |
dcterms.references | Ramirez-Bautista, J. A., Huerta-Ruelas, J. A., Chaparro-Cárdenas, S. L., & Hernández-Zavala, A. (2017). A Review in Detection and Monitoring Gait Disorders Using In-Shoe Plantar Measurement Systems. In IEEE Reviews in Biomedical Engineering (Vol. 10, pp. 299–309). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/RBME.2017.2747402 | eng |
dcterms.references | Roozbahani, H., Fakhrizadeh, A., Haario, H., & Handroos, H. (2013). Novel online re-calibration method for multi-axis force/torque sensor of ITER welding/machining robot. IEEE Sensors Journal, 13(11), 4432–4443. https://doi.org/10.1109/JSEN.2013.2274195 | eng |
dcterms.references | Rusu, L., Paun, E., Marin, M. I., Hemanth, J., Rusu, M. R., Calina, M. L., Bacanoiu, M. V., Danoiu, M., & Danciulescu, D. (2021a). Plantar Pressure and Contact Area Measurement of Foot Abnormalities in Stroke Rehabilitation. Brain Sciences, 11(9). https://doi.org/10.3390/BRAINSCI11091213 | eng |
dcterms.references | Rusu, L., Paun, E., Marin, M. I., Hemanth, J., Rusu, M. R., Calina, M. L., Bacanoiu, M. V., Danoiu, M., & Danciulescu, D. (2021b). Plantar Pressure and Contact Area Measurement of Foot Abnormalities in Stroke Rehabilitation. Brain Sciences 2021, Vol. 11, Page 1213, 11(9), 1213. https://doi.org/10.3390/BRAINSCI11091213 | eng |
dcterms.references | Saadeh, M. Y. (2023). Hybrid genetic algorithm-system identification approach to model force sensing resistors. Https://Doi.Org/10.1177/1045389X231167178, 34(17), 2074–2086. https://doi.org/10.1177/1045389X231167178 | eng |
dcterms.references | Saadeh, M. Y., Carambat, T. D., & Arrieta, A. M. (2017a). Evaluating and modeling force sensing resistors for low force applications. ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017, 2. https://doi.org/10.1115/SMASIS2017-3703 | eng |
dcterms.references | Saadeh, M. Y., Carambat, T. D., & Arrieta, A. M. (2017b). Evaluating and Modeling Force Sensing Resistors for Low Force Applications. ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017, 2. https://doi.org/10.1115/SMASIS2017-3703 | eng |
dcterms.references | Saadeh, M. Y., & Trabia, M. B. (2012). Identification of a force-sensing resistor for tactile applications. Http://Dx.Doi.Org/10.1177/1045389X12463462, 24(7), 813–827. https://doi.org/10.1177/1045389X12463462 | eng |
dcterms.references | Said, A. M., Justine, M., & Manaf, H. (2016). Plantar Pressure Distribution among Older Persons with Different Types of Foot and Its Correlation with Functional Reach Distance. https://doi.org/10.1155/2016/8564020 | eng |
dcterms.references | Saito, M., Nakajima, K., Takano, C., Ohta, Y., Sugimoto, C., Ezoe, R., Sasaki, K., Hosaka, H., Ifukube, T., Ino, S., & Yamashita, K. (2011). An in-shoe device to measure plantar pressure during daily human activity. Medical Engineering & Physics, 33(5), 638–645. https://doi.org/10.1016/J.MEDENGPHY.2011.01.001 | eng |
dcterms.references | Sánchez-Durán, J. A., Oballe-Peinado, Ó., Castellanos-Ramos, J., & VidalVerdú, F. (2012). Hysteresis correction of tactile sensor response with a generalized Prandtl-Ishlinskii model. Microsystem Technologies, 18(7–8), 1127– 1138. https://doi.org/10.1007/S00542-012-1455-7 | eng |
dcterms.references | Sánchez Ramírez, C. (2017). Análisis de dos métodos de evaluación de la huella plantar: índice de Hernández Corvo vs. Arch Index de Cavanagh y Rodgers. Fisioterapia, 39(5), 209–215. https://doi.org/10.1016/J.FT.2017.01.002 | spa |
dcterms.references | Schofield, J. S., Evans, K. R., Hebert, J. S., Marasco, P. D., & Carey, J. P. (2016). The effect of biomechanical variables on force sensitive resistor error: Implications for calibration and improved accuracy. Journal of Biomechanics, 49(5), 786–792. https://doi.org/10.1016/J.JBIOMECH.2016.01.022 | eng |
dcterms.references | Schwartz, R. P., & Heath, A. L. (1947). The Definition of Human Locomotion on the basis of Measurement: With Description of Oscillographic Method. JBJS, 29(1). https://journals.lww.com/jbjsjournal/Fulltext/1947/29010/THE_DEFINITION_OF _HUMAN_LOCOMOTION_ON_THE_BASIS_OF.20.aspx | eng |
dcterms.references | Shu, L., Hua, T., Wang, Y., Li, Q., Feng, D. D., & Tao, X. (2010). In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Transactions on Information Technology in Biomedicine : A Publication of the IEEE Engineering in Medicine and Biology Society, 14(3), 767– 775. https://doi.org/10.1109/TITB.2009.2038904 | eng |
dcterms.references | Simmons, J. G. (1963). Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film. Journal of Applied Physics, 34(9), 2581– 2590. https://doi.org/10.1063/1.1729774 | eng |
dcterms.references | Simonsson, S., Tranberg, R., Zügner, R., & Tang, U. H. (2023). Reliability of F-Scan® in-shoe plantar pressure measurements in people with diabetes at risk of developing foot ulcers. The Foot, 56, 102027. https://doi.org/10.1016/J.FOOT.2023.102027 | eng |
dcterms.references | Skopljak, A., Muft ic, M., Sukalo, A., & Masic, I. (2014). Pedobarography in Diagnosis and Clinical Application. https://doi.org/10.5455/aim.2014.22.374-378 | eng |
dcterms.references | Soames, R. W. (1985). Foot pressure patterns during gait. Journal of Biomedical Engineering, 7(2), 120–126. https://doi.org/10.1016/0141- 5425(85)90040-8 | eng |
dcterms.references | Soria Olivas, E. (2022). Inteligencia artificial : casos prácticos con aprendizaje profundo (Ediciones de la U (ed.)). Ediciones de la U. https://www.rama.es/libro/inteligencia-artificial_139032/ | spa |
dcterms.references | Stassi, S., Cauda, V., Canavese, G., & Pirri, C. F. (2014). Flexible tactile sensing based on piezoresistive composites: A review. Sensors (Switzerland), 14(3), 5296–5332. https://doi.org/10.3390/S140305296 | eng |
dcterms.references | Staymates, M. E., Grandner, J., & Verkouteren, J. R. (2013). Pressuresensitive sampling wands for homeland security applications. IEEE Sensors Journal, 13(12), 4844–4850. https://doi.org/10.1109/JSEN.2013.2274573 | eng |
dcterms.references | Swanson, E. C., Weathersby, E. J., Cagle, J. C., & Sanders, J. E. (2019). Evaluation of Force Sensing Resistors for the Measurement of Interface Pressures in Lower Limb Prosthetics. Journal of Biomechanical Engineering, 141(10), 1010091. https://doi.org/10.1115/1.4043561 | eng |
dcterms.references | Tahir, A. M., Chowdhury, M. E. H., Khandakar, A., Al-Hamouz, S., Abdalla, M., Awadallah, S., Reaz, M. B. I., & Al-Emadi, N. (2020). A Systematic Approach to the Design and Characterization of a Smart Insole for Detecting Vertical Ground Reaction Force (vGRF) in Gait Analysis. Sensors 2020, Vol. 20, Page 957, 20(4), 957. https://doi.org/10.3390/S20040957 | eng |
dcterms.references | Tan, A. M., Fuss, F. K., Weizman, Y., Woudstra, Y., & Troynikov, O. (2015). Design of Low Cost Smart Insole for Real Time Measurement of Plantar Pressure. Procedia Technology, 20, 117–122. https://doi.org/10.1016/J.PROTCY.2015.07.020 | eng |
dcterms.references | Tan, Y., Ivanov, K., Mei, Z., Li, H., Li, H., Lubich, L., Wang, C., & Wang, L. (2021). A Soft Wearable and Fully-Textile Piezoresistive Sensor for Plantar Pressure Capturing. Micromachines 2021, Vol. 12, Page 110, 12(2), 110. https://doi.org/10.3390/MI12020110 | eng |
dcterms.references | Tang, J., Bader, D. L., Moser, D., Parker, D. J., Forghany, S., Nester, C. J., & Jiang, L. (2023a). A Wearable Insole System to Measure Plantar Pressure and Shear for People with Diabetes. Sensors (Basel, Switzerland), 23(6). https://doi.org/10.3390/S23063126 | eng |
dcterms.references | Tang, J., Bader, D. L., Moser, D., Parker, D. J., Forghany, S., Nester, C. J., & Jiang, L. (2023b). A Wearable Insole System to Measure Plantar Pressure and Shear for People with Diabetes. Sensors 2023, Vol. 23, Page 3126, 23(6), 3126. https://doi.org/10.3390/S23063126 | eng |
dcterms.references | Tang, J., Bader, D. L., Moser, D., Parker, D. J., Forghany, S., Nester, C. J., & Jiang, L. (2023c). A Wearable Insole System to Measure Plantar Pressure and Shear for People with Diabetes. Sensors 2023, Vol. 23, Page 3126, 23(6), 3126. https://doi.org/10.3390/S23063126 | eng |
dcterms.references | Tanwar, H., Nguyen, L., & Stergiou, N. (2007). Force Sensitive Resistor (FSR)-based wireless gait analysis device (pp. 1–6). https://experts.nebraska.edu/en/publications/force-sensitive-resistor-fsr-basedwireless-gait-analysis-device | eng |
dcterms.references | Tekscan. (2024a). Best practices in electrical integration of the FlexiforceTM sensor (p. 11). Tekscan. https://www.tekscan.com/sites/default/files/FLX-BestPractice-Electrical-Integration-RevB.pdf | eng |
dcterms.references | Tekscan. (2024b). FlexiForce User Manual. https://www.tekscan.com/sites/default/files/FlexiForce Sensors RevL.pdf | eng |
dcterms.references | TekScan. (2009). FlexiForce® A201 Standard Force & Load Sensor (p. 1). http://www.warf.com/download/455_2861_1.pdf | eng |
dcterms.references | TekScan. (2018a). Best Practices in Mechanical Integration of the FlexiForceTM Sensor. https://www.tekscan.com/flexiforce-integration-guides | eng |
dcterms.references | TekScan. (2018b). Best Practices in Mechanical Integration of the FlexiForceTM Sensor (p. 5). https://www.tekscan.com/flexiforce-integrationguides | eng |
dcterms.references | Tianshu, W., Shuyu, C., Peng, W., Shaozhong, N., Tianshu, W., Shuyu, C., Peng, W., & Shaozhong, N. (2019). A High Precision Software Compensation Algorithm for Silicon Piezoresistive Pressure Sensor. Chinese Journal of Electronics, 2019, Vol. 28, Issue 4, Pages: 748-753, 28(4), 748–753. https://doi.org/10.1049/CJE.2019.05.001 | eng |
dcterms.references | Triana Ricci, R. (2014). Pie diabético. Fisiopatología y consecuencias. Revista Colombiana de Ortopedia y Traumatología, 28(4), 143–153. https://doi.org/10.1016/J.RCCOT.2015.04.006 | spa |
dcterms.references | Tulunay, Y., Tulunay, E., & Senalp, E. T. (2004). The neural network technique––1: a general exposition. Advances in Space Research, 33(6), 983– 987. https://doi.org/10.1016/J.ASR.2003.06.008 | eng |
dcterms.references | Ulbrecht, J. S., Hurley, T., Mauger, D. T., & Cavanagh, P. R. (2014). Prevention of recurrent foot ulcers with plantar pressure-based in-shoe orthoses: The CareFUL prevention multicenter randomized controlled trial. Diabetes Care, 37(7), 1982–1989. https://doi.org/10.2337/DC13-2956/-/DC1 | eng |
dcterms.references | Urry, S. (1999). Plantar pressure-measurement sensors. Measurement Science and Technology, 10(1), R16–R32. https://doi.org/10.1088/0957- 0233/10/1/017 | eng |
dcterms.references | Velásquez, E. I. G., Gómez, V., Paredes-Madrid, L., & Colorado, H. A. (2019). Error compensation in force sensing resistors. Sensing and Bio-Sensing Research, 26, 100300. https://doi.org/10.1016/J.SBSR.2019.100300 | eng |
dcterms.references | Vidhate, S., Chung, J., Vaidyanathan, V., & D’Souza, N. A. (2010). Resistive– conductive transitions in the time-dependent piezoresponse of PVDF-MWCNT nanocomposites. Polymer Journal 2010 42:7, 42(7), 567–574. https://doi.org/10.1038/pj.2010.44 | eng |
dcterms.references | Villanueva, G., Khandakar, A., Mahmud, S., Chowdhury, M. E. H., Bin, M., Reaz, I., Kiranyaz, S., Mahbub, Z. Bin, Hamid, S., Ali, M., Ashrif, A., Bakar, A., Ayari, M. A., Alhatou, M., Abdul-Moniem, M., Ahasan, M., & Faisal, A. (2022). Design and Implementation of a Smart Insole System to Measure Plantar Pressure and Temperature. https://doi.org/10.3390/s22197599 | eng |
dcterms.references | Vorlickova, L., & Korvas, P. (2014). Evaluation of rehabilitation influence on flat foot in children by plantar pressure analysis. Journal of Human Sport and Exercise, 9(1proc), 526–532. https://doi.org/10.14198/JHSE.2014.9.PROC1.42 | eng |
dcterms.references | Wang, C., Evans, K., Hartley, D., Morrison, S., Veidt, M., & Wang, G. (2024). A systematic review of artificial neural network techniques for analysis of foot plantar pressure. Biocybernetics and Biomedical Engineering, 44(1), 197–208. https://doi.org/10.1016/J.BBE.2024.01.005 | eng |
dcterms.references | Wang, L., Han, Y., Wu, C., & Huang, Y. (2013). A solution to reduce the time dependence of the output resistance of a viscoelastic and piezoresistive element. Smart Materials and Structures, 22(7), 075021. https://doi.org/10.1088/0964- 1726/22/7/075021 | eng |
dcterms.references | Wang, L., Jones, D., Chapman, G. J., Siddle, H. J., Russell, D. A., Alazmani, A., & Culmer, P. (2020). A Review of Wearable Sensor Systems to Monitor Plantar Loading in the Assessment of Diabetic Foot Ulcers. IEEE Transactions on Biomedical Engineering, 67(7), 1989–2004. https://doi.org/10.1109/TBME.2019.2953630 | eng |
dcterms.references | Wang, L., Jones, D., Jones, A., Chapman, G. J., Siddle, H. J., Russell, D., Alazmani, A., & Culmer, P. R. (2022). A Portable Insole System to Simultaneously Measure Plantar Pressure and Shear Stress. IEEE Sensors Journal, 22(9), 9104–9113. https://doi.org/10.1109/JSEN.2022.3162713 | eng |
dcterms.references | Wang, M., Gurunathan, R., Imasato, K., Geisendorfer, N. R., Jakus, A. E., Peng, J., Shah, R. N., Grayson, M., & Snyder, G. J. (2019). A Percolation Model for Piezoresistivity in Conductor–Polymer Composites. Advanced Theory and Simulations, 2(2), 1800125. https://doi.org/10.1002/ADTS.201800125 | eng |
dcterms.references | Wang, Y., Adam, M. L., Zhao, Y., Zheng, W., Gao, L., Yin, Z., & Zhao, H. (2023). Machine Learning-Enhanced Flexible Mechanical Sensing. Nano-Micro Letters 2023 15:1, 15(1), 1–33. https://doi.org/10.1007/S40820-023-01013-9 | eng |
dcterms.references | Wibowo, D. B., Suprihanto, A., Caesarendra, W., Khoeron, S., Glowacz, A., & Irfan, M. (2020). A Simple Foot Plantar Pressure Measurement Platform System Using Force-Sensing Resistors. Applied System Innovation 2020, Vol. 3, Page 33, 3(3), 33. https://doi.org/10.3390/ASI3030033 | eng |
dcterms.references | Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 27(5), 1047–1053. https://doi.org/10.2337/DIACARE.27.5.1047 | eng |
dcterms.references | Woodburn, J., & Helliwell, P. S. (1996a). Observations on the F-Scan in-shoe pressure measuring system. Clinical Biomechanics, 11(5), 301–304. https://doi.org/10.1016/0268-0033(95)00071-2 | eng |
dcterms.references | Woodburn, J., & Helliwell, P. S. (1996b). Relation between heel position and the distribution of forefoot plantar pressures and skin callosities in rheumatoid arthritis. Annals of the Rheumatic Diseases, 55(11), 806–810. https://doi.org/10.1136/ARD.55.11.806 | eng |
dcterms.references | Xie, S., Sen, D., McNeill, J., Mendelson, Y., Dunn, R., & Hickle, K. (2018a). A predictive model for force-sensing resistor nonlinearity for pressure measurement in a wearable wireless sensor patch. Midwest Symposium on Circuits and Systems, 2018-August, 476–579. https://doi.org/10.1109/MWSCAS.2018.8623965 | eng |
dcterms.references | Xie, S., Sen, D., McNeill, J., Mendelson, Y., Dunn, R., & Hickle, K. (2018b). A predictive model for force-sensing resistor nonlinearity for pressure measurement in a wearable wireless sensor patch. Midwest Symposium on Circuits and Systems, 2018-Augus, 476–579. https://doi.org/10.1109/MWSCAS.2018.8623965 | eng |
dcterms.references | Xiong, S., Goonetilleke, R. S., Rodrigo, W. D. A. S., & Zhao, J. (2013). A model for the perception of surface pressure on human foot. Applied Ergonomics, 44(1), 1–10. https://doi.org/10.1016/J.APERGO.2012.04.019 | eng |
dcterms.references | Yang, T., Xie, D., Li, Z., & Zhu, H. (2017). Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering: R: Reports, 115, 1–37. https://doi.org/10.1016/J.MSER.2017.02.001 | eng |
dcterms.references | Ye, J., Lin, Z., You, J., Huang, S., & Wu, H. (2020). Inconsistency Calibrating Algorithms for Large Scale Piezoresistive Electronic Skin. Micromachines 2020, Vol. 11, Page 162, 11(2), 162. https://doi.org/10.3390/MI11020162 | eng |
dcterms.references | Yu, J., Li, F., Gao, Y., & Jiang, Y. (2023). Optimization of linearity of piezoresistive pressure sensor based on pade approximation. Sensors and Actuators A: Physical, 364, 114845. https://doi.org/10.1016/J.SNA.2023.114845 | eng |
dcterms.references | Zehr, E. P., Stein, R. B., Komiyama, T., & Kenwell, Z. (1995). Linearization of force sensing resistors (FSR’s) for force measurement during gait. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 17(2), 1571–1572. https://doi.org/10.1109/IEMBS.1995.579833 | eng |
dcterms.references | Zhang, Q., Wang, Y. L., Xia, Y., Wu, X., Kirk, T. V., & Chen, X. D. (2019). A low-cost and highly integrated sensing insole for plantar pressure measurement. Sensing and Bio-Sensing Research, 26, 100298. https://doi.org/10.1016/J.SBSR.2019.100298 | eng |
dcterms.references | Zhang, X. W., Pan, Y., Zheng, Q., & Yi, X. S. (2000). Time dependence of piezoresistance for the conductor-filled polymer composites. Journal of Polymer Science, Part B: Polymer Physics, 38(21), 2739–2749. https://doi.org/10.1002/1099-0488(20001101)38:21 | eng |
dcterms.references | Zhang, Z., Dai, Y., Xu, Z., Grimaldi, N., Wang, J., Zhao, M., Pang, R., Sun, Y., Gao, S., & Boyi, H. (2023). Insole Systems for Disease Diagnosis and Rehabilitation: A Review. Biosensors 2023, Vol. 13, Page 833, 13(8), 833. https://doi.org/10.3390/BIOS13080833 | eng |
dcterms.references | Zhang, Z., Xu, Z., Chen, W., & Gao, S. (2022a). Comparison between Piezoelectric and Piezoresistive Wearable Gait Monitoring Techniques. Materials 2022, Vol. 15, Page 4837, 15(14), 4837. https://doi.org/10.3390/MA15144837 | eng |
dcterms.references | Zhang, Z., Xu, Z., Chen, W., & Gao, S. (2022b). Comparison between Piezoelectric and Piezoresistive Wearable Gait Monitoring Techniques. Materials 2022, Vol. 15, Page 4837, 15(14), 4837. https://doi.org/10.3390/MA15144837 | eng |
dcterms.references | Zhao, X., Chen, Y., Wei, G., Pang, L. L., & Xu, C. (2023). A comprehensive compensation method for piezoresistive pressure sensor based on surface fitting and improved grey wolf algorithm. Measurement, 207, 112387. https://doi.org/10.1016/J.MEASUREMENT.2022.112387 | eng |
dcterms.references | Zhou, G., Liao, Z., Zhao, R., Yao, H., & Dai, H. (2022). A Force Decoupling Method for Simultaneously Measuring Vertical and Shear Force. IEEE Sensors Journal, 22(17), 16820–16827. https://doi.org/10.1109/JSEN.2022.3192284 | eng |
dcterms.references | Zhu, H., Wertsch, J. J., Harris, G. F., Loftsgaarden, J. D., & Price, M. B. (1991). Foot pressure distribution during walking and shuffling. Archives of Physical Medicine and Rehabilitation, 72(6), 390–397. https://doi.org/10.5555/uri:pii:000399939190173G | eng |
dcterms.references | Zou, M., Xu, Y., Jin, J., Chu, M., & Huang, W. (2023a). Accurate Nonlinearity and Temperature Compensation Method for Piezoresistive Pressure Sensors Based on Data Generation. Sensors 2023, Vol. 23, Page 6167, 23(13), 6167. https://doi.org/10.3390/S23136167 | eng |
dcterms.references | Zulkifli, S. S., & Loh, W. P. (2020). A state-of-the-art review of foot pressure. Foot and Ankle Surgery, 26(1), 25–32. https://doi.org/10.1016/J.FAS.2018.12.005 | eng |
dcterms.references | Zuñiga, J., Moscoso, M., Padilla-Huamantinco, P. G., Lazo-Porras, M., Tenorio-Mucha, J., Padilla-Huamantinco, W., & Tincopa, J. P. (2022). Development of 3D-Printed Orthopedic Insoles for Patients with Diabetes and Evaluation with Electronic Pressure Sensors. Designs, 6(5), 95. https://doi.org/10.3390/DESIGNS6050095/S1 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.investigacion | Convergencia tecnológica | spa |
sb.programa | Doctorado en Gestión de la Tecnología y la Innovación | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: