Método basado en inteligencia artificial para la calibración de sensores force sensitive resistor (FSR) orientado a la determinación de presiones plantares estáticas en la pisada

datacite.rightshttp://purl.org/coar/access_right/c_16ec
dc.contributor.advisorMoreno Trillos, Silvia Carolina
dc.contributor.advisorParedes Madrid, Leonel José
dc.contributor.authorÁlvarez Gutiérrez, Edwin Leonel
dc.date.accessioned2025-08-13T15:12:44Z
dc.date.available2025-08-13T15:12:44Z
dc.date.issued2025
dc.description.abstractLa investigación desarrolla una solución tecnológica innovadora para mejorar la precisión de los sensores piezorresistivos tipo FSR Force Sensitive Resistor en aplicaciones orientadas a la medición de presión plantar estática. Estos dispositivos, ampliamente utilizados por su bajo costo, asequibilidad, portabilidad y flexibilidad han sobresalido en los últimos años en comparación con tecnologías piezocapacitivas o piezoeléctricas. No obstante, presentan limitaciones significativas derivadas de fenómenos como la histéresis, el creep o deriva temporal, la no linealidad y la baja reproducibilidad, los cuales afectan de forma directa la exactitud y consistencia de las mediciones. Bajo el marco del paradigma positivista y mediante una metodología aplicada-experimental con enfoque cuantitativo, se diseñó un sistema híbrido que combina técnicas de medición multivoltaje y multisensor con modelos avanzados de inteligencia artificial, entre ellos redes neuronales artificiales (ANN), redes de memoria a largo y corto plazo (LSTM) y redes GRU. Estos modelos fueron integrados con métodos matemáticos clásicos para compensar los errores característicos de los sensores FSR. La validación del sistema se llevó a cabo en condiciones controladas, evaluando un total de 48 sensores pertenecientes a tres marcas comerciales: FlexiForce®, Interlink® y Peratech®. Para la experimentación se utilizó un sistema mecatrónico de ensayos mecánicos que permitió aplicar variaciones de carga y voltaje, reproduciendo así diferentes escenarios de operación conforme a la aplicación definida. Los datos adquiridos fueron procesados para desarrollar y entrenar los algoritmos de compensación de errores, abordando específicamente los efectos asociados al comportamiento viscoelástico del material conductor de este tipo de sensores. Los resultados evidenciaron que el sistema propuesto supera a los métodos tradicionales en precisión. Para la compensación de la histéresis, el modelo ANN mostró el mejor rendimiento, reduciendo el error desde valores iniciales entre el 6 % y el 9 % hasta menos del 1.5 % en algunos casos, con errores medios inferiores al 2.5 % en sensores FlexiForce® y Peratech®. Esto supone una mejora notable respecto a lo reportado por fabricantes y estudios previos. En el caso del creep, el modelo LSTM fue el más efectivo, alcanzando un error cuadrático medio (RMSE) de 0.0032 y un error porcentual medio de apenas 0.49 %. Su capacidad para modelar secuencias temporales lo convirtió en la opción más precisa para este tipo de error, ya que el creep se manifiesta como una variación lenta y dependiente del tiempo bajo carga constante. El modelo GRU, aunque con menor complejidad y exigencia computacional que LSTM, presentó un desempeño competitivo. Obtuvo un coeficiente de determinación R² de 0.9953 y errores medios en el rango del 3 % al 4 %. Esto lo posiciona como una alternativa viable para implementaciones en sistemas embebidos de bajo consumo energético, donde los recursos de hardware son limitados. El análisis comparativo entre las diferentes tecnologías de sensores reveló comportamientos distintivos. FlexiForce® presentó una respuesta más estable y repetible en las mediciones, lo que facilitó la corrección de errores y la obtención de resultados consistentes. Interlink® mostró mayor susceptibilidad a la histéresis, pero esta fue significativamente mitigada mediante el uso de ANN. Peratech®, por su parte, ofreció una respuesta inicial favorable, la cual fue optimizada utilizando modelos multivoltaje que mejoraron su linealidad y precisión. En todos los casos evaluados, los modelos basados en inteligencia artificial superaron las técnicas convencionales para compensar errores estáticos de los sensores FSR bajo condiciones de operación variables. Esta mejora se tradujo en una estimación de fuerza más fiable y robusta, lo que representa un avance importante en aplicaciones como la medición de presiones plantares, donde la exactitud es crítica para la interpretación clínica y biomecánica. La investigación concluye proponiendo como línea futura el desarrollo de una implementación embebida de los algoritmos desarrollados, con el fin de evaluar su desempeño en condiciones reales de uso. Esto permitiría validar la viabilidad práctica del sistema y su potencial integración en dispositivos portátiles o de monitoreo continuo, beneficiando tanto la investigación biomédica como la instrumentación de bajo costo para el diagnóstico y seguimiento de la salud plantarspa
dc.description.abstractThis doctoral dissertation presents an innovative technological solution aimed at improving the accuracy of piezoresistive sensors of the FSR —Force Sensitive Resistor— type in applications focused on static plantar pressure measurement. These devices, widely used for their low cost, affordability, portability, and flexibility, have stood out in recent years compared to piezocapacitive and piezoelectric technologies. Nevertheless, they exhibit significant limitations arising from phenomena such as hysteresis, creep (or temporal drift), non-linearity, and low reproducibility, all of which directly affect the accuracy and consistency of measurements. Within the framework of the positivist paradigm, and following an applied–experimental methodology with a quantitative approach, a hybrid system was designed that combines multi-voltage and multi-sensor measurement techniques with advanced artificial intelligence models, including artificial neural networks (ANN), long short-term memory networks (LSTM), and gated recurrent units (GRU). These models were integrated with classical mathematical methods to compensate for the characteristic errors of FSR sensors. System validation was carried out under controlled conditions, evaluating a total of 48 sensors from three commercial brands: FlexiForce®, Interlink®, and Peratech®. For the experiments, a mechatronic mechanical testing system was used to apply variations in load and voltage, thus reproducing different operational scenarios according to the defined application. The acquired data were processed to develop and train errorcompensation algorithms, specifically addressing the effects associated with the viscoelastic behavior of the conductive material in this type of sensor. The results showed that the proposed system outperformed traditional methods in terms of accuracy. For hysteresis compensation, the ANN model achieved the best performance, reducing error from initial values between 6% and 9% to less than 1.5% in some cases, with mean errors below 2.5% for FlexiForce® and Peratech® sensors. This represents a significant improvement over the figures reported by manufacturers and previous studies. In the case of creep, the LSTM model proved to be the most effective, reaching a root mean square error (RMSE) of 0.0032 and an average percentage error of only 0.49%. Its ability to model temporal sequences made it the most accurate option for this type of error, given that creep manifests as a slow, time-dependent variation under constant load. The GRU model, while less complex and computationally demanding than LSTM, demonstrated competitive performance. It achieved a coefficient of determination (R²) of 0.9953 and mean errors ranging from 3% to 4%, positioning it as a viable alternative for implementation in low-power embedded systems where hardware resources are limited. The comparative analysis of the different sensor technologies revealed distinctive behaviors. FlexiForce® exhibited a more stable and repeatable measurement response, facilitating error correction and the achievement of consistent results. Interlink® showed greater susceptibility to hysteresis, but this was significantly mitigated through the use of ANN. Peratech®, on the other hand, delivered a favorable initial response, which was further optimized using multivoltage models that improved its linearity and accuracy. In all cases evaluated, AIbased models outperformed conventional techniques in compensating for the static errors of FSR sensors under variable operating conditions. This improvement translated into a more reliable and robust force estimation, representing a significant advancement in applications such as plantar pressure measurement, where accuracy is critical for both clinical and biomechanical interpretation. As a future line of work, this dissertation proposes the development of an embedded implementation of the developed algorithms to evaluate their performance under real operating conditions. This would make it possible to validate the practical feasibility of the system and its potential integration into portable or continuous monitoring devices, benefiting both biomedical research and low-cost instrumentation for the diagnosis and monitoring of plantar health.eng
dc.format.mimetypepdf
dc.identifier.urihttps://hdl.handle.net/20.500.12442/16882
dc.language.isospa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ingenieríasspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationaleng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectInteligencia Artificialspa
dc.subjectCalibraciónspa
dc.subjectCreepspa
dc.subjectResistencias de detección de fuerza FSRspa
dc.subjectHistéresisspa
dc.subject.keywordsArtificial Intelligenceeng
dc.subject.keywordsCalibrationeng
dc.subject.keywordsCreepeng
dc.subject.keywordsForce Sensing Resistors FSRseng
dc.subject.keywordsHysteresiseng
dc.titleMétodo basado en inteligencia artificial para la calibración de sensores force sensitive resistor (FSR) orientado a la determinación de presiones plantares estáticas en la pisadaspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.spaTesis de doctorado
dcterms.referencesAbdul Razak, A. H., Zayegh, A., Begg, R. K., & Wahab, Y. (2012c). Foot Plantar Pressure Measurement System: A Review. Sensors 2012, Vol. 12, Pages 9884- 9912, 12(7), 9884–9912. https://doi.org/10.3390/S120709884eng
dcterms.referencesAbu-Faraj, Z. O., Harris, G. F., Chang, A. H., & Shereff, M. J. (1996). Evaluation of a rehabilitative pedorthic: Plantar pressure alterations with scaphoid pad application. IEEE Transactions on Rehabilitation Engineering, 4(4), 328–336. https://doi.org/10.1109/86.547934eng
dcterms.referencesAigner, R., & Stöckl, A. (2023). Machine Learning Based Compensation for Inconsistencies in Knitted Force Sensors. https://arxiv.org/abs/2306.12129v2eng
dcterms.referencesAlmassri, A. M. M., Hasan, W. Z. W., Ahmad, S. A., Shafie, S., Wada, C., & Horio, K. (2018a). Self-Calibration Algorithm for a Pressure Sensor with a Real-Time Approach Based on an Artificial Neural Network. Sensors 2018, Vol. 18, Page 2561, 18(8), 2561. https://doi.org/10.3390/S18082561eng
dcterms.referencesAlmassri, A. M. M., Hasan, W. Z. W., Wada, C., & Horio, K. (2020). Evaluation of a commercial force sensor for real time applications. ICIC Express Letters, Part B: Applications, 11(5), 421–426. https://doi.org/10.24507/ICICELB.11.05.421eng
dcterms.referencesAntwi-Afari, M. F., Qarout, Y., Herzallah, R., Anwer, S., Umer, W., Zhang, Y., & Manu, P. (2022). Deep learning-based networks for automated recognition and classification of awkward working postures in construction using wearable insole sensor data. Automation in Construction, 136, 104181. https://doi.org/10.1016/J.AUTCON.2022.104181eng
dcterms.referencesArndt, A. (2003). Correction for sensor creep in the evaluation of long-term plantar pressure data. Journal of Biomechanics, 36(12), 1813–1817. https://doi.org/10.1016/S0021-9290(03)00229-Xeng
dcterms.referencesAvagnina, L. (2007). El examen biomecánico mediante plataformas baropodométricas. Revista Internacional de Ciencias Podológicas, ISSN 1887- 7249, Vol. 1, No . 1, 2007, Págs. 45-48, 1(1), 45–48. https://dialnet.unirioja.es/servlet/articulo?codigo=2737507&info=resumen&idio ma=ENGspa
dcterms.referencesBalberg, I., Azulay, D., Toker, D., & Millo, O. (2012). PERCOLATION AND TUNNELING IN COMPOSITE MATERIALS. Https://Doi.Org/10.1142/S0217979204025336, 18(15), 2091–2121. https://doi.org/10.1142/S0217979204025336eng
dcterms.referencesBamberg, S. J. M., Benbasat, A. Y., Scarborough, D. M., Krebs, D. E., & Paradiso, J. A. (2008). Gait analysis using a shoe-integrated wireless sensor system. IEEE Transactions on Information Technology in Biomedicine, 12(4), 413–423. https://doi.org/10.1109/TITB.2007.899493eng
dcterms.referencesBaumfeld, D., Baumfeld, T., Da Rocha, R. L., Macedo, B., Raduan, F., Zambelli, R., Alves Silva, T. A., & Nery, C. (2017). Reliability of Baropodometry on the Evaluation of Plantar Load Distribution: A Transversal Study. BioMed Research International, 2017. https://doi.org/10.1155/2017/5925137eng
dcterms.referencesBlades, S., Jensen, M., Stellingwerff, T., Hundza, S., & Klimstra, M. (2023). Characterization of the Kinetyx SI Wireless Pressure-Measuring Insole during Benchtop Testing and Running Gait. Sensors 2023, Vol. 23, Page 2352, 23(4), 2352. https://doi.org/10.3390/S23042352eng
dcterms.referencesBuis, A. W. P., & Convery, P. (1997). Calibration problems encountered while monitoring stump/socket interface pressures with force sensing resistors: Techniques adopted to minimise inaccuracies. Prosthetics and Orthotics International, 21(3), 179–182. https://doi.org/10.3109/03093649709164552eng
dcterms.referencesBurnie, L., Chockalingam, N., Holder, A., Claypole, T., Kilduff, L., & Bezodis, N. (2023). Commercially available pressure sensors for sport and health applications: A comparative review. The Foot, 56, 102046. https://doi.org/10.1016/J.FOOT.2023.102046eng
dcterms.referencesBurnie, L., Chockalingam, N., Holder, A., Claypole, T., Kilduff, L., & Bezodis, N. (2024). Testing protocols and measurement techniques when using pressure sensors for sport and health applications: A comparative review. The Foot, 59, 102094. https://doi.org/10.1016/J.FOOT.2024.102094eng
dcterms.referencesCao, J., & Zhang, X. (2020). Modulating the percolation network of polymer nanocomposites for flexible sensors. Journal of Applied Physics, 128(22), 220901. https://doi.org/10.1063/5.0033652eng
dcterms.referencesCastellini, C., & Ravindra, V. (2014). A wearable low-cost device based upon Force-Sensing Resistors to detect single-finger forces. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 199–203. https://doi.org/10.1109/BIOROB.2014.6913776eng
dcterms.referencesCastro, F., Savaris, W., Araujo, R., Costa, A., Sanches, M., & De Carvalho, A. (2020). Plantar Pressure Measurement System with Improved Isolated Drive Feedback Circuit and ANN: Development and Characterization. IEEE Sensors Journal, 20(19), 11034–11043. https://doi.org/10.1109/JSEN.2020.2998700eng
dcterms.referencesCavanagh, P. R., & Ae, M. (1980). A technique for the display of pressure distributions beneath the foot. Journal of Biomechanics, 13(2), 69–75. https://doi.org/10.1016/0021-9290(80)90180-3eng
dcterms.referencesCavanagh, P. R., Rodgers, M. M., & Liboshi, A. (1987). Pressure distribution under symptom-free feet during barefoot standing. Foot & Ankle, 7(5), 262–278. https://doi.org/10.1177/107110078700700502eng
dcterms.referencesChen, J. L., Dai, Y. N., Grimaldi, N. S., Lin, J. J., Hu, B. Y., Wu, Y. F., & Gao, S. (2022a). Plantar Pressure-Based Insole Gait Monitoring Techniques for Diseases Monitoring and Analysis: A Review. Advanced Materials Technologies, 7(1), 2100566. https://doi.org/10.1002/ADMT.202100566eng
dcterms.referencesChen, J. L., Dai, Y. N., Grimaldi, N. S., Lin, J. J., Hu, B. Y., Wu, Y. F., & Gao, S. (2022b). Plantar Pressure-Based Insole Gait Monitoring Techniques for Diseases Monitoring and Analysis: A Review. Advanced Materials Technologies, 7(1). https://doi.org/10.1002/ADMT.202100566eng
dcterms.referencesChen, J., Yu, Q., Cui, X., Dong, M., Zhang, J., Wang, C., Fan, J., Zhu, Y., & Guo, Z. (2019). An overview of stretchable strain sensors from conductive polymer nanocomposites. Journal of Materials Chemistry C, 7(38), 11710–11730. https://doi.org/10.1039/C9TC03655Eeng
dcterms.referencesChinimilli, P. T., Wachtel, S. W., Polygerinos, P., & Zhang, W. (2017). Hysteresis Compensation for Ground Contact Force Measurement With Shoe-Embedded Air Pressure Sensors. ASME 2016 Dynamic Systems and Control Conference, DSCC 2016, 1. https://doi.org/10.1115/DSCC2016-9920eng
dcterms.referencesCho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 1724–1734. https://doi.org/10.3115/V1/D14-1179eng
dcterms.referencesChoi, H. S., Lee, C. H., Shim, M., Han, J. I., & Baek, Y. S. (2018). Design of an Artificial Neural Network Algorithm for a Low-Cost Insole Sensor to Estimate the Ground Reaction Force (GRF) and Calibrate the Center of Pressure (CoP). Sensors 2018, Vol. 18, Page 4349, 18(12), 4349. https://doi.org/10.3390/S18124349eng
dcterms.referencesChoi, H. S., Shim, M., Lee, C. H., & Baek, Y. S. (2018). Estimating GRF(Ground Reaction Force) and Calibrating CoP(Center of Pressure) of an insole measured by an low-cost sensor with neural network. Proceedings - 2018 IEEE 18th International Conference on Bioinformatics and Bioengineering, BIBE 2018, 185–188. https://doi.org/10.1109/BIBE.2018.00043eng
dcterms.referencesChoi, Y. R., Lee, H. S., Kim, D. E., Lee, D. H., Kim, J. M., & Ahn, J. Y. (2014). The diagnostic value of pedobarography. Orthopedics, 37(12), e1063–e1067. https://doi.org/10.3928/01477447-20141124-52eng
dcterms.referencesCui, F., Yue, Y., Zhang, Y., Zhang, Z., & Zhou, H. S. (2020). Advancing Biosensors with Machine Learning. ACS Sensors, 5(11), 3346–3364. https://doi.org/10.1021/ACSSENSORS.0C01424/ASSET/IMAGES/MEDIUM/SE 0C01424_0010.GIFeng
dcterms.referencesDabling, J. G., Filatov, A., & Wheeler, J. W. (2012a). Static and cyclic performance evaluation of sensors for human interface pressure measurement. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 162–165. https://doi.org/10.1109/EMBC.2012.6345896eng
dcterms.referencesDabling, J. G., Filatov, A., & Wheeler, J. W. (2012b). Static and cyclic performance evaluation of sensors for human interface pressure measurement. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2012, 162–165. https://doi.org/10.1109/EMBC.2012.6345896eng
dcterms.referencesDarwich, A., Ismaiel, E., Al-Kayal, A., Ali, M., Masri, M., & Nazha, H. M. (2023). Recognizing Different Foot Deformities Using FSR Sensors by Static Classification of Neural Networks. Baghdad Science Journal, 20(6(Suppl.)), 2638–2638. https://doi.org/10.21123/BSJ.2023.8968eng
dcterms.referencesde Fazio, R., Perrone, E., Velázquez, R., De Vittorio, M., & Visconti, P. (2021). Development of a Self-Powered Piezo-Resistive Smart Insole Equipped with Low-Power BLE Connectivity for Remote Gait Monitoring. Sensors 2021, Vol. 21, Page 4539, 21(13), 4539. https://doi.org/10.3390/S21134539eng
dcterms.referencesDe Rossi, S. M. M., Lenzi, T., Vitiello, N., Donati, M., Persichetti, A., Giovacchini, F., Vecchi, F., & Carrozza, M. C. (2011). Development of an in-shoe pressuresensitive device for gait analysis. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 5637–5640. https://doi.org/10.1109/IEMBS.2011.6091364eng
dcterms.referencesDuarte Forero, J., Valencia, G. E., & Obregón, L. G. (2018). Methodology of Calibration of FSR Sensor for Seat Occupancy Detection in Vehicles. Indian Journal of Science and Technology, 11(23), 1–7. https://doi.org/10.17485/IJST/2018/V11I23/126554eng
dcterms.referencesElftman, H. (1934). A cinematic study of the distribution of pressure in the human foot. The Anatomical Record, 59(4), 481–491. https://doi.org/10.1002/AR.1090590409eng
dcterms.referencesEsposito, D., Centracchio, J., Andreozzi, E., Bifulco, P., & Gargiulo, G. D. (2022). Design and Evaluation of a Low-Cost Electromechanical System to Test Dynamic Performance of Force Sensors at Low Frequencies. Machines 2022, Vol. 10, Page 1017, 10(11), 1017. https://doi.org/10.3390/MACHINES10111017eng
dcterms.referencesFerguson-Pell, M., Hagisawa, S., & Bain, D. (2000). Evaluation of a sensor for low interface pressure applications. Medical Engineering & Physics, 22(9), 657– 663. https://doi.org/10.1016/S1350-4533(00)00080-1eng
dcterms.referencesFiorillo, A. S., Critello, C. D., & Pullano, A. S. (2018). Theory, technology and applications of piezoresistive sensors: A review. Sensors and Actuators A: Physical, 281, 156–175. https://doi.org/10.1016/J.SNA.2018.07.006eng
dcterms.referencesFlórez, J. A., & Velásquez, A. (2010). Calibration of force sensing resistors (fsr) for static and dynamic applications. 2010 IEEE ANDESCON Conference Proceedings, ANDESCON 2010. https://doi.org/10.1109/ANDESCON.2010.5633120eng
dcterms.referencesFuchs, M. C. H. W., Hermans, M. M. N., Kars, H. J. J., Hendriks, J. G. E., & van der Steen, M. C. (2020). Plantar pressure distribution and wearing characteristics of three forefoot offloading shoes in healthy adult subjects. The Foot, 45, 101744. https://doi.org/10.1016/J.FOOT.2020.101744eng
dcterms.referencesGao, S., Chen, J., Dai, Y., & Hu, B. (2022). Wearable systems based gait monitoring and analysis. Wearable Systems Based Gait Monitoring and Analysis, 1–238. https://doi.org/10.1007/978-3-030-97332-2/COVEReng
dcterms.referencesGeiss, P. L. (2011). Creep Load Conditions. Handbook of Adhesion Technology, 875–902. https://doi.org/10.1007/978-3-642-01169-6_34eng
dcterms.referencesGiacomozzi, C. (2010). Hardware performance assessment recommendations and tools for baropodometric sensor systems. Annali Dell’Istituto Superiore Di Sanità. https://doi.org/10.4415/ANN_10_02_09eng
dcterms.referencesGiacomozzi, C., Keijsers, N., Pataky, T., & Rosenbaum, D. (2012a). International scientific consensus on medical plantar pressure measurement devices: technical requirements and performance. Annali Dell’Istituto Superiore Di Sanita, 48(3), 259–271. https://doi.org/10.4415/ANN_12_03_06eng
dcterms.referencesGiacomozzi, C., Keijsers, N., Pataky, T., & Rosenbaum, D. (2012b). International scientific consensus on medical plantar pressure measurement devices: technical requirements and performance. Annali Dell’Istituto Superiore Di Sanita, 48(3), 259–271. https://doi.org/10.4415/ANN_12_03_06eng
dcterms.referencesGiovanelli, D., & Farella, E. (2016). Force Sensing Resistor and Evaluation of Technology for Wearable Body Pressure Sensing. Journal of Sensors, 2016. https://doi.org/10.1155/2016/9391850eng
dcterms.referencesGolgouneh, A., & Dunne, L. E. (2024). A Review in On-Body Compression Using Soft Actuators and Sensors: Applications, Mechanisms, and Challenges. IEEE Reviews in Biomedical Engineering, 17, 166–179. https://doi.org/10.1109/RBME.2022.3220505eng
dcterms.referencesGonçalves, C., Moreira, C., Ferreira, D., Neves, E., Bacelar, L., & Mourão, A. (2022). Footstep Classification Methodology using Piezoelectric Sensors Embedded in Insole. International Journal of Advanced Engineering Research and Science (IJAERS) Peer-Reviewed Journal, 9(12), 2456–1908. https://doi.org/10.22161/ijaers.912.44eng
dcterms.referencesGrandez, K., Bustamante, P., Solas, G., Gurutzeaga, I., & García-Alonso, A. (2009). Wearable wireless sensor for the gait monitorization of Parkinsonian patients. 2009 16th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2009, 215–218. https://doi.org/10.1109/ICECS.2009.5410974eng
dcterms.referencesGupta, S., Jayaraman, R., Sidhu, S. S., Malviya, A., Chatterjee, S., Chhikara, K., Singh, G., & Chanda, A. (2023). Diabot: Development of a Diabetic Foot Pressure Tracking Device. J 2023, Vol. 6, Pages 32-47, 6(1), 32–47. https://doi.org/10.3390/J6010003eng
dcterms.referencesHagen, M., Abraham, C., Ficklscherer, A., & Lahner, M. (2015). Biomechanical study of plantar pressures during walking in male soccer players with increased vs. normal hip alpha angles. Technology and Health Care : Official Journal of the European Society for Engineering and Medicine, 23(1), 93–100. https://doi.org/10.3233/THC-140877eng
dcterms.referencesHall, R. S., Desmoulin, G. T., & Milner, T. E. (2008a). A technique for conditioning and calibrating force-sensing resistors for repeatable and reliable measurement of compressive force. Journal of Biomechanics, 41(16), 3492–3495. https://doi.org/10.1016/J.JBIOMECH.2008.09.031eng
dcterms.referencesHall, R. S., Desmoulin, G. T., & Milner, T. E. (2008b). A technique for conditioning and calibrating force-sensing resistors for repeatable and reliable measurement of compressive force. Journal of Biomechanics, 41(16), 3492–3495. https://doi.org/10.1016/J.JBIOMECH.2008.09.031eng
dcterms.referencesHausdorff, J. M., Ladin, Z., & Wei, J. Y. (1995). Footswitch system for measurement of the temporal parameters of gait. Journal of Biomechanics, 28(3), 347–351. https://doi.org/10.1016/0021-9290(94)00074-Eeng
dcterms.referencesHe, Y., Lin, M., Wang, X., Liu, K., Liu, H., He, T., & Zhou, P. (2021). Textile-film sensors for a comfortable intelligent pressure-sensing insole. Measurement, 184, 109943. https://doi.org/10.1016/J.MEASUREMENT.2021.109943eng
dcterms.referencesHennig, E. M., Cavanagh, P. R., Albert, H. T., & Macmillan, N. H. (1982). A piezoelectric method of measuring the vertical contact stress beneath the human foot. Journal of Biomedical Engineering, 4(3), 213–222. https://doi.org/10.1016/0141-5425(82)90005-Xeng
dcterms.referencesHochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/NECO.1997.9.8.1735eng
dcterms.referencesHorky, A., Kherani, N. P., Xu, G., Tao, Z., Chen, X., Jiang, H., Kumar, M., Vasage, A., Kulkarni, G., Padhye, O., Kerkar, S., Gupta, M., & Singh, K. (2023). Calibration and optimization of FSR based smart walking assistance device. Engineering Research Express, 5(2), 025016. https://doi.org/10.1088/2631- 8695/ACCC0Eeng
dcterms.referencesHsiao, H., Guan, J., & Weatherly, M. (2002). Accuracy and precision of two inshoe pressure measurement systems. Ergonomics, 45(8), 537–555. https://doi.org/10.1080/00140130210136963eng
dcterms.referencesHughes, J. (1993a). The clinical use of pedobarography. Acta Orthopaedica Belgica, 59(1), 10–16.eng
dcterms.referencesHughes, J. (1993b). The clinical use of pedobarography. Acta Orthopaedica Belgica.eng
dcterms.referencesHung, K., Zhang, Y. T., & Tai, B. (2004). Wearable medical devices for tele-home healthcare. Conference Proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2004, 5384–5387. https://doi.org/10.1109/IEMBS.2004.1404503eng
dcterms.referencesInterlink Electronics, I. (2019). Interlink Electronics FSR Force Sensing Resistors. FSR Integration Guide. https://www.digikey.es/es/pdf/i/interlinkelectronics/interlink-electronics-fsr-force-sensing-resistors-integration-guideeng
dcterms.referencesJor, A., Das, S., Bappy, A. S., & Rahman, A. (2019). Foot Plantar Pressure Measurement Using Low Cost Force Sensitive Resistor (FSR): Feasibility Study. Journal of Scientific Research, 11(3), 311–319. https://doi.org/10.3329/JSR.V11I3.40581eng
dcterms.referencesKalantari, M., Dargahi, J., Kövecses, J., Mardasi, M. G., & Nouri, S. (2012). A new approach for modeling piezoresistive force sensors based on semiconductive polymer composites. IEEE/ASME Transactions on Mechatronics, 17(3), 572–581. https://doi.org/10.1109/TMECH.2011.2108664eng
dcterms.referencesKaur, P., Singh, G., & Kaur, P. (2018). An intelligent validation system for diagnostic and prognosis of ultrasound fetal growth analysis using Neuro-Fuzzy based on genetic algorithm. Egyptian Informatics Journal. https://doi.org/https://doi.org/10.1016/j.eij.2018.10.002eng
dcterms.referencesKawasaki, R., & Katsura, S. (2023). Shoe-type Wearable Device for Measuring Ground Reaction Force and Center of Pressure. IEEE International Symposium on Industrial Electronics, 2023-June. https://doi.org/10.1109/ISIE51358.2023.10228059eng
dcterms.referencesKhandakar, A., Mahmud, S., Chowdhury, M. E. H., Reaz, M. B. I., Kiranyaz, S., Mahbub, Z. Bin, Md Ali, S. H., Bakar, A. A. A., Ayari, M. A., Alhatou, M., AbdulMoniem, M., & Faisal, M. A. A. (2022a). Design and Implementation of a Smart Insole System to Measure Plantar Pressure and Temperature. Sensors, 22(19), 7599. https://doi.org/10.3390/S22197599/S1eng
dcterms.referencesKhandakar, A., Mahmud, S., Chowdhury, M. E. H., Reaz, M. B. I., Kiranyaz, S., Mahbub, Z. Bin, Md Ali, S. H., Bakar, A. A. A., Ayari, M. A., Alhatou, M., AbdulMoniem, M., & Faisal, M. A. A. (2022b). Design and Implementation of a Smart Insole System to Measure Plantar Pressure and Temperature. Sensors, 22(19), 7599. https://doi.org/10.3390/S22197599/S1eng
dcterms.referencesKirkpatrick, S. (1973). Percolation and Conduction. Reviews of Modern Physics, 45(4), 574. https://doi.org/10.1103/RevModPhys.45.574eng
dcterms.referencesKoch, M., Lunde, L. K., Ernst, M., Knardahl, S., & Veiersted, K. B. (2016). Validity and reliability of pressure-measurement insoles for vertical ground reaction force assessment in field situations. Applied Ergonomics, 53 Pt A, 44–51. https://doi.org/10.1016/J.APERGO.2015.08.011eng
dcterms.referencesKokai, O., Kilbreath, S. L., McLaughlin, P., & Dylke, E. S. (2021). The accuracy and precision of interface pressure measuring devices: A systematic review. Https://Doi.Org/10.1177/02683555211008061, 36(9), 678–694. https://doi.org/10.1177/02683555211008061eng
dcterms.referencesKomi, E. R., Roberts, J. R., & Rothberg, S. J. (2007). Evaluation of thin, flexible sensors for time-resolved grip force measurement. Http://Dx.Doi.Org/10.1243/09544062JMES700, 221(12), 1687–1699. https://doi.org/10.1243/09544062JMES700eng
dcterms.referencesKursun Bahadir, S. (2018). Identification and modeling of sensing capability of force sensing resistor integrated to E-textile structure. IEEE Sensors Journal, 18(23), 9770–9780. https://doi.org/10.1109/JSEN.2018.2871396eng
dcterms.referencesKurt, I., & Vural, R. A. (2018). Force resistive sensor network calibration method via regression analysis. 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018, 1–4. https://doi.org/10.1109/SIU.2018.8404492eng
dcterms.referencesLakho, R. A., Abro, Z. A., Chen, J., & Min, R. (2022). Smart Insole Based on Flexi Force and Flex Sensor for Monitoring Different Body Postures. Sensors 2022, Vol. 22, Page 5469, 22(15), 5469. https://doi.org/10.3390/S22155469eng
dcterms.referencesLara-Barrios, C. M., Formento, P. C., Larrosa, E. M., & Blanco-Ortega, A. (2020). Evaluation of the offline classification error of human locomotion modes using virtual force-sensing resistor data. Proceedings - 2020 International Conference on Mechatronics, Electronics and Automotive Engineering, ICMEAE 2020, 161– 168. https://doi.org/10.1109/ICMEAE51770.2020.00035eng
dcterms.referencesLata, A., & Mandal, N. (2020). ANN-based liquid level transmitter using force resistive sensor for minimisation of hysteresis and non-linearity error. IET Science, Measurement & Technology, 14(10), 923–930. https://doi.org/10.1049/IET-SMT.2020.0009eng
dcterms.referencesLebosse, C., Renaud, P., Bayle, B., & De Mathelin, M. (2011). Modeling and evaluation of low-cost force sensors. IEEE Transactions on Robotics, 27(4), 815– 822. https://doi.org/10.1109/TRO.2011.2119850eng
dcterms.referencesLescano, C. N., Rodrigo, R. H., & Rodrigo, S. E. (2015). Desarrollo de un sistema de registro dinámico de presiones plantares. Revista Iberoamericana de Ingeniería Mecánica, ISSN 1137-2729, Vol. 19, No 1, 2015, Págs. 49-58, 19(1), 49–58. https://dialnet.unirioja.es/servlet/articulo?codigo=5148845&info=resumen&idio ma=SPAspa
dcterms.referencesLikitlersuang, J., Leineweber, M. J., & Andrysek, J. (2017). Evaluating and improving the performance of thin film force sensors within body and device interfaces. Medical Engineering & Physics, 48, 206–211. https://doi.org/10.1016/J.MEDENGPHY.2017.06.017eng
dcterms.referencesLin, J. C., Liatsis, P., & Alexandridis, P. (2023). Flexible and Stretchable Electrically Conductive Polymer Materials for Physical Sensing Applications. Polymer Reviews, 63(1), 67–126. https://doi.org/10.1080/15583724.2022.2059673eng
dcterms.referencesLittlejohn, S. D. (2014). Background Theory. In Electrical Properties of Graphite Nanoparticles in Silicone: Flexible Oscillators and Electromechanical Sensing (pp. 5–38). Springer International Publishing. https://doi.org/10.1007/978-3-319- 00741-0_2eng
dcterms.referencesLorkowski, J., Gawronska, K., & Pokorski, M. (2021). Pedobarography: A review on methods and practical use in foot disorders. Applied Sciences (Switzerland), 11(22). https://doi.org/10.3390/APP112211020eng
dcterms.referencesLung, C. W., Mo, P. C., Cao, C., Zhang, K., Wu, F. L., Liau, B. Y., & Jan, Y. K. (2022). Effects of walking speeds and durations on the plantar pressure gradient and pressure gradient angle. BMC Musculoskeletal Disorders, 23(1), 823. https://doi.org/10.1186/S12891-022-05771-2/FIGURES/7eng
dcterms.referencesLuo, Z., Berglund, L., & An, K. (1998). Validation of F-Scan pressure sensor system: a technical note. Journal of Rehabilitation Research and Developmenteng
dcterms.referencesMahmoud, G. M., Aggag, G. A., & Gelany, S. A. (2021). An Investigation on the Techniques used in Force Calibration using Deadweights and Pressure Piston Gauge. Indian Journal of Pure & Applied Physics, 59, 537–543eng
dcterms.referencesMahmud, S., Khandakar, A., Chowdhury, M. E. H., AbdulMoniem, M., Bin Ibne Reaz, M., Bin Mahbub, Z., Sadasivuni, K. K., Murugappan, M., & Alhatou, M. (2023). Fiber Bragg Gratings based smart insole to measure plantar pressure and temperature. Sensors and Actuators A: Physical, 350, 114092. https://doi.org/10.1016/J.SNA.2022.114092eng
dcterms.referencesMainardi, F., & Spada, G. (2011). Creep, relaxation and viscosity properties for basic fractional models in rheology. The European Physical Journal Special Topics 2011 193:1, 193(1), 133–160. https://doi.org/10.1140/EPJST/E2011- 01387-1eng
dcterms.referencesMann, R., Malisoux, L., Urhausen, A., Meijer, K., & Theisen, D. (2016). Plantar pressure measurements and running-related injury: A systematic review of methods and possible associations. Gait & Posture, 47, 1–9. https://doi.org/10.1016/J.GAITPOST.2016.03.016eng
dcterms.referencesMartínez-Barba, D. A., Martínez-Manuel, R., Daza-Benítez, L., & Vidal-Lesso, A. (2021). Development of Self-Calibrating Sensor Footwear and Relevance of InShoe Characterization on Accurate Plantar Pressure Distribution Measurements. IEEE Sensors Journal, 21(6), 8421–8431. https://doi.org/10.1109/JSEN.2020.3048611eng
dcterms.referencesMartínez-Cesteros, J., Medrano-Sánchez, C., Castellanos-Ramos, J., SánchezDurán, J. A., Plaza-García, I., Martínez-Cesteros, J., Medrano-Sánchez, C., Castellanos-Ramos, J., Sánchez-Durán, J. A., & Plaza-García, I. (2023). Creep and Hysteresis Compensation in Pressure-Sensitive Mats for Improving Centerof-Pressure Measurements. ISenJ, 23(23), 29585–29593. https://doi.org/10.1109/JSEN.2023.3324363eng
dcterms.referencesMartínez-Martí, F., Martínez-García, M. S., García-Díaz, S. G., García-Jiménez, J., Palma, A. J., & Carvajal, M. A. (2014). Embedded sensor insole for wireless measurement of gait parameters. Australasian Physical and Engineering Sciences in Medicine, 37(1), 25–35. https://doi.org/10.1007/S13246-013-0236- 7/TABLES/4eng
dcterms.referencesMashagbeh, M. Al, Alzaben, H., Abutair, R., Farrag, R., Sarhan, L., & Alyaman, M. (2022a). Gait Cycle Monitoring System Based on Flexiforce Sensors. Inventions 2022, Vol. 7, Page 51, 7(3), 51. https://doi.org/10.3390/INVENTIONS7030051eng
dcterms.referencesMashagbeh, M. Al, Alzaben, H., Abutair, R., Farrag, R., Sarhan, L., & Alyaman, M. (2022b). Gait Cycle Monitoring System Based on Flexiforce Sensors. Inventions 2022, Vol. 7, Page 51, 7(3), 51. https://doi.org/10.3390/INVENTIONS7030051eng
dcterms.referencesMcCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.1007/BF02478259/METRICSeng
dcterms.referencesMcLachlan, D. S., Blaszkiewicz, M., & Newnham, R. E. (1990). Electrical Resistivity of Composites. Journal of the American Ceramic Society, 73(8), 2187–2203. https://doi.org/10.1111/J.1151-2916.1990.TB07576.Xeng
dcterms.referencesMcMillan, L. B., DI Pauli Von Treuheim, T., Murphy, A., Zengin, A., Ebeling, P. R., & Scott, D. (2019). Development and Validation of a Wearable Plantar Force Measurement Device. IEEE Sensors Journal, 19(11), 4008–4016. https://doi.org/10.1109/JSEN.2019.2896595eng
dcterms.referencesMicó-Amigo, M. E., & de Pablo Fernández, E. (2021). La evaluación de la marcha con nuevas tecnologías. MANUAL SEN DE.spa
dcterms.referencesMorton, D. J. (1930). Structural factors in static disorders of the foot. The American Journal of Surgery, 9(2), 315–328. https://doi.org/10.1016/S0002- 9610(30)91100-2eng
dcterms.referencesMun, F., & Choi, A. (2022a). Deep learning approach to estimate foot pressure distribution in walking with application for a cost-effective insole system. Journal of NeuroEngineering and Rehabilitation, 19(1), 1–14. https://doi.org/10.1186/S12984-022-00987-8/FIGURES/9eng
dcterms.referencesMun, F., & Choi, A. (2022b). Deep learning approach to estimate foot pressure distribution in walking with application for a cost-effective insole system. Journal of Neuroengineering and Rehabilitation, 19(1). https://doi.org/10.1186/S12984- 022-00987-8eng
dcterms.referencesMuzaffar, S., & Elfadel, I. M. (2020). Self-Synchronized, Continuous Body Weight Monitoring Using Flexible Force Sensors and Ground Reaction Force Signal Processing. IEEE Sensors Journal, 20(18), 10886–10897. https://doi.org/10.1109/JSEN.2020.2994129eng
dcterms.referencesNaderizadeh, S., Santagiuliana, G., Tu, W., Marsh, D., Bilotti, E., & Busfield, J. J. C. (2023). Piezoresistive Elastomer Composites Used for Pressure Sensing. IEEE Sensors Journal, 23(16), 18013–18021. https://doi.org/10.1109/JSEN.2023.3292239eng
dcterms.referencesNauman, S. (2021). Piezoresistive Sensing Approaches for Structural Health Monitoring of Polymer Composites—A Review. Eng 2021, Vol. 2, Pages 197-226, 2(2), 197–226. https://doi.org/10.3390/ENG2020013eng
dcterms.referencesOubre, B., Lane, S., Holmes, S., Boyer, K., & Lee, S. I. (2022). Estimating Ground Reaction Force and Center of Pressure Using Low-Cost Wearable Devices. IEEE Transactions on Biomedical Engineering, 69(4), 1461–1468. https://doi.org/10.1109/TBME.2021.3120346eng
dcterms.referencesPadilla, A. H. (2006). Uso de la baropodometría. Orthotips AMOT, 2(4), 255– 261spa
dcterms.referencesPalacio, C., Paredes-Madrid, L., & Garzon, O. (2022). Statistical process control of commercial force-sensing resistors. Metrol. Meas. Syst, 29(3), 469– 481. https://doi.org/10.24425/mms.2022.142267eng
dcterms.referencesParedes-Madrid, L., Fonseca, J., Matute, A., Velásquez, E. I. G., & Palacio, C. A. (2018). Self-Compensated Driving Circuit for Reducing Drift and Hysteresis in Force Sensing Resistors. Electronics 2018, Vol. 7, Page 146, 7(8), 146. https://doi.org/10.3390/ELECTRONICS7080146eng
dcterms.referencesParedes-Madrid, L., Matute, A., Bareño, J. O., Vargas, C. A. P., & Velásquez, E. I. G. (2017). Underlying Physics of Conductive Polymer Composites and Force Sensing Resistors (FSRs). A Study on Creep Response and Dynamic Loading. Materials 2017, Vol. 10, Page 1334, 10(11), 1334. https://doi.org/10.3390/MA10111334eng
dcterms.referencesParedes-Madrid, L., Matute, A., Cruz-Pacheco, A. F., Parra-Vargas, C. A., & Gutiérrez-Velásquez, E. I. (2018). Experimental characterization, modeling and compensation of hysteresis in force sensing resistors. DYNA, 85(205), 191–198. https://doi.org/10.15446/dyna.v85n205.66432eng
dcterms.referencesParedes-Madrid, L., Matute, A., & Palacio, C. (2019). Understanding the effect of sourcing voltage and driving circuit in the repeatability of measurements in force sensing resistors (FSRs). Measurement Science and Technology, 30(11), 115101. https://doi.org/10.1088/1361-6501/AB3307eng
dcterms.referencesParedes-Madrid, L., Matute, A., & Pena, A. (2017). Framework for a Calibration-Less Operation of Force Sensing Resistors at Different Temperatures. IEEE Sensors Journal, 17(13), 4133–4142. https://doi.org/10.1109/JSEN.2017.2706697eng
dcterms.referencesParedes-Madrid, L., Palacio, C. A., Matute, A., & Parra Vargas, C. A. (2017). Underlying Physics of Conductive Polymer Composites and Force Sensing Resistors (FSRs) under Static Loading Conditions. Sensors 2017, Vol. 17, Page 2108, 17(9), 2108. https://doi.org/10.3390/S17092108eng
dcterms.referencesPark, J., Kim, M., Hong, I., Kim, T., Lee, E., Kim, E. A., Ryu, J. K., Jo, Y., Koo, J., Han, S., Koh, J. S., & Kang, D. (2019). Foot Plantar Pressure Measurement System Using Highly Sensitive Crack-Based Sensor. Sensors 2019, Vol. 19, Page 5504, 19(24), 5504. https://doi.org/10.3390/S19245504eng
dcterms.referencesParmar, S., Khodasevych, I., & Troynikov, O. (2017). Evaluation of Flexible Force Sensors for Pressure Monitoring in Treatment of Chronic Venous Disorders. Sensors, 17(8), 1923. https://doi.org/10.3390/s17081923eng
dcterms.referencesPeña, A., Alvarez, E. L., Ayala Valderrama, D. M., Palacio, C., Bermudez, Y., & Paredes-Madrid, L. (2024). Usage of Machine Learning Techniques to Classify and Predict the Performance of Force Sensing Resistors. Sensors, 24(20), 6592. https://doi.org/10.3390/S24206592/S1eng
dcterms.referencesPerttunen, J., Kyröläinen, H., Komi, P. V., & Heinonen, A. (2000). Biomechanical loading in the triple jump. Journal of Sports Sciences, 18(5), 363– 370. https://doi.org/10.1080/026404100402421eng
dcterms.referencesPlageras, A. P., & Psannis, K. E. (2022). IoT-based health and emotion care system. ICT Express. https://doi.org/10.1016/J.ICTE.2022.03.008eng
dcterms.referencesPraet, S. F. E., & Louwerens, J. W. K. (2003a). The influence of shoe design on plantar pressures in neuropathic feet. Diabetes Care, 26(2), 441–445. https://doi.org/10.2337/DIACARE.26.2.441eng
dcterms.referencesPraet, S. F. E., & Louwerens, J. W. K. (2003b). The Influence of Shoe Design on Plantar Pressures in Neuropathic Feet. Diabetes Care, 26(2), 441–445. https://doi.org/10.2337/DIACARE.26.2.441eng
dcterms.referencesPrat Pastor, J., Alcántara, E., & Sánchez-Lacuesta, J. (1993). Biomecánica de la marcha humana normal y patológica. In Biomecánica de la marcha humana normal y patológica. Instituto de Biomecánica de Valencia.spa
dcterms.referencesQuaney, B., Meyer, K., Cornwall, M. W., & McPoil, T. G. (1995). A comparison of the dynamic pedobarograph and EMED systems for measuring dynamic foot pressures. Foot & Ankle International, 16(9), 562–566. https://doi.org/10.1177/107110079501600909eng
dcterms.referencesQueen, R. M., Haynes, B. B., Hardaker, W. M., & Garrett, W. E. (2007). Forefoot loading during 3 athletic tasks. The American Journal of Sports Medicine, 35(4), 630–636. https://doi.org/10.1177/0363546506295938eng
dcterms.referencesRahimi, M., Blaber, A. P., & Menon, C. (2016). Towards the evaluation of forcesensing resistors for in situ measurement of interface pressure during leg compression therapy. 2016 IEEE Healthcare Innovation Point-of-Care Technologies Conference, HI-POCT 2016, 25–28. https://doi.org/10.1109/HIC.2016.7797688eng
dcterms.referencesRajendran, D., Ramalingame, R., Palaniyappan, S., Wagner, G., & Kanoun, O. (2021). Flexible Ultra-Thin Nanocomposite Based Piezoresistive Pressure Sensors for Foot Pressure Distribution Measurement. Sensors 2021, Vol. 21, Page 6082, 21(18), 6082. https://doi.org/10.3390/S21186082eng
dcterms.referencesRamirez-Bautista, J. A., Huerta-Ruelas, J. A., Chaparro-Cárdenas, S. L., & Hernández-Zavala, A. (2017). A Review in Detection and Monitoring Gait Disorders Using In-Shoe Plantar Measurement Systems. In IEEE Reviews in Biomedical Engineering (Vol. 10, pp. 299–309). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/RBME.2017.2747402eng
dcterms.referencesRoozbahani, H., Fakhrizadeh, A., Haario, H., & Handroos, H. (2013). Novel online re-calibration method for multi-axis force/torque sensor of ITER welding/machining robot. IEEE Sensors Journal, 13(11), 4432–4443. https://doi.org/10.1109/JSEN.2013.2274195eng
dcterms.referencesRusu, L., Paun, E., Marin, M. I., Hemanth, J., Rusu, M. R., Calina, M. L., Bacanoiu, M. V., Danoiu, M., & Danciulescu, D. (2021a). Plantar Pressure and Contact Area Measurement of Foot Abnormalities in Stroke Rehabilitation. Brain Sciences, 11(9). https://doi.org/10.3390/BRAINSCI11091213eng
dcterms.referencesRusu, L., Paun, E., Marin, M. I., Hemanth, J., Rusu, M. R., Calina, M. L., Bacanoiu, M. V., Danoiu, M., & Danciulescu, D. (2021b). Plantar Pressure and Contact Area Measurement of Foot Abnormalities in Stroke Rehabilitation. Brain Sciences 2021, Vol. 11, Page 1213, 11(9), 1213. https://doi.org/10.3390/BRAINSCI11091213eng
dcterms.referencesSaadeh, M. Y. (2023). Hybrid genetic algorithm-system identification approach to model force sensing resistors. Https://Doi.Org/10.1177/1045389X231167178, 34(17), 2074–2086. https://doi.org/10.1177/1045389X231167178eng
dcterms.referencesSaadeh, M. Y., Carambat, T. D., & Arrieta, A. M. (2017a). Evaluating and modeling force sensing resistors for low force applications. ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017, 2. https://doi.org/10.1115/SMASIS2017-3703eng
dcterms.referencesSaadeh, M. Y., Carambat, T. D., & Arrieta, A. M. (2017b). Evaluating and Modeling Force Sensing Resistors for Low Force Applications. ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017, 2. https://doi.org/10.1115/SMASIS2017-3703eng
dcterms.referencesSaadeh, M. Y., & Trabia, M. B. (2012). Identification of a force-sensing resistor for tactile applications. Http://Dx.Doi.Org/10.1177/1045389X12463462, 24(7), 813–827. https://doi.org/10.1177/1045389X12463462eng
dcterms.referencesSaid, A. M., Justine, M., & Manaf, H. (2016). Plantar Pressure Distribution among Older Persons with Different Types of Foot and Its Correlation with Functional Reach Distance. https://doi.org/10.1155/2016/8564020eng
dcterms.referencesSaito, M., Nakajima, K., Takano, C., Ohta, Y., Sugimoto, C., Ezoe, R., Sasaki, K., Hosaka, H., Ifukube, T., Ino, S., & Yamashita, K. (2011). An in-shoe device to measure plantar pressure during daily human activity. Medical Engineering & Physics, 33(5), 638–645. https://doi.org/10.1016/J.MEDENGPHY.2011.01.001eng
dcterms.referencesSánchez-Durán, J. A., Oballe-Peinado, Ó., Castellanos-Ramos, J., & VidalVerdú, F. (2012). Hysteresis correction of tactile sensor response with a generalized Prandtl-Ishlinskii model. Microsystem Technologies, 18(7–8), 1127– 1138. https://doi.org/10.1007/S00542-012-1455-7eng
dcterms.referencesSánchez Ramírez, C. (2017). Análisis de dos métodos de evaluación de la huella plantar: índice de Hernández Corvo vs. Arch Index de Cavanagh y Rodgers. Fisioterapia, 39(5), 209–215. https://doi.org/10.1016/J.FT.2017.01.002spa
dcterms.referencesSchofield, J. S., Evans, K. R., Hebert, J. S., Marasco, P. D., & Carey, J. P. (2016). The effect of biomechanical variables on force sensitive resistor error: Implications for calibration and improved accuracy. Journal of Biomechanics, 49(5), 786–792. https://doi.org/10.1016/J.JBIOMECH.2016.01.022eng
dcterms.referencesSchwartz, R. P., & Heath, A. L. (1947). The Definition of Human Locomotion on the basis of Measurement: With Description of Oscillographic Method. JBJS, 29(1). https://journals.lww.com/jbjsjournal/Fulltext/1947/29010/THE_DEFINITION_OF _HUMAN_LOCOMOTION_ON_THE_BASIS_OF.20.aspxeng
dcterms.referencesShu, L., Hua, T., Wang, Y., Li, Q., Feng, D. D., & Tao, X. (2010). In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Transactions on Information Technology in Biomedicine : A Publication of the IEEE Engineering in Medicine and Biology Society, 14(3), 767– 775. https://doi.org/10.1109/TITB.2009.2038904eng
dcterms.referencesSimmons, J. G. (1963). Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film. Journal of Applied Physics, 34(9), 2581– 2590. https://doi.org/10.1063/1.1729774eng
dcterms.referencesSimonsson, S., Tranberg, R., Zügner, R., & Tang, U. H. (2023). Reliability of F-Scan® in-shoe plantar pressure measurements in people with diabetes at risk of developing foot ulcers. The Foot, 56, 102027. https://doi.org/10.1016/J.FOOT.2023.102027eng
dcterms.referencesSkopljak, A., Muft ic, M., Sukalo, A., & Masic, I. (2014). Pedobarography in Diagnosis and Clinical Application. https://doi.org/10.5455/aim.2014.22.374-378eng
dcterms.referencesSoames, R. W. (1985). Foot pressure patterns during gait. Journal of Biomedical Engineering, 7(2), 120–126. https://doi.org/10.1016/0141- 5425(85)90040-8eng
dcterms.referencesSoria Olivas, E. (2022). Inteligencia artificial : casos prácticos con aprendizaje profundo (Ediciones de la U (ed.)). Ediciones de la U. https://www.rama.es/libro/inteligencia-artificial_139032/spa
dcterms.referencesStassi, S., Cauda, V., Canavese, G., & Pirri, C. F. (2014). Flexible tactile sensing based on piezoresistive composites: A review. Sensors (Switzerland), 14(3), 5296–5332. https://doi.org/10.3390/S140305296eng
dcterms.referencesStaymates, M. E., Grandner, J., & Verkouteren, J. R. (2013). Pressuresensitive sampling wands for homeland security applications. IEEE Sensors Journal, 13(12), 4844–4850. https://doi.org/10.1109/JSEN.2013.2274573eng
dcterms.referencesSwanson, E. C., Weathersby, E. J., Cagle, J. C., & Sanders, J. E. (2019). Evaluation of Force Sensing Resistors for the Measurement of Interface Pressures in Lower Limb Prosthetics. Journal of Biomechanical Engineering, 141(10), 1010091. https://doi.org/10.1115/1.4043561eng
dcterms.referencesTahir, A. M., Chowdhury, M. E. H., Khandakar, A., Al-Hamouz, S., Abdalla, M., Awadallah, S., Reaz, M. B. I., & Al-Emadi, N. (2020). A Systematic Approach to the Design and Characterization of a Smart Insole for Detecting Vertical Ground Reaction Force (vGRF) in Gait Analysis. Sensors 2020, Vol. 20, Page 957, 20(4), 957. https://doi.org/10.3390/S20040957eng
dcterms.referencesTan, A. M., Fuss, F. K., Weizman, Y., Woudstra, Y., & Troynikov, O. (2015). Design of Low Cost Smart Insole for Real Time Measurement of Plantar Pressure. Procedia Technology, 20, 117–122. https://doi.org/10.1016/J.PROTCY.2015.07.020eng
dcterms.referencesTan, Y., Ivanov, K., Mei, Z., Li, H., Li, H., Lubich, L., Wang, C., & Wang, L. (2021). A Soft Wearable and Fully-Textile Piezoresistive Sensor for Plantar Pressure Capturing. Micromachines 2021, Vol. 12, Page 110, 12(2), 110. https://doi.org/10.3390/MI12020110eng
dcterms.referencesTang, J., Bader, D. L., Moser, D., Parker, D. J., Forghany, S., Nester, C. J., & Jiang, L. (2023a). A Wearable Insole System to Measure Plantar Pressure and Shear for People with Diabetes. Sensors (Basel, Switzerland), 23(6). https://doi.org/10.3390/S23063126eng
dcterms.referencesTang, J., Bader, D. L., Moser, D., Parker, D. J., Forghany, S., Nester, C. J., & Jiang, L. (2023b). A Wearable Insole System to Measure Plantar Pressure and Shear for People with Diabetes. Sensors 2023, Vol. 23, Page 3126, 23(6), 3126. https://doi.org/10.3390/S23063126eng
dcterms.referencesTang, J., Bader, D. L., Moser, D., Parker, D. J., Forghany, S., Nester, C. J., & Jiang, L. (2023c). A Wearable Insole System to Measure Plantar Pressure and Shear for People with Diabetes. Sensors 2023, Vol. 23, Page 3126, 23(6), 3126. https://doi.org/10.3390/S23063126eng
dcterms.referencesTanwar, H., Nguyen, L., & Stergiou, N. (2007). Force Sensitive Resistor (FSR)-based wireless gait analysis device (pp. 1–6). https://experts.nebraska.edu/en/publications/force-sensitive-resistor-fsr-basedwireless-gait-analysis-deviceeng
dcterms.referencesTekscan. (2024a). Best practices in electrical integration of the FlexiforceTM sensor (p. 11). Tekscan. https://www.tekscan.com/sites/default/files/FLX-BestPractice-Electrical-Integration-RevB.pdfeng
dcterms.referencesTekscan. (2024b). FlexiForce User Manual. https://www.tekscan.com/sites/default/files/FlexiForce Sensors RevL.pdfeng
dcterms.referencesTekScan. (2009). FlexiForce® A201 Standard Force & Load Sensor (p. 1). http://www.warf.com/download/455_2861_1.pdfeng
dcterms.referencesTekScan. (2018a). Best Practices in Mechanical Integration of the FlexiForceTM Sensor. https://www.tekscan.com/flexiforce-integration-guideseng
dcterms.referencesTekScan. (2018b). Best Practices in Mechanical Integration of the FlexiForceTM Sensor (p. 5). https://www.tekscan.com/flexiforce-integrationguideseng
dcterms.referencesTianshu, W., Shuyu, C., Peng, W., Shaozhong, N., Tianshu, W., Shuyu, C., Peng, W., & Shaozhong, N. (2019). A High Precision Software Compensation Algorithm for Silicon Piezoresistive Pressure Sensor. Chinese Journal of Electronics, 2019, Vol. 28, Issue 4, Pages: 748-753, 28(4), 748–753. https://doi.org/10.1049/CJE.2019.05.001eng
dcterms.referencesTriana Ricci, R. (2014). Pie diabético. Fisiopatología y consecuencias. Revista Colombiana de Ortopedia y Traumatología, 28(4), 143–153. https://doi.org/10.1016/J.RCCOT.2015.04.006spa
dcterms.referencesTulunay, Y., Tulunay, E., & Senalp, E. T. (2004). The neural network technique––1: a general exposition. Advances in Space Research, 33(6), 983– 987. https://doi.org/10.1016/J.ASR.2003.06.008eng
dcterms.referencesUlbrecht, J. S., Hurley, T., Mauger, D. T., & Cavanagh, P. R. (2014). Prevention of recurrent foot ulcers with plantar pressure-based in-shoe orthoses: The CareFUL prevention multicenter randomized controlled trial. Diabetes Care, 37(7), 1982–1989. https://doi.org/10.2337/DC13-2956/-/DC1eng
dcterms.referencesUrry, S. (1999). Plantar pressure-measurement sensors. Measurement Science and Technology, 10(1), R16–R32. https://doi.org/10.1088/0957- 0233/10/1/017eng
dcterms.referencesVelásquez, E. I. G., Gómez, V., Paredes-Madrid, L., & Colorado, H. A. (2019). Error compensation in force sensing resistors. Sensing and Bio-Sensing Research, 26, 100300. https://doi.org/10.1016/J.SBSR.2019.100300eng
dcterms.referencesVidhate, S., Chung, J., Vaidyanathan, V., & D’Souza, N. A. (2010). Resistive– conductive transitions in the time-dependent piezoresponse of PVDF-MWCNT nanocomposites. Polymer Journal 2010 42:7, 42(7), 567–574. https://doi.org/10.1038/pj.2010.44eng
dcterms.referencesVillanueva, G., Khandakar, A., Mahmud, S., Chowdhury, M. E. H., Bin, M., Reaz, I., Kiranyaz, S., Mahbub, Z. Bin, Hamid, S., Ali, M., Ashrif, A., Bakar, A., Ayari, M. A., Alhatou, M., Abdul-Moniem, M., Ahasan, M., & Faisal, A. (2022). Design and Implementation of a Smart Insole System to Measure Plantar Pressure and Temperature. https://doi.org/10.3390/s22197599eng
dcterms.referencesVorlickova, L., & Korvas, P. (2014). Evaluation of rehabilitation influence on flat foot in children by plantar pressure analysis. Journal of Human Sport and Exercise, 9(1proc), 526–532. https://doi.org/10.14198/JHSE.2014.9.PROC1.42eng
dcterms.referencesWang, C., Evans, K., Hartley, D., Morrison, S., Veidt, M., & Wang, G. (2024). A systematic review of artificial neural network techniques for analysis of foot plantar pressure. Biocybernetics and Biomedical Engineering, 44(1), 197–208. https://doi.org/10.1016/J.BBE.2024.01.005eng
dcterms.referencesWang, L., Han, Y., Wu, C., & Huang, Y. (2013). A solution to reduce the time dependence of the output resistance of a viscoelastic and piezoresistive element. Smart Materials and Structures, 22(7), 075021. https://doi.org/10.1088/0964- 1726/22/7/075021eng
dcterms.referencesWang, L., Jones, D., Chapman, G. J., Siddle, H. J., Russell, D. A., Alazmani, A., & Culmer, P. (2020). A Review of Wearable Sensor Systems to Monitor Plantar Loading in the Assessment of Diabetic Foot Ulcers. IEEE Transactions on Biomedical Engineering, 67(7), 1989–2004. https://doi.org/10.1109/TBME.2019.2953630eng
dcterms.referencesWang, L., Jones, D., Jones, A., Chapman, G. J., Siddle, H. J., Russell, D., Alazmani, A., & Culmer, P. R. (2022). A Portable Insole System to Simultaneously Measure Plantar Pressure and Shear Stress. IEEE Sensors Journal, 22(9), 9104–9113. https://doi.org/10.1109/JSEN.2022.3162713eng
dcterms.referencesWang, M., Gurunathan, R., Imasato, K., Geisendorfer, N. R., Jakus, A. E., Peng, J., Shah, R. N., Grayson, M., & Snyder, G. J. (2019). A Percolation Model for Piezoresistivity in Conductor–Polymer Composites. Advanced Theory and Simulations, 2(2), 1800125. https://doi.org/10.1002/ADTS.201800125eng
dcterms.referencesWang, Y., Adam, M. L., Zhao, Y., Zheng, W., Gao, L., Yin, Z., & Zhao, H. (2023). Machine Learning-Enhanced Flexible Mechanical Sensing. Nano-Micro Letters 2023 15:1, 15(1), 1–33. https://doi.org/10.1007/S40820-023-01013-9eng
dcterms.referencesWibowo, D. B., Suprihanto, A., Caesarendra, W., Khoeron, S., Glowacz, A., & Irfan, M. (2020). A Simple Foot Plantar Pressure Measurement Platform System Using Force-Sensing Resistors. Applied System Innovation 2020, Vol. 3, Page 33, 3(3), 33. https://doi.org/10.3390/ASI3030033eng
dcterms.referencesWild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 27(5), 1047–1053. https://doi.org/10.2337/DIACARE.27.5.1047eng
dcterms.referencesWoodburn, J., & Helliwell, P. S. (1996a). Observations on the F-Scan in-shoe pressure measuring system. Clinical Biomechanics, 11(5), 301–304. https://doi.org/10.1016/0268-0033(95)00071-2eng
dcterms.referencesWoodburn, J., & Helliwell, P. S. (1996b). Relation between heel position and the distribution of forefoot plantar pressures and skin callosities in rheumatoid arthritis. Annals of the Rheumatic Diseases, 55(11), 806–810. https://doi.org/10.1136/ARD.55.11.806eng
dcterms.referencesXie, S., Sen, D., McNeill, J., Mendelson, Y., Dunn, R., & Hickle, K. (2018a). A predictive model for force-sensing resistor nonlinearity for pressure measurement in a wearable wireless sensor patch. Midwest Symposium on Circuits and Systems, 2018-August, 476–579. https://doi.org/10.1109/MWSCAS.2018.8623965eng
dcterms.referencesXie, S., Sen, D., McNeill, J., Mendelson, Y., Dunn, R., & Hickle, K. (2018b). A predictive model for force-sensing resistor nonlinearity for pressure measurement in a wearable wireless sensor patch. Midwest Symposium on Circuits and Systems, 2018-Augus, 476–579. https://doi.org/10.1109/MWSCAS.2018.8623965eng
dcterms.referencesXiong, S., Goonetilleke, R. S., Rodrigo, W. D. A. S., & Zhao, J. (2013). A model for the perception of surface pressure on human foot. Applied Ergonomics, 44(1), 1–10. https://doi.org/10.1016/J.APERGO.2012.04.019eng
dcterms.referencesYang, T., Xie, D., Li, Z., & Zhu, H. (2017). Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering: R: Reports, 115, 1–37. https://doi.org/10.1016/J.MSER.2017.02.001eng
dcterms.referencesYe, J., Lin, Z., You, J., Huang, S., & Wu, H. (2020). Inconsistency Calibrating Algorithms for Large Scale Piezoresistive Electronic Skin. Micromachines 2020, Vol. 11, Page 162, 11(2), 162. https://doi.org/10.3390/MI11020162eng
dcterms.referencesYu, J., Li, F., Gao, Y., & Jiang, Y. (2023). Optimization of linearity of piezoresistive pressure sensor based on pade approximation. Sensors and Actuators A: Physical, 364, 114845. https://doi.org/10.1016/J.SNA.2023.114845eng
dcterms.referencesZehr, E. P., Stein, R. B., Komiyama, T., & Kenwell, Z. (1995). Linearization of force sensing resistors (FSR’s) for force measurement during gait. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 17(2), 1571–1572. https://doi.org/10.1109/IEMBS.1995.579833eng
dcterms.referencesZhang, Q., Wang, Y. L., Xia, Y., Wu, X., Kirk, T. V., & Chen, X. D. (2019). A low-cost and highly integrated sensing insole for plantar pressure measurement. Sensing and Bio-Sensing Research, 26, 100298. https://doi.org/10.1016/J.SBSR.2019.100298eng
dcterms.referencesZhang, X. W., Pan, Y., Zheng, Q., & Yi, X. S. (2000). Time dependence of piezoresistance for the conductor-filled polymer composites. Journal of Polymer Science, Part B: Polymer Physics, 38(21), 2739–2749. https://doi.org/10.1002/1099-0488(20001101)38:21eng
dcterms.referencesZhang, Z., Dai, Y., Xu, Z., Grimaldi, N., Wang, J., Zhao, M., Pang, R., Sun, Y., Gao, S., & Boyi, H. (2023). Insole Systems for Disease Diagnosis and Rehabilitation: A Review. Biosensors 2023, Vol. 13, Page 833, 13(8), 833. https://doi.org/10.3390/BIOS13080833eng
dcterms.referencesZhang, Z., Xu, Z., Chen, W., & Gao, S. (2022a). Comparison between Piezoelectric and Piezoresistive Wearable Gait Monitoring Techniques. Materials 2022, Vol. 15, Page 4837, 15(14), 4837. https://doi.org/10.3390/MA15144837eng
dcterms.referencesZhang, Z., Xu, Z., Chen, W., & Gao, S. (2022b). Comparison between Piezoelectric and Piezoresistive Wearable Gait Monitoring Techniques. Materials 2022, Vol. 15, Page 4837, 15(14), 4837. https://doi.org/10.3390/MA15144837eng
dcterms.referencesZhao, X., Chen, Y., Wei, G., Pang, L. L., & Xu, C. (2023). A comprehensive compensation method for piezoresistive pressure sensor based on surface fitting and improved grey wolf algorithm. Measurement, 207, 112387. https://doi.org/10.1016/J.MEASUREMENT.2022.112387eng
dcterms.referencesZhou, G., Liao, Z., Zhao, R., Yao, H., & Dai, H. (2022). A Force Decoupling Method for Simultaneously Measuring Vertical and Shear Force. IEEE Sensors Journal, 22(17), 16820–16827. https://doi.org/10.1109/JSEN.2022.3192284eng
dcterms.referencesZhu, H., Wertsch, J. J., Harris, G. F., Loftsgaarden, J. D., & Price, M. B. (1991). Foot pressure distribution during walking and shuffling. Archives of Physical Medicine and Rehabilitation, 72(6), 390–397. https://doi.org/10.5555/uri:pii:000399939190173Geng
dcterms.referencesZou, M., Xu, Y., Jin, J., Chu, M., & Huang, W. (2023a). Accurate Nonlinearity and Temperature Compensation Method for Piezoresistive Pressure Sensors Based on Data Generation. Sensors 2023, Vol. 23, Page 6167, 23(13), 6167. https://doi.org/10.3390/S23136167eng
dcterms.referencesZulkifli, S. S., & Loh, W. P. (2020). A state-of-the-art review of foot pressure. Foot and Ankle Surgery, 26(1), 25–32. https://doi.org/10.1016/J.FAS.2018.12.005eng
dcterms.referencesZuñiga, J., Moscoso, M., Padilla-Huamantinco, P. G., Lazo-Porras, M., Tenorio-Mucha, J., Padilla-Huamantinco, W., & Tincopa, J. P. (2022). Development of 3D-Printed Orthopedic Insoles for Patients with Diabetes and Evaluation with Electronic Pressure Sensors. Designs, 6(5), 95. https://doi.org/10.3390/DESIGNS6050095/S1eng
oaire.versioninfo:eu-repo/semantics/acceptedVersion
sb.investigacionConvergencia tecnológicaspa
sb.programaDoctorado en Gestión de la Tecnología y la Innovaciónspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
PDF_RESUMEN.pdf
Tamaño:
453.76 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
9.07 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones