Estrategias para la erradicación de biopelículas de listeria monocytogenes formadas en acero inoxidable

datacite.rightshttp://purl.org/coar/access_right/c_16eceng
dc.contributor.advisorPérez Lavalle, Liliana
dc.contributor.advisorSoto Valera, Zamira
dc.contributor.authorLizcano Santiago, Leidy
dc.contributor.authorAriza Malo, Humberto
dc.contributor.authorZapata Barreto, Natalia
dc.contributor.authorSehuanes Yepes, Diara
dc.date.accessioned2023-12-11T13:51:43Z
dc.date.available2023-12-11T13:51:43Z
dc.date.issued2023
dc.description.abstractLa bacteria Listeria monocytogenes plantea desafíos críticos en la industria alimentaria, ya que es una causa frecuente de enfermedad transmitida por alimentos. Esta bacteria tiene una notable capacidad para formar biopelículas en superficies abióticas, siendo el acero inoxidable uno de los materiales más afectados debido a su amplio uso en la industria. Este artículo resume las estrategias más estudiadas para erradicar biopelículas de Listeria monocytogenes en superficies de acero inoxidable a partir de la revisión de artículos científicos publicados en los últimos años. En el ámbito químico, se destaca el uso de desinfectantes como el agua electrolizada, compuestos de amonio cuaternario, ácido peracético y aceites esenciales. A nivel de métodos físicos, se exploran enfoques como la combinación de UV-C y NaOCl, nanomateriales y la iluminación con luz azul. En el campo de las estrategias biológicas, la proteinasa K, Dnasa, las bacteriocinas y bacteriófagos son alternativas prometedoras para reducir la formación de biopelículas de Listeria monocytogenes. Estas estrategias biológicas ofrecen un enfoque sostenible y específico. La combinación de estrategias químicas, físicas y biológicas es esencial para abordar el desafío de controlar biopelículas de Listeria monocytogenes en superficies de acero inoxidable, mejorando la seguridad alimentaria y reduciendo el riesgo de enfermedades transmitidas por alimentos.spa
dc.description.abstractThe bacteria Listeria monocytogenes poses critical challenges in the food industry as it is a frequent cause of foodborne illnesses. This bacterium exhibits a remarkable ability to form biofilms on abiotic surfaces, with stainless steel being particularly affected due to its widespread use in the industry. This article summarizes the most studied strategies for eradicating Listeria monocytogenes biofilms on stainless steel surfaces based on a review of scientific articles published in recent years. In the chemical realm, the use of disinfectants such as electrolyzed water, quaternary ammonium compounds, peracetic acid, and essential oils stands out. On the physical methods front, approaches involving the combination of UV-C and NaOCl, synergistic effects, nanomaterials, and blue light illumination are explored. In the field of biological strategies, proteinase K, DNase, bacteriocins, and bacteriophages emerge as promising alternatives to reduce Listeria monocytogenes biofilm formation. These biological strategies offer a sustainable and specific approach. The combination of chemical, physical and biological strategies is essential to address the challenge of controlling Listeria monocytogenes biofilms on stainless steel surfaces, improving food safety and reducing the risk of foodborne illness.eng
dc.format.mimetypepdfspa
dc.identifier.urihttps://hdl.handle.net/20.500.12442/13563
dc.language.isospaspa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias Básicas y Biomédicasspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAcero inoxidablespa
dc.subjectListeria monocytogenesspa
dc.subjectBiopelículaspa
dc.subjectControlspa
dc.subjectDesinfecciónspa
dc.subjectErradicaciónspa
dc.subjectEliminaciónspa
dc.subjectEstrategiasspa
dc.subjectStainless steeleng
dc.subjectListeria monocytogeneseng
dc.subjectBiofilmeng
dc.subjectControleng
dc.subjectDisinfectioneng
dc.subjectEradicationeng
dc.subjectEliminationeng
dc.subjectStrategyeng
dc.titleEstrategias para la erradicación de biopelículas de listeria monocytogenes formadas en acero inoxidablespa
dc.type.driverinfo:eu-repo/semantics/bachelorThesiseng
dc.type.spaTrabajo de grado - pregradospa
dcterms.referencesListeria (Listeriosis) | Listeria | CDC en Español [Internet]. [cited 2023 Nov 20]. Available from: https://www.cdc.gov/spanish/listeria/index.htmlspa
dcterms.referencesListeria | EFSA [Internet]. [cited 2023 Nov 20]. Available from: https://www.efsa.europa.eu/es/topics/topic/listeriaspa
dcterms.referencesListeriosis [Internet]. [cited 2023 Nov 20]. Available from: https://www.who.int/es/news-room/fact-sheets/detail/listeriosisspa
dcterms.referencesBrote de infecciones por Listeria vinculado a carnes frías y quesos cortados en tiendas o secciones deli | Outbreak of Listeria Infections Linked to Deli-Sliced Products | April 2019 | Listeria | CDC [Internet]. [cited 2023 Nov 20]. Available from: https://www.cdc.gov/listeria/outbreaks/deliproducts-04-19/index-esp.htmlspa
dcterms.referencesSemanal BE. Semana epidemiológica 14 29 de marzo al 4 de abril de 2020. Available from: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2020_Boletin_epidemiologico_semana_14.pdfspa
dcterms.referencesGiaouris E, Chorianopoulos N, Doulgeraki A, Nychas GJ. Co-culture with Listeria monocytogenes within a dual-species biofilm community strongly increases resistance of Pseudomonas putida to benzalkonium chloride. PLoS One [Internet]. 2013 Oct 10 [cited 2023 Nov 21];8(10). Available from: https://pubmed.ncbi.nlm.nih.gov/24130873/eng
dcterms.referencesListeriosis. 2007 [cited 2023 Nov 20]; Available from: http://www.cdc.gov/listeria/spa
dcterms.referencesVillanueva D, Salazar M. Formación de biopelículas por Listeria monocytogenes aisladas de queso fresco de mercados del Cercado de Lima. An la Fac Med. 2017;78(3):322.spa
dcterms.referencesCaldas Arias L. Bacterias-Biofilms y resistencia antimicrobiana. Rev Fac Ciencias la Salud Univ del Cauca, ISSN-e 2538-9971, ISSN 0124-308X, Vol 17, No 1, 2015 (Ejemplar Dedic a Rev Fac Ciencias la Salud, Univ del Cauca), págs 20-27 [Internet]. 2015 [cited 2023 Nov 21];17(1):20–7. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=5816943&info=resumen&idioma=ENGspa
dcterms.referencesCadena Moreno EE. Estudio de la formación de biopelículas de Listeria monocytogenes edge sobre superficies de vidrio y acero inoxidable y su control. 2011 [cited 2023 Nov 20]; Available from: https://ri-ng.uaq.mx/handle/123456789/6640spa
dcterms.referencesAshikur Rahman M, Akter S, Ashrafudoulla M, Anamul Hasan Chowdhury M, Uddin Mahamud AGMS, Hong Park S, et al. Insights into the mechanisms and key factors influencing biofilm formation by Aeromonas hydrophila in the food industry: A comprehensive review and bibliometric analysis. Food Res Int [Internet]. 2024 Jan [cited 2023 Nov 20];175:113671. Available from: https://linkinghub.elsevier.com/retrieve/pii/S096399692301219Xeng
dcterms.referencesDesinfección y control de biofilms. Available from: https://www.betelgeux.es/images/files/Catalogos/Cat_Desinfectantes_Marzo2014_2web.pdfspa
dcterms.referencesGómez Jaimes R, Villarreal Barajas T, Vásquez López A, Arteaga Garibay AI, Osuna García JA. Actividad esporicida de la solución electrolizada con ph neutro en hongos de importancia postcosecha. Rev Mex Ciencias Agrícolas. 2017 Dec 12;(19):3993–4007.spa
dcterms.referencesNavia DP, Samuel Villada H, Mosquera SA. Biofilms in the food industry. 2010; 8(2). Available from: https://dialnet.unirioja.es/descarga/articulo/6117671.pdfeng
dcterms.referencesDeng LZ, Mujumdar AS, Pan Z, Vidyarthi SK, Xu J, Zielinska M, et al. Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Crit Rev Food Sci Nutr [Internet]. 2020 Aug 21 [cited 2023 Nov 20];60(15):2481–508. Available from: https://www.tandfonline.com/doi/abs/10.1080/10408398.2019.1649633eng
dcterms.referencesCarolina Castro Espinoza Escuela Agrícola Panamericana S, Honduras Z. Efecto de la solución de hipoclorito de sodio en la formación de biopelículas microbianas. 2018;spa
dcterms.referencesChen D, Zhao T, Doyle MP. Control of pathogens in biofilms on the surface of stainless steel by levulinic acid plus sodium dodecyl sulfate. Int J Food Microbiol [Internet]. 2015;207:1–7. Available from: http://dx.doi.org/10.1016/j.ijfoodmicro.2015.04.026eng
dcterms.referencesHua Z, Korany AM, El-Shinawy SH, Zhu MJ. Comparative Evaluation of Different Sanitizers Against Listeria monocytogenes Biofilms on Major Food-Contact Surfaces. Front Microbiol. 2019;10(November):1–8.eng
dcterms.referencesResiduos de compuestos de amonios cuaternarios en alimentos [Internet]. [cited 2023 Nov 20]. Available from: https://www.betelgeux.es/blog/2015/07/03/residuos-de-compuestos-de-amonios-cuaternarios-en-alimentos/spa
dcterms.references3M. Boletín Técnico BT-0001CCD. 2006. Available from: https://multimedia.3m.com/mws/media/1013350O/differences-between-ammonium-product-bulletin.pdfspa
dcterms.referencesCLORURO DE BENZALCONIO – Grupo Español IIC [Internet]. [cited 2023 Nov 20]. Available from: https://www.ge-iic.com/fichas-tecnicas/biocidas-herbicidas-etc/cloruro-de-benzalconio/spa
dcterms.referencesMartínez-Suárez J V., Ortiz S, López-Alonso V. Potential impact of the resistance to quaternary ammonium disinfectants on the persistence of Listeria monocytogenes in food processing environments. Front Microbiol. 2016;7(MAY).eng
dcterms.referencesGiaouris E, Chorianopoulos N, Doulgeraki A, Nychas GJ. Co-Culture with Listeria monocytogenes within a Dual-Species Biofilm Community Strongly Increases Resistance of Pseudomonas putida to Benzalkonium Chloride. PLoS One. 2013;8(10):1–14.eng
dcterms.referencesRodríguez Alfaro E. Consideraciones importantes en el uso de desinfectantes. Inst Salud Publica Chile. 2015;1(1):1–38.spa
dcterms.referencesIbusquiza PS, Herrera JJR, Cabo ML. Resistance to benzalkonium chloride, peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes. Food Microbiol [Internet]. 2011;28(3):418–25. Available from: http://dx.doi.org/10.1016/j.fm.2010.09.014eng
dcterms.referencesNicholas R, Dunton P, Tatham A, Fielding L. The effect of ozone and open air factor on surface-attached and biofilm environmental Listeria monocytogenes. J Appl Microbiol. 2013;115(2):555–64.eng
dcterms.referencesHao J, Zhang J, Zheng X, Zhao D. Bactericidal efficacy of slightly acidic electrolyzed water (SAEW) against Listeria monocytogenes planktonic cells and biofilm on food-contact surfaces. Food Qual Saf. 2022;6(August 2021):1–9.eng
dcterms.referencesArevalos-Sánchez M, Regalado C, Martin SE, Meas-Vong Y, Cadena-Moreno E, García-Almendárez BE. Effect of neutral electrolyzed water on lux-tagged Listeria monocytogenes EGDe biofilms adhered to stainless steel and visualization with destructive and non-destructive microscopy techniques. Food Control [Internet]. 2013;34(2):472–7. Available from: http://dx.doi.org/10.1016/j.foodcont.2013.05.021eng
dcterms.referencesKostoglou D, Tsaklidou P, Iliadis I, Garoufallidou N, Skarmoutsou G, Koulouris I, et al. Advanced Killing Potential of Thymol against a Time and Temperature Optimized Attached Listeria monocytogenes Population in Lettuce Broth. Biomol 2021, Vol 11, Page 397 [Internet]. 2021 Mar 8 [cited 2023 Nov 21];11(3):397. Available from: https://www.mdpi.com/2218-273X/11/3/397/htmeng
dcterms.referencesPérez-Ibarreche M, Castellano P, Leclercq A, Vignolo G. Control of Listeria monocytogenes biofilms on industrial surfaces by the bacteriocin-producing Lactobacillus sakei CRL1862. FEMS Microbiol Lett. 2016;363(12):1–6.eng
dcterms.referencesUpadhyay A, Upadhyaya I, Kollanoor-Johny A, Venkitanarayanan K. Antibiofilm effect of plant derived antimicrobials on Listeria monocytogenes. Food Microbiol [Internet]. 2013;36(1):79–89. Available from: http://dx.doi.org/10.1016/j.fm.2013.04.010eng
dcterms.referencesVázquez-Sánchez D, Galvão JA, Ambrosio CMS, Gloria EM, Oetterer M. Single and binary applications of essential oils effectively control Listeria monocytogenes biofilms. Ind Crops Prod. 2018;121(May):452–60.eng
dcterms.referencesHarada AMM, Nascimento MS. Efficacy of dry sanitizing methods on Listeria monocytogenes biofilms. Food Control. 2021;124(January).eng
dcterms.referencesLee SHI, Cappato LP, Corassin CH, Cruz AG, Oliveira CAF. Effect of peracetic acid on biofilms formed by Staphylococcus aureus and Listeria monocytogenes isolated from dairy plants. J Dairy Sci [Internet]. 2016;99(3):2384–90. Available from: http://dx.doi.org/10.3168/jds.2015-10007eng
dcterms.referencesSadekuzzaman M, Yang S, Kim HS, Mizan MFR, Ha S Do. Evaluation of a novel antimicrobial (lauric arginate ester) substance against biofilm of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella spp. Int J Food Sci Technol [Internet]. 2017 Sep 1 [cited 2023 Nov 21];52(9):2058–67. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/ijfs.13484eng
dcterms.referencesPaluszak Z, Gryń G, Bauza-Kaszewska J, Skowron KJ, Wiktorczyk-Kapischke N, Korkus J, et al. Prevalence and antimicrobial susceptibility of Listeria monocytogenes strains isolated from a meat processing plant. Ann Agric Environ Med. 2021;28(4):595–604.eng
dcterms.referencesMazaheri T, Cervantes-Huamán BRH, Turitich L, Ripolles-Avila C, Rodríguez-Jerez JJ. Removal of Listeria monocytogenes biofilms on stainless steel surfaces through conventional and alternative cleaning solutions. Int J Food Microbiol. 2022;381(March).eng
dcterms.referencesMotavaf F, Mirvaghefi A, Farahmand H, Hosseini SV. Effect of Zataria multiflora essential oil and potassium sorbate on inoculated Listeria monocytogenes, microbial and chemical quality of raw trout fillet during refrigerator storage. Food Sci Nutr. 2021;9(6):3015–25.eng
dcterms.referencesSadekuzzaman M, Mizan MFR, Kim HS, Yang S, Ha S Do. Activity of thyme and tea tree essential oils against selected foodborne pathogens in biofilms on abiotic surfaces. Lwt [Internet]. 2018;89(October 2017):134–9. Available from: https://doi.org/10.1016/j.lwt.2017.10.042eng
dcterms.referencesPoimenidou S V., Chrysadakou M, Tzakoniati A, Bikouli VC, Nychas GJ, Skandamis PN. Variability of Listeria monocytogenes strains in biofilm formation on stainless steel and polystyrene materials and resistance to peracetic acid and quaternary ammonium compounds. Int J Food Microbiol. 2016;237:164–71.eng
dcterms.referencesVázquez-Sánchez D, Galvão JA, Oetterer M. Contamination sources, serogroups, biofilm-forming ability and biocide resistance of Listeria monocytogenes persistent in tilapia-processing facilities. J Food Sci Technol. 2017;54(12):3867–79.eng
dcterms.referencesBrauge T, Faille C, Leleu G, Denis C, Hanin A, Midelet G. Treatment with disinfectants may induce an increase in viable but non culturable populations of Listeria monocytogenes in biofilms formed in smoked salmon processing environments. Food Microbiol [Internet]. 2020;92(December 2019):103548. Available from: https://doi.org/10.1016/j.fm.2020.103548eng
dcterms.referencesRodríguez-López P, Cabo ML. Tolerance development in Listeria monocytogenes-Escherichia coli dual-species biofilms after sublethal exposures to pronase-benzalkonium chloride combined treatments. Food Microbiol. 2017;67:58–66.eng
dcterms.referencesEspina L, Berdejo D, Alfonso P, García-Gonzalo D, Pagán R. Potential use of carvacrol and citral to inactivate biofilm cells and eliminate biofouling. Food Control. 2017;82:256–65.eng
dcterms.referencesAyres Cacciatore F, Dalmás M, Maders C, Ataíde Isaía H, Brandelli A, da Silva Malheiros P. Carvacrol encapsulation into nanostructures: Characterization and antimicrobial activity against foodborne pathogens adhered to stainless steel. Food Res Int [Internet]. 2020;133(December 2019):109143. Available from: https://doi.org/10.1016/j.foodres.2020.109143eng
dcterms.referencesPang X, Wong C, Chung HJ, Yuk HG. Biofilm formation of Listeria monocytogenes and its resistance to quaternary ammonium compounds in a simulated salmon processing environment. Food Control. 2019 Apr 1;98:200–8.eng
dcterms.referencesSterniša M, Gradišar Centa U, Drnovšek A, Remškar M, Smole Možina S. Pseudomonas fragi biofilm on stainless steel (at low temperatures) affects the survival of Campylobacter jejuni and Listeria monocytogenes and their control by a polymer molybdenum oxide nanocomposite coating. Int J Food Microbiol. 2023;394(January).eng
dcterms.referencesACTIVIDAD ANTIBACTERIANA DEL ACEITE ESENCIAL DE LA Conobea scopariodes FRENTE A CINCO CEPAS BACTERIANAS DE INTERES CLINICO EN COLOMBIA.eng
dcterms.referencesKim M, Park SY, Ha S Do. Synergistic effect of a combination of ultraviolet-C irradiation and sodium hypochlorite to reduce Listeria monocytogenes biofilms on stainless steel and eggshell surfaces. Food Control [Internet]. 2016;70:103–9. Available from: http://dx.doi.org/10.1016/j.foodcont.2016.05.003eng
dcterms.referencesBan GH, Kang DH. Effect of sanitizer combined with steam heating on the inactivation of foodborne pathogens in a biofilm on stainless steel. Food Microbiol [Internet]. 2016;55:47–54. Available from: http://dx.doi.org/10.1016/j.fm.2015.11.003eng
dcterms.referencesNiemira BA. Cold plasma decontamination of foods. Annu Rev Food Sci Technol [Internet]. 2012 Apr [cited 2023 Nov 20];3(1):125–42. Available from: https://pubmed.ncbi.nlm.nih.gov/22149075/eng
dcterms.referencesSong MG, Roy PK, Jeon EB, Kim SH, Heu MS, Lee JS, et al. Effect of Dielectric Barrier Discharge Plasma against Listeria monocytogenes Mixed-Culture Biofilms on Food-Contact Surfaces. Antibiotics. 2023;12(3):1–11.eng
dcterms.referencesPuranen S, Riekkinen K, Korhonen J. Antibiofilm Effects of Nanoparticles and Visible Light Illumination Against Listeria monocytogenes. Front Microbiol. 2021;12(July):1–5.eng
dcterms.referencesLi X, Kim MJ, Bang WS, Yuk HG. Anti-biofilm effect of 405-nm LEDs against Listeria monocytogenes in simulated ready-to-eat fresh salmon storage conditions. Food Control [Internet]. 2018;84:513–21. Available from: https://doi.org/10.1016/j.foodcont.2017.09.006eng
dcterms.referencesDoulgeraki AI, Kamarinou CS, Nychas GJE, Argyri AA, Tassou CC, Moulas G, et al. Role of Microbial Interactions across Food-Related Bacteria on Biofilm Population and Biofilm Decontamination by a TiO2-Nanoparticle-Based Surfactant. Pathogens. 2023;12(4).eng
dcterms.referencesSingh R, Paul D, Jain RK. Biofilms: implications in bioremediation. Trends Microbiol. 2006;14(9):389–97.eng
dcterms.referencesHeredia P, Hernandez A, Gonzalez A, Vallejo B. Bacteriocinas De Las Bal. 2017;42:340–6. Available from: https://www.redalyc.org/pdf/339/33951621002.pdfspa
dcterms.referencesWinkelströter LK, Gomes BC, Thomaz MRS, Souza VM, De Martinis ECP. Lactobacillus sakei 1 and its bacteriocin influence adhesion of Listeria monocytogenes on stainless steel surface. Food Control [Internet]. 2011;22(8):1404–7. Available from: http://dx.doi.org/10.1016/j.foodcont.2011.02.021eng
dcterms.referencesGanegama Arachchi GJ, Cridge AG, Dias-Wanigasekera BM, Cruz CD, McIntyre L, Liu R, et al. Effectiveness of phages in the decontamination of Listeria monocytogenes adhered to clean stainless steel, stainless steel coated with fish protein, and as a biofilm. J Ind Microbiol Biotechnol [Internet]. 2013 Oct [cited 2023 Nov 20];40(10):1105–16. Available from: https://pubmed.ncbi.nlm.nih.gov/23907252/eng
dcterms.referencesByun KH, Han SH, Choi MW, Kim BH, Park SH, Ha S Do. Biofilm eradication ability of phage cocktail against Listeria monocytogenes biofilms formed on food contact materials and effect on virulence-related genes and biofilm structure. Food Res Int [Internet]. 2022;157(March):111367. Available from: https://doi.org/10.1016/j.foodres.2022.111367eng
dcterms.referencesNguyen UT, Burrows LL. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms. Int J Food Microbiol [Internet]. 2014;187:26–32. Available from: http://dx.doi.org/10.1016/j.ijfoodmicro.2014.06.025eng
dcterms.referencesMasebe RD, Thantsha MS. Anti-Biofilm Activity of Cell Free Supernatants of Selected Lactic Acid Bacteria against Listeria monocytogenes Isolated from Avocado and Cucumber Fruits, and from an Avocado Processing Plant. Foods. 2022;11(18).eng
dcterms.referencesFan Q, Zhang Y, Yang H, Wu Q, Shi C, Zhang C, et al. Effect of Coenzyme Q0 on biofilm formation and attachment-invasion efficiency of Listeria monocytogenes. Food Control. 2018;90:274–81.eng
dcterms.referencesKrishna AR, Jayalekshmi SK, Antony TMP, Ramasamy S. Effect of Bacteriocin (ALC102) of Enterococcus faecium GRD AA on Biofilm Forming Listeria monocytogenes MtCC 657. J Pure Appl Microbiol. 2022;16(1):481–93.eng
dcterms.referencesSadekuzzaman M, Yang S, Mizan MFR, Kim HS, Ha S Do. Effectiveness of a phage cocktail as a biocontrol agent against L. monocytogenes biofilms. Food Control. 2017;78:256–63.eng
dcterms.referencesManios SG, Skandamis PN. Control of Listeria monocytogenes in the processing environment by understanding biofilm formation and resistance to sanitizers. Methods Mol Biol. 2014;1157:251-261. doi:10.1007/978-1-4939-0703-8_21eng
oaire.versioninfo:eu-repo/semantics/acceptedVersioneng
sb.programaMicrobiologíaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
484.02 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
PDF_Resumen.pdf
Tamaño:
203.56 KB
Formato:
Adobe Portable Document Format

Colecciones