Sobre el uso adecuado del coeficiente de correlación de Pearson: verificación de supuestos mediante un ejemplo aplicado a las Ciencias de la Salud
dc.contributor.author | Hernández-Lalinde, Juan | |
dc.contributor.author | Espinosa-Castro, Jhon-Franklin | |
dc.contributor.author | Penaloza-Tarazona, Mariana-Elena | |
dc.contributor.author | Díaz-Camargo, Édgar | |
dc.contributor.author | Bautista-Sandoval, María | |
dc.contributor.author | Riaño-Garzón, Manuel E. | |
dc.contributor.author | Chacón Lizarazo, Oriana M. | |
dc.contributor.author | Chaparro-Suárez, Yudy Karina | |
dc.contributor.author | García Álvarez, Diego | |
dc.contributor.author | Bermúdez-Pirela, Valmore | |
dc.date.accessioned | 2019-01-23T16:43:13Z | |
dc.date.available | 2019-01-23T16:43:13Z | |
dc.date.issued | 2018 | |
dc.description.abstract | La comprobación de los supuestos en los que se sustenta el uso del coeficiente de correlación de Pearson suele ser una tarea en la que se cometen no pocos errores. Si bien es sencillo el proceso que lleva a su cálculo e interpretación, no resulta tan fácil la labor de verificar el cumplimiento de condiciones como la normalidad bivariada o la ausencia de datos atípicos, probablemente porque esto demanda la implementación de técnicas multivariantes. La presente revisión pretende servir de orientación a investigadores de las ciencias de salud y afines, los cuales seguramente se toparán con situaciones en las que deba emplearse esta herramienta estadística. El artículo gira en torno a un caso práctico derivado de un estudio de prevalencia de síndrome metabólico realizado en la ciudad de Maracaibo, Venezuela. El objetivo principal es el de mostrar mediante este ejemplo la manera adecuada de constatar las premisas vinculadas a este coeficiente, no sin olvidar el debido argumento teórico que las respalda. Se prescinde del aspecto matemático en favor del informático, para lo cual se utiliza el programa abierto R-Studio en todas y cada una de las actividades de procesamiento, diagramación y cómputo. Se proveen las bases de datos empleadas en el desarrollo del problema, a la vez de suministrar los scripts que activan las funciones del paquete con el propósito de que el lector pueda reproducir el análisis y comparar los resultados. Toda esta información puede ser consultada y descargada desde un repositorio de libre acceso. | spa |
dc.description.abstract | The checking of the assumptions on which the use of the Pearson correlation coefficient is based, is usually a task in which many errors are committed. Although the process that leads to its calculation and interpretation is simple, the task of verifying conditions such as bivariate normality or the absence of outlier is not so easy, probably because this requires the implementation of multivariate techniques. This review intends to serve as guidance to health sciences researchers, who will surely find situations in which this statistical tool should be used. The article is based on a prevalence study of metabolic syndrome carried out in the Maracaibo city, Venezuela. The main objective is to show by this example the appropriate way to verify the assumptions linked to this coefficient, not forgetting the due theoretical argument that supports them. The mathematical aspect is discarded in order to get the benefits of using computers power, for which the open source R-Studio program is used in each and every one of the processing, plotting and computation activities. The dataset used in the development of the problem are provided, as well as the scripts that activate the functions of the package with the purpose that the reader can reproduce the analysis and compare the results. All this information can be consulted and downloaded from an open access repository. | eng |
dc.identifier.issn | 26107988 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12442/2501 | |
dc.language.iso | spa | spa |
dc.publisher | Sociedad Venezolana de Farmacología Clínica y Terapéutica | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.source | Revista AVFT-Archivos Venezolanos de Farmacología y Terapéutica | spa |
dc.source | Vol. 37, No. 5 (2018) | spa |
dc.subject | Coeficiente de correlación | spa |
dc.subject | Pearson | spa |
dc.subject | Supuestos | spa |
dc.subject | R-Studio | spa |
dc.subject | Caso práctico | spa |
dc.subject | Síndrome metabólico | spa |
dc.subject | Maracaibo | spa |
dc.subject | Correlation coefficient | eng |
dc.subject | Pearson | eng |
dc.subject | Assumptions | eng |
dc.subject | R-Studio | eng |
dc.subject | Practical case | eng |
dc.subject | Metabolic | eng |
dc.subject | Syndrome | eng |
dc.title | Sobre el uso adecuado del coeficiente de correlación de Pearson: verificación de supuestos mediante un ejemplo aplicado a las Ciencias de la Salud | spa |
dc.title.alternative | On the proper use of the Pearson correlation coefficient: checking assumptions through an example applied to health sciences | eng |
dc.type | article | spa |
dcterms.references | Quevedo R, Pedreschi F, Bastias JM, Díaz O. Correlation of the fractal enzymatic browning rate with the temperature in mushroom, pear and apple slices. LWT - Food Sci Technol. enero de 2016;65:406-13. | eng |
dcterms.references | Hospodar G, Gierlichs B, De Mulder E, Verbauwhede I, Vandewalle J. Machine learning in side-channel analysis: a first study. J Cryptogr Eng. diciembre de 2011;1(4):293-302. | eng |
dcterms.references | He F, Rodríguez-Colon S, Fernández-Mendoza J, Vgontzas AN, Bixler EO, Berg A, et al. Abdominal Obesity and Metabolic Syndrome Burden in Adolescents—Penn State Children Cohort Study. J Clin Densitom. enero de 2015;18(1):30-6. | eng |
dcterms.references | Korkmazer E, Solak N. Correlation between inflammatory markers and insulin resistance in pregnancy. J Obstet Gynaecol. 17 de febrero de 2015;35(2):142-5. | eng |
dcterms.references | Rojas J, Bermúdez VJ, Añez RJ, Bello LM, Toledo A, Torres Y, et al. Comportamiento epidemiológico del síndrome metabólico en el municipio Maracaibo-Venezuela. Rev Síndr Cardiometabólico. 2013;3(2):13. | spa |
dcterms.references | Bermúdez V, Pacheco M, Rojas J, Córdova E, Velázquez R, Carrillo D, et al. Epidemiologic Behavior of Obesity in the Maracaibo City Metabolic Syndrome Prevalence Study. Maedler K, editor. PLoS ONE. 18 de abril de 2012;7(4):e35392. | eng |
dcterms.references | Salazar J, Bermúdez V, Olivar LC, Torres W, Palmar J, Añez R, et al. Insulin resistance indices and coronary risk in adults from Maracaibo city, Venezuela: A cross sectional study. F1000Research [Internet]. 9 de marzo de 2018 [citado 13 de enero de 2019];7. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107995/ | eng |
dcterms.references | Bermúdez V, Rojas J, Salazar J, Calvo MJ, Morillo J, Torres W, et al. The Maracaibo city metabolic syndrome prevalence study: primary results and agreement level of 3 diagnostic criteria. Rev Latinoam Hipertens. 2014;9(4):20-32. | eng |
dcterms.references | Bermúdez V, Marcano RP, Cano C, Arráiz N, Amell A, Cabrera M, et al. The Maracaibo City Metabolic Syndrome Prevalence Study: Design and Scope: Am J Ther. mayo de 2010;17(3):288-94. | eng |
dcterms.references | Matthews DR, Hosker JR, Rudenski AS, Naylor BA, Treacher DF, Turner RC, et al. Homeostasis model assessment: insulin resistance and fl-cell function from fasting plasma glucose and insulin concentrations in man. :8. | eng |
dcterms.references | Levy JC, Matthews DR, Hermans MP. Correct Homeostasis Model Assessment (HOMA) Evaluation Uses the Computer Program. Diabetes Care. 1 de diciembre de 1998;21(12):2191-2. | eng |
dcterms.references | Wallace TM, Levy JC, Matthews DR. Use and Abuse of HOMA Modeling. Diabetes Care. 1 de junio de 2004;27(6):1487-95. | eng |
dcterms.references | Blackburn H, Jacobs D. Commentary: Origins and evolution of body mass index (BMI): continuing saga. Int J Epidemiol. 1 de junio de 2014;43(3):665-9. | eng |
dcterms.references | Hall DMB. What use is the BMI? Arch Dis Child. 11 de enero de 2006;91(4):283-6. | eng |
dcterms.references | Chiarpenello J, Bonino J, Pent MV, Baella AL. Índice triglicéridos/hdl colesterol en una población pediátrica de la ciudad de rosario y zona de influencia. 2018;5. | eng |
dcterms.references | Roa Barrios M, Arata-Bellabarba G, Valeri L, Velázquez-Maldonado E. Relación entre el cociente triglicéridos/cHDL, índices de resistencia a la insulina y factores de riesgo cardiometabólico en mujeres con síndrome del ovario poliquístico. Endocrinol Nutr. febrero de 2009;56(2):59-65. | spa |
dcterms.references | Belén L, Oliva ML, Maffei L, Rossi ML, Squillace C, Alorda MB, et al. Relación TG/HDL-C y resistencia a la insulina en mujeres adultas argentinas según su estado nutricional. Rev Esp Nutr Humana Dietética. 21 de noviembre de 2013;18(1):18-24. | spa |
dcterms.references | Alf C, Lohr S. Sampling Assumptions in Introductory Statistics Classes. Am Stat. febrero de 2007;61(1):71-7. | eng |
dcterms.references | Montgomery DC, Runger GC. Applied statistics and probability for engineers. 3rd ed. New York: Wiley; 2003. 706 p. | eng |
dcterms.references | Weisberg S. Applied linear regression. 3rd ed. Hoboken, N.J: John Wiley & Sons, Ltd; 2005. 310 p. (Wiley series in probability and statistics). | eng |
dcterms.references | Rawlings JO, Pantula SG, Dickey DA. Applied regression analysis: a research tool. 2nd ed. New York: Springer; 1998. 657 p. (Springer texts in statistics). | eng |
dcterms.references | Samprit Chatterjee, Ali S. Hadi. Regression Analysis by Example. 4th ed. Hoboken, N.J: John Wiley & Sons, Ltd; 2006. 383 p. (Wiley series in probability and statistics). | eng |
dcterms.references | Sedgwick P. Simple linear regression. BMJ. 12 de abril de 2013;346(apr12 1):f2340-f2340. | eng |
dcterms.references | Bewick V, Cheek L, Ball J. Statistics review 7: Correlation and regression. 2003;7(6):9. | eng |
dcterms.references | Mukaka M. A guide to appropriate use of Correlation coefficient in medical research. Malawi Med J J Med Assoc Malawi. septiembre de 2012;24(3):69-71. | eng |
dcterms.references | Ozer DJ. Correlation and the coefficient of determination. Psychol Bull. 1985;97(2):307-15. | eng |
dcterms.references | Sedgwick P. Pearson’s correlation coefficient. BMJ. 4 de julio de 2012;345(jul04 1):e4483-e4483. | eng |
dcterms.references | Asuero AG, Sayago A, González AG. The Correlation Coefficient: An Overview. Crit Rev Anal Chem. enero de 2006;36(1):41-59. | eng |
dcterms.references | Rodgers JL, Nicewander WA. Thirteen Ways to Look at the Correlation Coefficient. Am Stat. febrero de 1988;42(1):59. | eng |
dcterms.references | Yeager K. LibGuides: SPSS Tutorials: Pearson Correlation [Internet]. [citado 18 de diciembre de 2018]. Disponible en: https://libguides.library.kent.edu/SPSS/PearsonCorr | eng |
dcterms.references | Pearson Product-Moment Correlation - When you should run this test, the range of values the coefficient can take and how to measure strength of association. [Internet]. [citado 18 de diciembre de 2018]. Disponible en: https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php | eng |
dcterms.references | Pearson’s Product-Moment Correlation in SPSS Statistics - Procedure, assumptions, and output using a relevant example. [Internet]. [citado 18 de diciembre de 2018]. Disponible en: https://statistics.laerd.com/spss-tutorials/pearsons-product-moment-correlation-using-spss-statistics.php | eng |
dcterms.references | Use and Misuse of Correlation Coefficients [Internet]. STAT 509. [citado 15 de enero de 2019]. Disponible en: https://newonlinecourses.science.psu.edu/stat509/node/160/ | eng |
dcterms.references | Point-Biserial Correlation in SPSS Statistics - Procedure, assumptions, and output using a relevant example. [Internet]. [citado 18 de diciembre de 2018]. Disponible en: https://statistics.laerd.com/spss-tutorials/point-biserial-correlation-using-spss-statistics.php | eng |
dcterms.references | Gupta SD. Point biserial correlation coefficient and its generalization. Psychometrika. diciembre de 1960;25(4):393-408. | eng |
dcterms.references | Spearman’s Rank Order Correlation using SPSS Statistics - A How-To Statistical Guide by Laerd Statistics [Internet]. [citado 17 de enero de 2019]. Disponible en: https://statistics.laerd.com/spss-tutorials/spearmans-rank-order-correlation-using-spss-statistics.php | eng |
dcterms.references | Zar JH. Spearman Rank Correlation. En: Armitage P, Colton T, editores. Encyclopedia of Biostatistics [Internet]. Chichester, UK: John Wiley & Sons, Ltd; 2005 [citado 17 de enero de 2019]. Disponible en: http://doi.wiley.com/10.1002/0470011815.b2a15150 | eng |
dcterms.references | Kendall’s Tau-b using SPSS Statistics - A How-To Statistical Guide by Laerd Statistics [Internet]. [citado 17 de enero de 2019]. Disponible en: https://statistics.laerd.com/spss-tutorials/kendalls-tau-b-using-spss-statistics.php | eng |
dcterms.references | Kendall’s Tau and Spearman’s Rank Correlation Coefficient [Internet]. Statistics Solutions. [citado 17 de enero de 2019]. Disponible en: https://www.statisticssolutions.com/kendalls-tau-and-spearmans-rank-correlation-coefficient/ | eng |
dcterms.references | Triola MF, Pineda Ayala LE, Hernández Ramírez R. Estadística. 10.a ed. México: Pearson/Educación; 2009. | spa |
dcterms.references | Johnson R, Kuby P. Just the essentials of elementary statistics. 10.a ed. Belmont, CA: Thomson Brooks/Cole; 2008. | eng |
dcterms.references | Gary W. Heiman. Basic Statistics for the Behavioral Sciences. 6th ed. Belmont, CA: Wadsworth Cengage Learning; 2011. 504 p. | eng |
dcterms.references | Ranjit Kumar. Research Methodology. 3rd ed. Los Angeles: Sage Publications; 2011. | eng |
dcterms.references | Härdle W, Simar L. Applied multivariate statistical analysis. Fourth Edition. Berlin Heidelberg New York Dordrecht London: Springer; 2015. 580 p. | eng |
dcterms.references | Timm NH. Applied multivariate analysis. New York: Springer; 2002. 693 p. (Springer texts in statistics). | eng |
dcterms.references | Rencher AC. Methods of multivariate analysis. 2nd ed. New York: J. Wiley; 2002. 708 p. (Wiley series in probability and mathematical statistics). | eng |
dcterms.references | Burdenski TK. Evaluating Univariate, Bivariate, and Multivariate Normality Using Graphical and Statistical Procedures. Am Educ Res Assoc. 2000;62. | eng |
dcterms.references | Oppong FB, Agbedra SY. Assessing Univariate and Multivariate Normality, A Guide For Non-Statisticians. Math Theory Model. 2016;6(2):26-33-33. | eng |
dcterms.references | Shao Y, Zhou M. A characterization of multivariate normality through univariate projections. J Multivar Anal [Internet]. noviembre de 2010 [citado 18 de enero de 2019];101(10). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837532/ | eng |
dcterms.references | Kankainen A, Taskinen S, Oja H. On Mardia’s Tests of Multinormality. En: Hubert M, Pison G, Struyf A, Van Aelst S, editores. Theory and Applications of Recent Robust Methods [Internet]. Basel: Birkhäuser Basel; 2004 [citado 30 de diciembre de 2018]. p. 153-64. Disponible en: http://link.springer.com/10.1007/978-3-0348-7958-3_14 | eng |
dcterms.references | Charu C. Aggarwal. Outlier analysis. 2nd edition. New York, NY: Springer Science+Business Media; 2016. 481 p. | eng |
dcterms.references | Distinction Between Outliers & High Leverage Observations [Internet]. STAT 501. [citado 18 de enero de 2019]. Disponible en: https://newonlinecourses.science.psu.edu/stat501/node/337/ | eng |
dcterms.references | Franklin S, Thomas S, Franklin S. Robust multivariate outlier detection using Mahalanobis’ distance and modified Stahel-Donoho estimators. Semantic Sch. 2001;35. | eng |
dcterms.references | Influential Points [Internet]. STAT 501. [citado 21 de enero de 2019]. Disponible en: https://newonlinecourses.science.psu.edu/stat501/node/336/ | eng |
dcterms.references | A comparison of the Pearson and Spearman correlation methods [Internet]. [citado 21 de enero de 2019]. Disponible en: https://support.minitab.com/en-us/minitab-express/1/help-and-how-to/modeling-statistics/regression/supporting-topics/basics/a-comparison-of-the-pearson-and-spearman-correlation-methods/ | eng |
dcterms.references | Editor MB. Common Assumptions about Data (Part 1: Random Samples and Statistical Independence) [Internet]. The MiniTab Blog. [citado 21 de enero de 2019]. Disponible en: http://blog.minitab.com/blog/quality-business/common-assumptions-about-data-part-1-random-samples-and-statistical-independence | eng |
dcterms.references | Independent Observations Assumption [Internet]. Statistics Data Sciences. [citado 21 de enero de 2019]. Disponible en: http://sites.utexas.edu/sos/indobs/ | eng |
dcterms.references | Romano JL, Kromrey JD. What Are the Consequences If the Assumption of Independent Observations Is Violated in Reliability Generalization Meta-Analysis Studies? Educ Psychol Meas. junio de 2009;69(3):404-28. | eng |
dcterms.references | William G. Cochran. Sampling Techniques. 3rd ed. New York, NY: John Wiley & Sons, Inc.; 1977. 442 p. (Wiley series in probability and mathematical statistics). | eng |
dcterms.references | Rao PSRS. Sampling methodologies: with applications. Boca Raton, Fla: Chapman & Hall/CRC; 2000. 311 p. (Texts in statistical science). | eng |
dcterms.references | Thompson SK. Sampling. 3rd ed. Hoboken, N.J: John Wiley & Sons, Inc.; 2012. 436 p. (Wiley series in probability and statistics). | eng |
dcterms.references | Levy PS, Lemeshow S. Sampling of populations: methods and applications. 3rd ed. New York: John Wiley & Sons, Inc.; 1999. 525 p. (Wiley series in probability and statistics). | eng |
dcterms.references | Sharon L. Lohr. Sampling: Design and Analysis. 2nd ed. Boston, MA: Brooks/Cole Cengage Learning; 2010. 609 p. (Advanced Series). | eng |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Sobre_uso_adecuado_coeficiente.pdf
- Tamaño:
- 2.1 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 368 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: