Factores que influyen en la formación de biopelículas de bacterias asociadas a productos lácteos
datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.contributor.advisor | Soto Varela, Zamira Elena | |
dc.contributor.advisor | Pérez Lavalle, Liliana Del Socorro | |
dc.contributor.author | Gutiérrez Blanco, Inelda Graciela | |
dc.contributor.author | Rodríguez Charris, Isabella | |
dc.contributor.author | Suárez Bonett, Zamy Saleth | |
dc.contributor.author | Viloria Alian, Yiseth María | |
dc.date.accessioned | 2024-12-06T20:17:59Z | |
dc.date.available | 2024-12-06T20:17:59Z | |
dc.date.issued | 2024 | |
dc.description.abstract | La industria láctea es fundamental para la producción de alimentos nutritivos como yogurt, queso, mantequilla, entre otros, pero la formación de biopelículas se muestra como uno de los desafíos más significativos que afectan directamente la calidad y las características organolépticas del producto. Estas comunidades bacterianas adheridas a superficies, protegidas por una matriz polimérica extracelular, son resistentes a tratamientos biocidas, complicando su eliminación. Su composición incluye en mayor proporción agua, exopolisacáridos, proteínas y ADN y su formación depende de factores como temperatura, pH, humedad y nutrientes mínimos. Las biopelículas representan un riesgo crítico para la seguridad alimentaria al actuar como reservorios de patógenos, lo que puede contaminar productos lácteos y comprometer su seguridad. En este contexto, esta revisión tiene como objetivo identificar los factores que influyen en la formación de biopelículas de bacterias asociadas a productos lácteos. La metodología empleada en esta revisión científica se fundamentó en una búsqueda en bases de datos como Web of Science, ScienceDirect, PubMed, SciELO y Scopus, enfocándose en estudios publicados entre 2015 y 2024 sobre la formación de biopelículas y su relación con productos lácteos. Mediante el uso de términos clave en inglés y español, como "biofilms", "formation", "dairy industry", combinados con el operador booleano "AND", y criterios específicos de inclusión y exclusión. La información extraída incluyó generalidades de biopelículas, los factores intrínsecos y extrínsecos que afectan el crecimiento bacteriano en productos lácteos y datos sobre microorganismos aislados directamente de productos lácteos o inoculados experimentalmente. Los datos se organizaron cuantitativa y cualitativamente en una tabla de Excel que incluyó: producto lácteo evaluado, técnica para evidenciar la formación de biopelícula, lugar de formación de la biopelícula, valor de cada factor evaluado (pH, actividad del agua, Temperatura, Contenido de grasa, concentración de sólidos disueltos totales, concentración de NaCl, concentración de Ca y Concentración de azucares (glucosa, lactosa), tiempo, microorganismos involucrados, base de datos empleada, resultados, hallazgos y conclusiones, seguida de un análisis a través de herramientas de visualización de datos, permitiendo identificar similitudes y diferencias entre los factores analizados. Durante el proceso de selección, ScienceDirect y Web of Science se destacaron al proporcionar artículos con mayor relevancia sobre la formación de biopelículas en productos lácteos, se seleccionaron un total de 21 artículos científicos, 18 de ScienceDirect y 3 de Web of Science. Los productos lácteos o materia prima más evaluados fueron la leche pasteurizada (7 repeticiones), seguida de la leche cruda y la leche UHT (6 y 4 menciones, respectivamente). Del mismo modo, la leche descremada junto con otros tipos de quesos también fueron objetos de análisis, aunque en menor frecuencia en comparación con otros productos lácteos. Factores como la temperatura (20 menciones) y el pH (7 menciones) fueron los más analizados entre los estudios en comparación con otros factores. En relación con la temperatura, se observó que la temperatura óptima para la formación de biopelículas osciló entre 31°C y 40°C, favoreciendo el crecimiento de microorganismos mesófilos como Bacillus spp., mientras que temperaturas altas o extremas (41°C - 60°C) inhiben la mayoría de los microorganismos, aunque algunos termófilos permanecen activos. En cuanto al pH, los rangos neutros a ligeramente alcalinos (pH 7.1-8.0) favorecieron la formación de biopelículas, mientras que los ácidos o muy alcalinos tendieron a ser inhibitorios. Además, se determinó que otros factores como la actividad del agua, la concentración de calcio, la grasa, la sal y los sólidos disueltos influyeron en la formación de biopelículas; en donde bajos niveles de agua libre y pH ácido inhibieron el crecimiento bacteriano, mientras que niveles elevados de calcio y contenido de grasa (3.5%) tendieron a favorecer la formación de biopelículas; por su parte, la presencia de sal generalmente actúa como un inhibidor, aunque algunas cepas muestran tolerancia a concentraciones altas. El estudio de una determinada superficie como acero inoxidable y diversos polímeros, junto con el producto lácteo de interés por las investigaciones representaron el 62% de los estudios. Así mismo, técnicas como el recuento en placa (7 estudios) y la tinción con cristal violeta (6 estudios) fueron las más empleadas para evidenciar la formación y desarrollo de las biopelículas en los estudios, complementadas por métodos como microplacas, microscopía electrónica (SEM y CLSM), técnicas adicionales como la bioluminiscencia de ATP y espectroscopia de rayos X. Los resultados obtenidos en este estudio permiten evidenciar que la formación de biopelículas en productos lácteos está directamente relacionada con factores como la temperatura, el pH, entre otros. Estas condiciones son relevantes en proceso de producción de la leche y sus derivados, los hallazgos indican la necesidad de implementar estrategias específicas de limpieza y desinfección que traten eficazmente estos factores, optimizando el uso de agentes químicos y ajustando protocolos según las características de los productos y las superficies involucradas. Sin embargo, es necesario realizar estudios más profundos y específicos sobre su aplicación en este contexto, ya que el mundo de la desinfección en la industria alimentaria es complejo y debe ser abordado con cuidado. Dado que los resultados destacan la importancia de un monitoreo constante de las condiciones de procesamiento para prevenir y mitigar el impacto de las biopelículas en la calidad y seguridad de los productos lácteos. | spa |
dc.description.abstract | The dairy industry is essential to produce nutritive foods such as yogurt, cheese, butter, among others, but the formation of biofilms is one of the most significant challenges that directly affect the quality and organoleptic characteristics of the product. These bacterial communities adhered to surfaces, protected by an extracellular polymeric matrix, are resistant to biocide treatments, complicating their elimination. Their composition includes a greater proportion of water, exopolysaccharides, proteins and DNA, and their formation depends on factors such as temperature, pH, humidity and minimum nutrients. Biofilms represent a critical risk to food safety by acting as reservoirs of pathogens, which can contaminate dairy products and compromise their safety. In this context, this review aims to identify the factors that influence the formation of bacterial biofilms associated with dairy products. The methodology employed in this scientific review was based on an exhaustive search in databases such as Web of Science, ScienceDirect, PubMed, SciELO and Scopus, focusing on studies published between 2015 and 2024 on biofilm formation and its relationship with dairy products. By using key terms in English and Spanish, such as “biofilms”, “formation”, “dairy industry”, combined with the Boolean operator “AND”, and specific inclusion and exclusion criteria. The information extracted included general information on biofilms, intrinsic and extrinsic factors affecting bacterial growth in dairy products, and data on microorganisms isolated directly from dairy products or inoculated experimentally. The data were organized quantitatively and qualitatively in an Excel table that included: dairy product evaluated, technique to evidence biofilm formation, site of biofilm formation, value of each factor evaluated (pH, water activity, Temperature, Fat content, Total dissolved solids concentration, NaCl concentration, Ca concentration and Sugar concentration (glucose, lactose), time, microorganisms involved, database used, results, findings and conclusions, followed by an analysis through data visualization tools, allowing to identify similarities and differences between the factors analyzed. During the selection process, ScienceDirect and Web of Science stood out by providing articles with greater relevance on the formation of biofilms in dairy products. A total of 21 scientific articles were selected, 18 from ScienceDirect and 3 from the Web of Science. The most evaluated dairy products or raw material were pasteurized milk (7 repetitions), followed by raw milk and UHT milk (6 and 4 mentions, respectively). Similarly, skim milk along with other types of cheeses were also objects of analysis, although less frequently compared to other dairy products. Factors such as temperature (20 mentions) and pH (7 mentions) were the most analyzed among the studies compared to other factors such as water activity, calcium concentration, fat content, sugar concentration and total dissolved solids concentration. In relation to the temperature, it was observed that the optimum temperature for biofilm formation ranges between 31°C and 40°C, favoring the growth of mesophilic microorganisms such as Bacillus spp. while high or extreme temperatures (41°C - 60°C) inhibit most microorganisms, although some thermophiles remain active. As for pH, neutral to slightly alkaline ranges (pH 7.1-8.0) favored biofilm formation, while acidic or very alkaline tended to be inhibitory. In addition, other factors such as water activity, calcium concentration, fat, salt and dissolved solids influenced biofilm formation. Since low levels of free water and acidic pH inhibited bacterial growth, while high levels of calcium and fat content (3.5%) tended to favor biofilm formation, and the presence of salt generally acted as an inhibitor, although some strains showed tolerance to high concentrations. In addition, the study of a certain surface such as stainless steel and various polymers, together with the dairy product of interest for the investigations accounted for 62% of the studies. Likewise, techniques such as plate counting (7 studies) and crystal violet staining (6 studies) were the most used to demonstrate the formation and development of biofilms in the studies, complemented by methods such as microplates, electron microscopy (SEM and CLSM), additional techniques such as ATP bioluminescence and X-ray spectroscopy. The results obtained in this study show that biofilm formation in dairy products is directly related to factors such as temperature, pH, among others. These conditions are relevant in the production process of milk and its derivatives. The findings indicate the need to implement specific cleaning and disinfection strategies that effectively address these factors, optimizing the use of chemical agents such as peracetic acid and adjusting protocols according to the characteristics of the products and surfaces involved. However, more in-depth and specific studies on their application in this context are needed, since the world of disinfection in the food industry is complex and should be approached with care. Since the results highlight the importance of constant monitoring of processing conditions to prevent and mitigate the impact of biofilms on the quality and safety of dairy products. | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/16045 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.subject | Acero inoxidable | spa |
dc.subject | Biopelícula | spa |
dc.subject | Factores intrínsecos | spa |
dc.subject | Factores extrínsecos | spa |
dc.subject | Industria láctea | spa |
dc.subject | Microorganismos | spa |
dc.subject | pH | spa |
dc.subject | Temperatura | spa |
dc.subject.keywords | Biofilm | eng |
dc.subject.keywords | Dairy industry | eng |
dc.subject.keywords | Intrinsic factors | eng |
dc.subject.keywords | Extrinsic factors | eng |
dc.subject.keywords | Microorganisms | eng |
dc.subject.keywords | pH | eng |
dc.subject.keywords | Stainless steel | eng |
dc.subject.keywords | Temperature | eng |
dc.title | Factores que influyen en la formación de biopelículas de bacterias asociadas a productos lácteos | spa |
dc.type.driver | info:eu-repo/semantics/other | |
dc.type.spa | Trabajo de grado - pregrado | |
dcterms.references | Alonso, V. P. P., & Kabuki, D. Y. (2019). Formation and dispersal of biofilms in dairy substrates. International Journal of Dairy Technology, 72(3), 472–478. https://doi.org/10.1111/1471- 0307.12587 | eng |
dcterms.references | Alonso, V. P. P., de Oliveira Morais, J., & Kabuki, D. Y. (2021). Incidence of Bacillus cereus, Bacillus sporothermodurans and Geobacillus stearothermophilus in ultra-high temperature milk and biofilm formation capacity of isolates. International Journal of Food Microbiology, 354. https://doi.org/10.1016/j.ijfoodmicro.2021.109318 | eng |
dcterms.references | Alonso, V. P. P., Ferreira, R. C. de C., Cotta, M. A., & Kabuki, D. Y. (2022). Influence of milk proteins on the adhesion and formation of Bacillus sporothermodurans biofilms: Implications for dairy industrial processing. Food Control, 134. https://doi.org/10.1016/j.foodcont.2021.108743 | eng |
dcterms.references | Álvarez J et al, (2020) Pseudomonas Fluorescens: Mecanismos y Aplicaciones en la Agricultura Sustentable. Revista Latinoamericana de Recursos Naturales. 16 (1) https://www.itson.mx/publicaciones/rlrn/Documents/v16-n1- 1%20Pseudomonas%20fluorescens%20Mecanismos%20y%20aplicaciones%20en%20la %20(1).pd | spa |
dcterms.references | Angel Osorio-Rivera, M. I., Estuardo Carrillo-Barahona, W. I., Soraya Moreno-Carvajal, J. I., & Lorena Cañar-Rivera, J. v. (2021). Ciencias de la Salud Artículo de investigación Biopeliculas: estudio de una comunidad bacteriana Biofilm: 7, 1216–1228. https://doi.org/10.23857/dc.v7i4 | spa |
dcterms.references | Kumar, M., Flint, S., Palmer, J., Chanapha, S., & Hall, C. (2021). Influence of Incubation Temperature and Total Dissolved Solids on Biofilm and Spore Formation by Dairy Isolates of Geobacillus stearothermophilus. Applied and Environmental Microbiology, 87(8). https://doi.org/10.1128/AEM.02311-20 | eng |
dcterms.references | Barbero, F. (2023, 4 abril). Interacciones microbianas y su contribución al desarrollo de biofilms en la industria alimentaria. Revista Alimentaria. https://ablaboratorios.com/datos/AB_biofilm_articulo_revista_alimentaria.pdf | spa |
dcterms.references | Benavides, I; Constanza, N; Restrepo, L; Novoa, C. (2006). Influencia de la bacteria pseudomonas fluorescens sobre las características fisicoquímicas y sensoriales del yogurt. https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/6231/7753 | spa |
dcterms.references | Bhosale, S., Pr, B., Kubade, A., & Desale, R. J. (2021). Biofilm in dairy industry: Detection and Common Process for Control Biofilms. te. https://www.researchgate.net/publication/354169887_Biofilm_i n_dairy_industry_Detection_and_Common_Process_for_Control_Biofilms | eng |
dcterms.references | Bridier, A., Briandet, R., Thomas, V., & Dubois-Brissonnet, F. (2011). Resistance of bacterial biofilms to disinfectants: A review. In Biofouling (Vol. 27, Issue 9, pp. 1017–1032). https://doi.org/10.1080/08927014.2011.626899 | eng |
dcterms.references | Carpentier, B., & Cerf, O. (2011). Review — Persistence of Listeria monocytogenes in food industry equipment and premises. International Journal of Food Microbiology, 145(1), 1– 8. https://doi.org/10.1016/J.IJFOODMICRO.2011.01.005 | eng |
dcterms.references | Castro, J., Lima, Â., Sousa, L. G. V., Rosca, A. S., Muzny, C. A., & Cerca, N. (2022). Crystal Violet Staining Alone Is Not Adequate to Assess Synergism or Antagonism in MultiSpecies Biofilms of Bacteria Associated With Bacterial Vaginosis. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.795797 | eng |
dcterms.references | Caycedo Lozano, Liliana, Ramírez, Lucía Constanza Corrales, & Suárez, Diana Marcela Trujillo. (2021). Las bacterias, su nutrición y crecimiento: una mirada desde la química. Nova, 19(36), 49-94. Epub January 17, 2021. https://doi.org/10.22490/24629448.5293 | spa |
dcterms.references | Chang, G., Li, Q., Wang, T., Zhang, B., Wu, W., Lv, C., Sun, T., Zhou, T., Zheng, W., Wang, Y., & Wang, X. (2024). Characterization of Pseudomonas spp. contamination and in situ spoilage potential in pasteurized milk production process. Food Research International, 188. https://doi.org/10.1016/j.foodres.2024.114463 | eng |
dcterms.references | Chang, Y., Xie, Q., Yang, J., Ma, L., & Feng, H. (2021). The prevalence and characterization of Bacillus cereus isolated from raw and pasteurized buffalo milk in southwestern China. Journal of Dairy Science, 104(4), 3980–3989. https://doi.org/10.3168/jds.2020-19432 | eng |
dcterms.references | Delgadillo, R. J., Rodríguez, S. V., Portugal, V. O., Juárez, R. A., & García Hernández, J. L. (2018). Efecto del pH y temperatura sobre el crecimiento y actividad antagónica de Bacillus 30 subtilis sobre Rhizoctonia solani. Revista Mexicana de Fitopatología, 36(2). https://doi.org/10.18781/r.mex.fit.1711-3 | spa |
dcterms.references | Elegbeleye, J. A., & Buys, E. M. (2020). Molecular characterization and biofilm formation potential of Bacillus subtilis and Bacillus velezensis in extended shelf-life milk processing line. Journal of Dairy Science, 103(6), 4991–5002. https://doi.org/10.3168/jds.2019-17919 | eng |
dcterms.references | Fan, L., Dai, H., Zhou, W., Yuan, L., Yang, J., Yang, Z., & Jiao, X. an. (2024). Unraveling the significance of calcium as a biofilm promotion signal for Bacillus licheniformis strains isolated from dairy products. Food Research International, 182. https://doi.org/10.1016/j.foodres.2024.114145 | eng |
dcterms.references | FAO. (2022). Productos lácteos y nutrición humana. https://www.fao.org/dairy-productionproducts/products/es/ | spa |
dcterms.references | Fontaneto Apoca, A. R. (2017). Defectos gasógenos en quesos provocados por microorganismos [Universidad Nacional del Literal]. https://bibliotecavirtual.unl.edu.ar:8443/handle/11185/950 | spa |
dcterms.references | Fuentes, V, H. (2013) Reciclamiento del poliestireno. http://repositoriodigital.tuxtla.tecnm.mx/xmlui/bitstream/handle/123456789/920/48443.p df?sequence=1&isAllowed=y | spa |
dcterms.references | Fysun, O., Kern, H., Wilke, B., & Langowski, H. C. (2019). Evaluation of factors influencing dairy biofilm formation in filling hoses of food-processing equipment. Food and Bioproducts Processing, 113, 39–48. https://doi.org/10.1016/j.fbp.2018.10.009 | eng |
dcterms.references | González H., María I., Yien, Wan, Castrillon V., Jorge A., & Ortega P., Ángela. (2013). Adicion De Carnobacterium Maltaromaticum Cb1 En Chorizo Y Morcilla Empacados Al Vacio, Para Inhibir El Crecimiento De Listeria monocytogenes. Vitae, 20 (1) http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-40042013000100003 | spa |
dcterms.references | González, Y. Ortega, J. Anducho, M. Mercado, Y. (2023) Bacillus subtilis y Trichoderma: Características generales y su aplicación en la agricultura. Vol 25. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-888X2022000100318 | eng |
dcterms.references | Grande J. et al, (2017). Bioconcervación de alimentos lácteos, Real Academia de Ciencias Veterinarias de Andalucia Oriental. Vol 3 https://helvia.uco.es/bitstream/handle/10396/18844/racvao_30_2017_12.pdf?sequence=1 &isAllowed=y | spa |
dcterms.references | Inoxpa solutions Colombia (2018) Sistemas CIP en la industria láctea. https://tlatca.sofexamericas.com/resumen/2018/p1.pdf | spa |
dcterms.references | Karaca, B., Buzrul, S., & Coleri Cihan, A. (2019). Anoxybacillus and Geobacillus biofilms in the dairy industry: effects of surface material, incubation temperature and milk type. Biofouling, 35(5), 551 –560. https://doi.org/10.1080/08927014.2019.1628221 | eng |
dcterms.references | Kumar, M; Flint, S; Palmer, J; Plieger, P. (2021) A comparison of the spore heat resistance of dairy isolates of Geobacillus stearothermophilus obtained using a CDC biofilm reactor and a sporulating medium. https://doi.org/10.1016/j.idairyj.2021.105000 | eng |
dcterms.references | Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., & Stahl, D. A. (2015). Brock Biology of Microorganisms (14th ed.). Pearson. | eng |
dcterms.references | Marchand, S., et al. (2012). Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety. Comprehensive Reviews in Food Science and Food Safety, 11(2), 133–147. https://doi.org/10.1111/J.1541-4337.2011.00183.X | eng |
dcterms.references | Martínez, R.A., Guerrero, S.A., & Miglietta, H.F.. (2005). Efecto del potencial rédox sobre los parámetros del cultivo de Trypanosoma cruzi desarrollado en medio líquido agitado. Revista argentina de microbiología, 37(4), 165-168. Recuperado en 31 de mayo de 2024, de http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0325- 75412005000400001&lng=es&tlng=es | spa |
dcterms.references | Muruzović, M., Mladenović, K. G., & Čomić, L. R. (2018). In vitro evaluation of resistance to environmental stress by planktonic and biofilm form of lactic acid bacteria isolated from traditionally made cheese from Serbia. Food Bioscience, 23, 54–59. https://doi.org/10.1016/j.fbio.2018.03.005 | eng |
dcterms.references | Navia, D. P., Villada, H. S., & Mosquera, S. A. (2010). Las biopelículas en la industria de alimentos. Biotecnología En El Sector Agropecuario Y Agroindustrial, 8(2), 118– 128. https://dialnet.unirioja.es/descarga/articulo/6117671.pdf | spa |
dcterms.references | Olanbiwoninu, A., & Popoola, B. (2023). Biofilms and their impact on the food industry. Saudi Journal Of Biological Sciences, 30(2), 103523. https://doi.org/10.1016/j.sjbs.2022.103523 | eng |
dcterms.references | Piera Sierra, G. (2002). Estudio del biofilm: formación y consecuencias. https://www.adiveter.com/ftp_public/A1070308.pdf | eng |
dcterms.references | Porcellato, D., Aspholm, M., Skeie, S. B., Monshaugen, M., Brendehaug, J., & Mellegård, H. (2018). Microbial diversity of consumption milk during processing and storage. International Journal of Food Microbiology, 266, 21–30. https://doi.org/10.1016/j.ijfoodmicro.2017.11.004 | eng |
dcterms.references | Robles, M, P (2024). Bacillus spp. en la producción de alimentos. Universidad de Jaén. https://crea.ujaen.es/bitstream/10953.1/24278/1/TFG_Robles%20Cuadrado_Mar%c3%ad a%20del%20Pilar.pdf | spa |
dcterms.references | Rodríguez C. et al, (2021). Aislamiento e Identificación de Lactobacillus spp. (lactobacillaceae) Resistentes a cd(ii) y as(iii) Recuperados de Fermento de Cacao. Acta Biológica Colombiana 26 (1) https://doi.org/10.15446/abc.v26n1.83677 | eng |
dcterms.references | Rodríguez López, M. A. (2017). Estimación de las pérdidas de alimentos en una industria del sector lácteo y sus posibles efectos sobre la seguridad alimentaria y nutricional [Universidad nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/58666 | spa |
dcterms.references | Rosado de Castro, M., da Silva Fernandes, M., Kabuki, D. Y., & Kuaye, A. Y. (2017). Biofilm formation on stainless steel as a function of time and temperature and control through sanitizers. International Dairy Journal, 68, 9–16. https://doi.org/10.1016/j.idairyj.2016.12.005 | eng |
dcterms.references | Raz, C., Paramonov, M. M., Shemesh, M., & Argov-Argaman, N. (2022). The milk fat globule size governs a physiological switch for biofilm formation by Bacillus subtilis. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.844587 | eng |
dcterms.references | Sadiq, F. A., Flint, S., Yuan, L., Li, Y., Liu, T. J., & He, G. Q. (2017). Propensity for biofilm formation by aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders. International Journal of Food Microbiology, 262, 89–98. https://doi.org/10.1016/j.ijfoodmicro.2017.09.015 | eng |
dcterms.references | Sánchez, E. (2016). Efecto de la actividad de agua sobre las características y estabilidad de los alimentos. https://es.scribd.com/doc/295376240/Actividad-de-Agua | spa |
dcterms.references | Shen, J., Wang, H., Zhu, C., Zhang, M., Shang, F., & Xue, T. (2021). Effect of biofilm on the survival of Staphylococcus aureus isolated from raw milk in high temperature and drying environment. Food Research International, 149. https://doi.org/10.1016/j.foodres.2021.110672 | eng |
dcterms.references | Sanschagrin, L., Paniconi, T., Sanchez Martinez, A. C., Jubinville, E., Goulet-Beaulieu, V., Goetz, C., Labrie, S., Dufour, S., & Jean, J. (2024). Identification and Characterization of Microorganisms Isolated from Non-compliant and/or Atypical Dairy Products in Canada. Journal of Dairy Science. https://doi.org/10.3168/jds.2023-24506 | eng |
dcterms.references | Sarquis, A., Bajrami, D., Mizaikoff, B., Ladero, V., Alvarez, M. A., & Fernandez, M. (2023). Characterization of the Biofilms Formed by Histamine-Producing Lentilactobacillus parabuchneri Strains in the Dairy Environment. Foods, 12(7). https://doi.org/10.3390/foods12071503 | eng |
dcterms.references | Silva, M. P. da, Fernandes, P. É., Pimentel-Filho, N. de J., Andrade, N. J. de, Alves, R. B. T., Eller, M. R., & Peña, W. E. L. (2022). Modelling adhesion and biofilm formation by Bacillus cereus isolated from dairy products as a function of pH, temperature and time. International Dairy Journal, 134. https://doi.org/10.1016/j.idairyj.2022.105472 | eng |
dcterms.references | Sokunrotanak Srey, Iqbal Kabir Jahid, Sang-Do Ha (2013) Biofilm formation in food industries: A food safety concern. Volume 31, Issue 2. https://doi.org/10.1016/j.foodcont.2012.12.001 | eng |
dcterms.references | Téllez, S. (2010). Los biofilms y su repercusión en la industria alimentaria [Revista online]. th. Influence of feed temperature to biofouling of ultrafiltration membrane during skim milk processing. International Dairy Journal, 93, 99–105. https://doi.org/10.1016/j.idairyj.2019.02.005 | eng |
dcterms.references | Vanegas, M. L., Correa, N. C., Morales, A. M., Martínez, A. L., Rúgeles, L. G., & Jiménez, F. I. (2009). RESISTENCIA A ANTIBIOTICOS DE BACTERIAS AISLADAS DE BIOPELÍCULAS EN UNA PLANTA DE ALIMENTOS ANTIBIOTIC RESISTANCE OF BACTERIA ISOLATED FROM BIOFILMS IN A FOOD PROCESSING PLANT. In Rev.MVZ Córdoba (Vol. 14, Issue 2). | spa |
dcterms.references | Vázquez-Sánchez, D., Cabo, M. L., Ibusquiza, P. S., & Rodríguez-Herrera, J. J. (2014). Biofilmforming ability and resistance to industrial disinfectants of staphylococcus aureus isolated from fishery products. Food Control, 39(1), 8–16. https://doi.org/10.1016/j.foodcont.2013.09.029 | eng |
dcterms.references | Wang, N., Jin, Y., He, G., & Yuan, L. (2021). Development of multi-species biofilm formed by thermophilic bacteria on stainless steel immerged in skimmed milk. Food Research International, 150. https://doi.org/10.1016/j.foodres.2021.110754 | eng |
dcterms.references | Wemmenhove, E., Wells-Bennik, M. H. J., & Zwietering, M. H. (2021). A model to predict the fate of Listeria monocytogenes in different cheese types – A major role for undissociated lactic acid in addition to pH, water activity, and temperature. International Journal of Food Microbiology, 357. https://doi.org/10.1016/j.ijfoodmicro.2021.109350 | eng |
dcterms.references | Wilson, C., Lukowicz, R., Merchant, S., Valquier-Flynn, H., Caballero, J., Sandoval, J., Okuom, M., Huber, C., Brooks, T. D., Wilson, E., Clement, B., Wentworth, C. D., & Holmes, A. E. (2017). Quantitative and Qualitative assessment Methods for biofilm Growth: a minireview. PubMed, 6(4). https://pubmed.ncbi.nlm.nih.gov/30214915 | eng |
dcterms.references | Winkelströter, L. K., et al. (2015). Identification of the bacteriocin produced by cheese isolate Lactobacillus paraplantarum FT259 and its potential influence on Listeria monocytogenes biofilm formation. LWT - Food Science and Technology, 64(2), 586–592. https://doi.org/10.1016/J.LWT.2015.06.014 | eng |
dcterms.references | Woo, J. H., Guk, J. H., Yi, S., Lee, J., Song, H., Kim, W. H., & Cho, S. (2023). Effect of biofilm formation by antimicrobial-resistant gram-negative bacteria in cold storage on survival in dairy processing lines. International Journal of Food Microbiology, 386. https://doi.org/10.1016/j.ijfoodmicro.2022.110019 | eng |
dcterms.references | Zarei, M., Yousefvand, A., Maktabi, S., Pourmahdi Borujeni, M., & Mohammadpour, H. (2020). Identification, phylogenetic characterisation and proteolytic activity quantification of high biofilm-forming Pseudomonas fluorescens group bacterial strains isolated from cold raw milk. International Dairy Journal, 109. https://doi.org/10.1016/j.idairyj.2020.104787 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.programa | Microbiología | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: