Estrategias para la eliminación de biopelículas de Salmonella spp. en superficies plásticas

datacite.rightshttp://purl.org/coar/access_right/c_16ecspa
dc.contributor.advisorPérez Lavalle, Lilianaspa
dc.contributor.advisorSoto Valera, Zamiraspa
dc.contributor.authorCaraballo Ortega, Erika Patriciaspa
dc.contributor.authorDíaz López, Laura Danielaspa
dc.contributor.authorOjeda Navarro, Sebastián Andrésspa
dc.contributor.authorRamírez Polo, Shely Dareicyspa
dc.date.accessioned2023-06-27T20:24:01Z
dc.date.available2023-06-27T20:24:01Z
dc.date.issued2023
dc.description.abstractAntecedentes: Salmonella spp., es una de las principales bacterias involucradas en enfermedades transmitidas por alimentos (ETA) a nivel mundial. En la Unión Europea (UE) se notificaron 33 brotes de origen alimentario siendo 14 producidos por Salmonela spp.; en el 2018, se reportaron 8 casos causados por S. Enteritidis; en el 2019, el número de casos confirmados fue de 45 y en el 2020 fue de 131 casos en 8 países (EFSA, 2021). Según el último reporte de National Outbreak Reporting System (NORS), en Estados Unidos entre los años 2017-2020 el número de enfermedades causadas por Salmonella spp. fue de 20.384, el número de hospitalizaciones fue de 3802 y las muertes causadas fueron 31. En Colombia en el 2022, se reportaron 126 brotes de enfermedades transmitidas por alimentos (ETA) al sistema de vigilancia en salud pública (SIVIGILA), con 1253 casos involucrados, de los cuales las personas de 5 a 19 años representaron el 59,1%, mayores de 20 años un 30,6%, menores de 5 años 10,3%. Se reconoció que los agentes etiológicos fueron más frecuentes fueron Escherichia coli, Staphylococcus aureus, Salmonella spp., coliformes totales y otros. Salmonella spp. tiene la capacidad de formar biopelículas, estas son agrupaciones de células que se mantienen unidas por una matriz polimérica autoproducida, la cual se adhiere a superficies tanto inertes o vivas (Donlan & Costerton, 2002). Varios estudios han demostrado que Salmonella spp. puede adherirse a las superficies y formar biopelículas en la industria alimentaria, incluidos los plásticos (Joseph et al., 2001). Las biopelículas brindan protección frente a agentes desinfectantes y diferentes tipos de estrés encontrados en ambientes de procesamiento de alimentos (Soni et al., 2013). Objetivo: analizar las estrategias que se han investigado en los últimos años para el control de biopelículas de Salmonella spp. preestablecidas en superficies plásticas. Materiales y métodos: se realizó una búsqueda bibliográfica que incluyó estudios publicados entre 2013 y 2023 en la base de datos científica Web of Science. Las palabras de búsqueda utilizadas fueron: (Salmonella biofilm) AND (plastic surface OR Acrylic OR Polymethyl Methacrylate OR Polyethylene Terephthalate OR Polyvinyl Chloride OR Acrylonitrile Butadiene Styrene OR Polystyrene OR polyethylene OR polypropylene) AND (Control OR disinfection OR eradication OR elimination). Durante la búsqueda se encontraron 88 artículos y se seleccionaron un total de 22 artículos de los cuales se descartaron los que eran reviews y los que durante la investigación no analizaran superficies de plástico o abarcaron biopelículas preformadas. Para la extracción de la información se seleccionó los datos más importantes de los artículos seleccionados como: la estrategia aplicada, el serotipo, el tipo de plástico, las condiciones de formación de la biopelícula, las condiciones de tratamiento y la eficacia del tratamiento. Esta información fue organizada en un cuadro para su análisis. Adicional a esto, se tuvo en cuenta información relevante relacionada con las estrategias en cada uno de los artículos seleccionados, la cual fue complementada con otros artículos para la descripción de cada estrategia. Resultados: Diferentes estrategias mostraron ser efectivas contra las biopelículas. Dentro de los métodos químicos resaltan los aceites esenciales, ácidos orgánicos y el ácido peracético. En este último, se reportó una reducción de 7,61 log10 UFC/cm2 a 3500 ppm, a 25°C en 10 min (Iñiguez-Moreno et al., 2018). En el caso de los aceites esenciales, el carvacrol y el timol demostraron una alta eficacia. En cuanto a combinación de estrategias físicas y químicas, la luz UV junto con ácido peroxiacético tuvo una reducción de 4,69 log CFU/cm2 en 5 min con ácido láctico tuvo una reducción de 6,00 log CFU /cm2 en 10 min (Byun et al., 2022). En el caso de las estrategias biológicas el fago PVP-SE2 tuvo una reducción de 1,5 log y 3,4 log para biopelículas de 24 h y 2,1 y 5,1 log UFC en biopelículas de 48 h a una multiplicidad de infecciones de 0.1 a 22°C. Se encontró que los bacteriófagos presentan bajos o nulos efectos en las características organolépticas de los productos (Meireles et al., 2016), también se encontraron algunas limitaciones en relación con limpiezas rápidas, ya que necesita un rango de tiempo amplio para poder tener una reducción sustancial de las biopelículas (Sillankorva et al., 2010). Conclusión: Diferentes estrategias químicas y físicas mostraron gran efectividad en la eliminación de biopelículas. No obstante, algunos de estos métodos tienen repercusiones secundarias en los seres humanos y el medio ambiente; es por esto por lo que más estudios deben enfocarse en la aplicación de estrategias biológicas las cuales resultan ser una alternativa prometedora a futuro, al ser inocuas y amables con el medio ambiente.spa
dc.description.abstractBackground: Salmonella spp. is one of the main bacteria involved in foodborne diseases (ETA) worldwide. In the European Union (EU) 33 foodborne outbreaks were reported, 14 of which were caused by Salmonella spp.; in 2018, 8 cases caused by S. Enteritidis were reported; in 2019, the number of confirmed cases was 45 and in 2020 it was 131 cases in 8 countries (EFSA, 2021). According to the latest report from the National Outbreak Reporting System (NORS), in the United States between the years 2017-2020 the number of diseases caused by Salmonella spp. was 20,384, the number of hospitalizations was 3,802 and the deaths caused were 31. In Colombia in 2022, 126 outbreaks of foodborne diseases (ETA) were reported to the public health surveillance system (SIVIGILA), with 1,253 cases involved, of which people between the ages of 5 and 19 represented 59,1%, over 20 years of age 30,6%, and children under 5 years of age 10,3%. It was recognized that the most frequent etiological agents were Escherichia coli, Staphylococcus aureus, Salmonella spp., total coliforms and others. Salmonella spp. it has the ability to form biofilms, these are groups of cells that are held together by a self-produced polymeric matrix, which adheres to both inert and living surfaces (Donlan & Costerton, 2002). Several studies have shown that Salmonella spp. it can adhere to surfaces and form biofilms in the food industry, including plastics (Joseph et al., 2001). Biofilms provide protection against sanitizing agents and different types of stress found in food processing environments (Soni et al., 2013). Objective: to analyze the strategies that have been investigated in recent years for the control of biofilms of Salmonella spp. presets on plastic surfaces. Materials and methods: a bibliographic search was carried out that included studies published between 2013 and 2023 in the Web of Science scientific database. The search words used were: (Salmonella biofilm) AND (plastic surface OR Acrylic OR Polymethyl Methacrylate OR Polyethylene Terephthalate OR Polyvinyl Chloride OR Acrylonitrile Butadiene Styrene OR Polystyrene OR polyethylene OR polypropylene) AND (Control OR disinfection OR eradication OR elimination). During the search, 88 articles were found and a total of 22 articles were selected, of which those that were reviews and those that during the investigation did not analyze plastic surfaces or covered preformed biofilms were discarded. For the extraction of the information, the most important data of the selected articles was selected, such as: the applied strategy, the serotype, the type of plastic, the biofilm formation conditions, the treatment conditions and the efficacy of the treatment. This information was organized in a table for analysis. In addition to this, relevant information related to the strategies in each of the selected articles was taken into account, which was complemented with other articles for the description of each strategy. Results: Different strategies were shown to be effective against biofilms. Among the chemical methods, essential oils, organic acids and peracetic acid stand out. In the latter, a reduction of 7,61 log10 CFU/cm2 was reported at 3500 ppm, at 25°C in 10 min (Iñiguez-Moreno et al., 2018). In the case of essential oils, carvacrol and thymol demonstrated high efficacy. Regarding the combination of physical and chemical strategies, UV light together with peroxyacetic acid had a reduction of 4,69 log CFU/cm2 in 5 min with lactic acid had a reduction of 6,00 log CFU/cm2 in 10 min (Byun et al., 2022). In the case of the biological strategies, the PVP-SE2 phage had a reduction of 1,5 log and 3,4 log for 24-h biofilms and 2,1 and 5,1 log CFU in 48-h biofilms at a multiplicity of infections of 0.1 at 22°C. It was found that bacteriophages have low or no effects on the organoleptic characteristics of the products (Meireles et al., 2016), some limitations were also found in relation to quick cleaning, since it requires a wide range of time to be able to have a reduction of biofilms (Sillankorva et al., 2010). Conclusion: Different chemical and physical strategies showed great effectiveness in the removal of biofilms. However, some of these methods have secondary impacts on humans and the environment; This is why more studies should focus on the application of biological strategies, which turn out to be a promising alternative for the future, since they are harmless and kind to the environment.eng
dc.format.mimetypepdfspa
dc.identifier.urihttps://hdl.handle.net/20.500.12442/12673
dc.language.isospaspa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias Básicas y Biomédicasspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectSuperficies plásticasspa
dc.subjectSalmonella sppspa
dc.subjectBiopelículaspa
dc.subjectErradicaciónspa
dc.subjectPlastic surfaceseng
dc.subjectSalmonella sppeng
dc.subjectBiofilmeng
dc.subjectEradicationeng
dc.titleEstrategias para la eliminación de biopelículas de Salmonella spp. en superficies plásticasspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.spaTrabajo de grado - pregradospa
dcterms.referencesAcar, B. O., Cengiz, G., Gulendag, E., Goncuoglu, M., & Diker, K. S. (2022). Efficacy of peroxyacetic acid against Salmonella biofilms and as a decontaminant agent in poultry meat. Journal of the Hellenic Veterinary Medical Society, 73(2), 4007–4014. https://doi.org/10.12681/jhvms.26066spa
dcterms.referencesAmaral, V. C. S., Santos, P. R., da Silva, A. F., dos Santos, A. R., Machinski, M., & Mikcha, J. M. G. (2015). Effect of carvacrol and thymol on Salmonella spp. biofilms on polypropylene. International Journal of Food Science and Technology, 50(12), 2639–2643. https://doi.org/10.1111/ijfs.12934spa
dcterms.referencesArtés, F., Gómez, P., Aguayo, E., Escalona, V., & Artés-Hernández, F. (2009). Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biology and Technology, 51(3), 287–296. https://doi.org/10.1016/J.POSTHARVBIO.2008.10.003spa
dcterms.referencesBao, H., Zhang, P., Zhang, H., Zhou, Y., Zhang, L., & Wang, R. (2015). Bio-Control of Salmonella Enteritidis in Foods Using Bacteriophages. Viruses 2015, Vol. 7, Pages 4836-4853, 7(8), 4836–4853. https://doi.org/10.3390/V7082847spa
dcterms.referencesBranda, S. S., Vik, Å., Friedman, L., & Kolter, R. (2005). Biofilms: The matrix revisited. Trends in Microbiology, 13(1), 20–26. https://doi.org/10.1016/j.tim.2004.11.006spa
dcterms.referencesByun, K. H., Han, S. H., Yoon, J. won, Park, S. H., & Ha, S. Do. (2021). Efficacy of chlorine-based disinfectants (sodium hypochlorite and chlorine dioxide) on Salmonella Enteritidis planktonic cells, biofilms on food contact surfaces and chicken skin. Food Control, 123. https://doi.org/10.1016/j.foodcont.2020.107838spa
dcterms.referencesByun, K. H., Na, K. W., Ashrafudoulla, M., Choi, M. W., Han, S. H., Kang, I., Park, S. H., & Ha, S. Do. (2022). Combination treatment of peroxyacetic acid or lactic acid with UV-C to control Salmonella Enteritidis biofilms on food contact surface and chicken skin. Food Microbiology, 102, 103906. https://doi.org/10.1016/J.FM.2021.103906spa
dcterms.referencesCarvalho, D., Menezes, R., Chitolina, G. Z., Kunert-Filho, H. C., Wilsmann, D. E., Borges, K. A., Furian, T. Q., Salle, C. T. P., Moraes, H. L. de S., & do Nascimento, V. P. (2022). Antibiofilm activity of the biosurfactant and organic acids against foodborne pathogens at different temperatures, times of contact, and concentrations. Brazilian Journal of Microbiology, 53(2), 1051–1064. https://doi.org/10.1007/S42770-022-00714-4/METRICSspa
dcterms.referencesCDC. (n.d.). La Salmonella y los alimentos | CDC. Retrieved September 26, 2022, from https://www.cdc.gov/foodsafety/es/communication/salmonella-and-food-sp.htmlspa
dcterms.referencesCulot, A., Grosset, N., & Gautier, M. (2019). Overcoming the challenges of phage therapy for industrial aquaculture: a review. Aquaculture, 513(15), 734423.spa
dcterms.referencesDe Ornellas Dutka Garcia, K. C., De Oliveira Corrêa, I. M., Pereira, L. Q., Silva, T. M., De Souza Ribeiro Mioni, M., De Moraes Izidoro, A. C., Bastos, I. H. V., Gonçalves, G. A. M., Okamoto, A. S., & Filho, R. L. A. (2017). Bacteriophage use to control Salmonella biofilm on surfaces present in chicken slaughterhouses. Poultry Science, 96(9), 3392–3398. https://doi.org/10.3382/PS/PEX124spa
dcterms.referencesDeng, L. Z., Mujumdar, A. S., Pan, Z., Vidyarthi, S. K., Xu, J., Zielinska, M., & Xiao, H. W. (2019). Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Https://Doi.Org/10.1080/10408398.2019.1649633, 60(15), 2481–2508. https://doi.org/10.1080/10408398.2019.1649633spa
dcterms.referencesDíaz, P. A., Bogota, U., Universidad, D. C., Los, D. E., Facultad, A., Ciencias, D. E., De, D., & Biológicas, C. (2005). IMPORTANCIA DE LA FORMACIÓN DE BIOPELÍCULAS DE Listeria monocytogenes EN LA INDUSTRIA DE ALIMENTOS.spa
dcterms.referencesDjebbi-Simmons, D., Xu, W., Janes, M., & King, J. (2019). Survival and inactivation of Salmonella enterica serovar Typhimurium on food contact surfaces during log, stationary and long-term stationary phases. Food Microbiology, 84. https://doi.org/10.1016/j.fm.2019.103272spa
dcterms.referencesDonlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167–193. https://doi.org/10.1128/CMR.15.2.167-193.2002spa
dcterms.referencesDuc, H. M., Zhang, Y., Son, H. M., Huang, H. H., Masuda, Y., Honjoh, K. ichi, & Miyamoto, T. (2023). Genomic characterization and application of a novel bacteriophage STG2 capable of reducing planktonic and biofilm cells of Salmonella. International Journal of Food Microbiology, 385, 109999. https://doi.org/10.1016/J.IJFOODMICRO.2022.109999spa
dcterms.referencesEFSA. (2021). Multi-country outbreak of Salmonella Enteritidis sequence type (ST)11 infections linked to poultry products in the EU/EEA and the United Kingdom. EFSA Supporting Publications, 18(3), 6486E. https://doi.org/10.2903/SP.EFSA.2021.EN-6486spa
dcterms.referencesGe, H., Fu, S., Guo, H., Hu, M., Xu, Z., Zhou, X., Chen, X., & Jiao, X. (2022). Application and challenge of bacteriophage in the food protection. International Journal of Food Microbiology, 380, 109872. https://doi.org/10.1016/J.IJFOODMICRO.2022.109872spa
dcterms.referencesGiaouris, E. E., & Simões, M. V. (2018). Pathogenic Biofilm Formation in the Food Industry and Alternative Control Strategies. Foodborne Diseases, 309–377. https://doi.org/10.1016/B978-0-12-811444-5.00011-7spa
dcterms.referencesGil, M. I., Selma, M. V., López-Gálvez, F., & Allende, A. (2009). Fresh-cut product sanitation and wash water disinfection: Problems and solutions. International Journal of Food Microbiology, 134(1–2), 37–45. https://doi.org/10.1016/J.IJFOODMICRO.2009.05.021spa
dcterms.referencesGoodburn, C., & Wallace, C. A. (2013). The microbiological efficacy of decontamination methodologies for fresh produce: A review. Food Control, 32(2), 418–427. https://doi.org/10.1016/J.FOODCONT.2012.12.012spa
dcterms.referencesHu, J., Miyanaga, K., & Tanji, Y. (2010). Diffusion properties of bacteriophages through agarose gel membrane. Biotechnology Progress, 26(5), 1213–1221. https://doi.org/10.1002/BTPR.447spa
dcterms.referencesIñiguez-Moreno, M., Gutiérrez-Lomelí, M., Guerrero-Medina, P. J., & Avila-Novoa, M. G. (2018). Biofilm formation by Staphylococcus aureus and Salmonella spp. under mono and dual-species conditions and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite. Brazilian Journal of Microbiology, 49(2), 310–319. https://doi.org/10.1016/j.bjm.2017.08.002spa
dcterms.referencesJoseph, B., Otta, S. K., Karunasagar, I., & Karunasagar, I. (2001). Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. International Journal of Food Microbiology, 64(3), 367–372. https://doi.org/10.1016/S0168-1605(00)00466-9spa
dcterms.referencesKaraca, B., Akcelik, N., & Akcelik, M. (2015). Effects of P22 bacteriophage on Salmonella enterica subsp. enyerica serovar Typhimurium DMC4 strain biofilm formation and eradication. Archives of Biological Sciences, 67(4), 1361–1367. https://doi.org/10.2298/ABS141120114Kspa
dcterms.referencesKwon, S. A., Song, W. J., & Kang, D. H. (2018). Comparison of the effect of saturated and superheated steam on the inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes on cantaloupe and watermelon surfaces. Food Microbiology, 72, 157–165. https://doi.org/10.1016/J.FM.2017.10.012spa
dcterms.referencesLee, H., & Yoon, Y. (2021). Etiological Agents Implicated in Foodborne Illness World Wide. Food Science of Animal Resources, 41(1), 1. https://doi.org/10.5851/KOSFA.2020.E75spa
dcterms.referencesLequette, Y., Boels, G., Clarisse, M., & Faille, C. (2010). Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofouling, 26(4), 421–431. https://doi.org/10.1080/08927011003699535/SUPPL_FILE/GBIF_A_470475_SM7859.DOCspa
dcterms.referencesLiu, D., Huang, Q., Gu, W., & Zeng, X. A. (2021). A review of bacterial biofilm control by physical strategies. Https://Doi.Org/10.1080/10408398.2020.1865872, 62(13), 3453–3470. https://doi.org/10.1080/10408398.2020.1865872spa
dcterms.referencesMani-López, E., García, H. S., & López-Malo, A. (2012). Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Research International, 45(2), 713–721. https://doi.org/10.1016/J.FOODRES.2011.04.043spa
dcterms.referencesMarvasi, M., Chen, C., Carrazana, M., Durie, I. A., & Teplitski, M. (2014). Systematic analysis of the ability of Nitric Oxide donors to dislodge biofilms formed by Salmonella enterica and Escherichia coli O157:H7. AMB Express, 4(1), 1–11. https://doi.org/10.1186/S13568-014-0042-Y/FIGURES/6spa
dcterms.referencesMarvasi, M., Durie, I. A., McLamore, E. S., Vanegas, D. C., & Chaturvedi, P. (2015). Salmonella enterica biofilm-mediated dispersal by nitric oxide donors in association with cellulose nanocrystal hydrogels. AMB Express, 5(1), 1–9. https://doi.org/10.1186/S13568-015-0114-7/FIGURES/5spa
dcterms.referencesMeireles, A., Borges, A., Giaouris, E., & Simões, M. (2016). The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Research International, 86, 140–146. https://doi.org/10.1016/J.FOODRES.2016.06.006spa
dcterms.referencesMeireles, A., Giaouris, E., & Simões, M. (2016). Alternative disinfection methods to chlorine for use in the fresh-cut industry. https://doi.org/10.1016/j.foodres.2016.01.021spa
dcterms.referencesMiladi, H., Zmantar, T., Kouidhi, B., Chaabouni, Y., Mahdouani, K., Bakhrouf, A., & Chaieb, K. (2017). Use of carvacrol, thymol, and eugenol for biofilm eradication and resistance modifying susceptibility of Salmonella enterica serovar Typhimurium strains to nalidixic acid. Microbial Pathogenesis, 104, 56–63. https://doi.org/10.1016/J.MICPATH.2017.01.012spa
dcterms.referencesMilho, C., Silva, M. D., Melo, L., Santos, S., Azeredo, J., & Sillankorva, S. (2018). Control of Salmonella Enteritidis on food contact surfaces with bacteriophage PVP-SE2. Biofouling, 34(7), 753–768. https://doi.org/10.1080/08927014.2018.1501475spa
dcterms.referencesMOSQUEDA MENDOZA. (2015). Item 1006/83 | Repositorio CIAD. https://ciad.repositorioinstitucional.mx/jspui/handle/1006/83spa
dcterms.referencesMoye, Z. D., Woolston, J., & Sulakvelidze, A. (2018). Bacteriophage Applications for Food Production and Processing. Viruses 2018, Vol. 10, Page 205, 10(4), 205. https://doi.org/10.3390/V10040205spa
dcterms.referencesMukhopadhyay, S., Ukuku, D. O., Juneja, V., & Fan, X. (2014). Effects of UV-C treatment on inactivation of Salmonella enterica and Escherichia coli O157:H7 on grape tomato surface and stem scars, microbial loads, and quality. Food Control, 44, 110–117. https://doi.org/10.1016/J.FOODCONT.2014.03.027spa
dcterms.referencesNahar, S., Jeong, H. L., Cho, A. J., Park, J. H., Han, S., Kim, Y., Park, S. H., & Ha, S. Do. (2022). Efficacy of ficin and peroxyacetic acid against Salmonella enterica serovar Thompson biofilm on plastic, eggshell, and chicken skin. Food Microbiology, 104. https://doi.org/10.1016/j.fm.2022.103997spa
dcterms.referencesNiu, C., Afre, S., & Gilbert, E. S. (2006). Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Letters in Applied Microbiology, 43(5), 489–494. https://doi.org/10.1111/J.1472-765X.2006.02001.Xspa
dcterms.referencesOlaimat, A. N., & Holley, R. A. (2012). Factors influencing the microbial safety of fresh produce: A review. Food Microbiology, 32(1), 1–19. https://doi.org/10.1016/J.FM.2012.04.016spa
dcterms.referencesÖlmez, H., & Kretzschmar, U. (2009). Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT - Food Science and Technology, 42(3), 686–693. https://doi.org/10.1016/J.LWT.2008.08.001spa
dcterms.referencesOMS. (2018). Salmonella (no tifoidea). https://www.who.int/es/news-room/fact-sheets/detail/salmonella-(non-typhoidal)spa
dcterms.referencesPark, S. H., & Kang, D. H. (2014). Inactivation of biofilm cells of foodborne pathogens by steam pasteurization. European Food Research and Technology, 238(3), 471–476. https://doi.org/10.1007/s00217-013-2121-8spa
dcterms.referencesParra, M., Durango, J., & Máttar, S. (2002). Microbiología, patogénesis, epidemiología, clínica y diagnóstico de las infecciones producidas por salmonella. Revista MVZ Córdoba, 7(2), 187-200.spa
dcterms.referencesPatrignani, F., Siroli, L., Serrazanetti, D. I., Gardini, F., & Lanciotti, R. (2015). Innovative strategies based on the use of essential oils and their components to improve safety, shelf-life and quality of minimally processed fruits and vegetables. Trends in Food Science & Technology, 46(2), 311–319. https://doi.org/10.1016/J.TIFS.2015.03.009spa
dcterms.referencesPineda, M. R., Byrd, J. A., Genovese, K. J., Farnell, Y. Z., Zhao, D., Wang, X., Milby, A. C., & Farnell, M. B. (2021). Evaluation of sodium bisulfate on reducing salmonella heidelberg biofilm and colonization in broiler crops and ceca. Microorganisms, 9(10). https://doi.org/10.3390/microorganisms9102047spa
dcterms.referencesPiovezan, M., Uchida, N. S., da Silva, A. F., Grespan, R., Santos, P. R., Silva, E. L., Cuman, R. K. N., Machinski Junior, M., & Mikcha, J. M. G. (2014). Effect of cinnamon essential oil and cinnamaldehyde on Salmonella Saintpaul biofilm on a stainless steel surface. The Journal of General and Applied Microbiology, 60(3), 119–121. https://doi.org/10.2323/JGAM.60.119spa
dcterms.referencesPraeger, U., Herppich, W. B., & Hassenberg, K. (2017). Aqueous chlorine dioxide treatment of horticultural produce: Effects on microbial safety and produce quality–A review. Https://Doi.Org/10.1080/10408398.2016.1169157, 58(2), 318–333. https://doi.org/10.1080/10408398.2016.1169157spa
dcterms.referencesRamos, B., Miller, F. A., Brandão, T. R. S., Teixeira, P., & Silva, C. L. M. (2013). Fresh fruits and vegetables—An overview on applied methodologies to improve its quality and safety. Innovative Food Science & Emerging Technologies, 20, 1–15. https://doi.org/10.1016/J.IFSET.2013.07.002spa
dcterms.referencesRipolles-Avila, C., Ríos-Castillo, A. G., Fontecha-Umaña, F., & Rodríguez-Jerez, J. J. (2020). Removal of Salmonella enterica serovar Typhimurium and Cronobacter sakazakii biofilms from food contact surfaces through enzymatic catalysis. Journal of Food Safety, 40(2). https://doi.org/10.1111/jfs.12755spa
dcterms.referencesSchlisselberg, D. B., & Yaron, S. (2013). The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine. Food Microbiology, 35(1), 65–72. https://doi.org/10.1016/J.FM.2013.02.005spa
dcterms.referencesSevilla-Navarro, S., Catalá-Gregori, P., García, C., Cortés, V., & Marin, C. (2020). Salmonella Infantis and Salmonella Enteritidis specific bacteriophages isolated form poultry faeces as a complementary tool for cleaning and disinfection against Salmonella. Comparative Immunology, Microbiology and Infectious Diseases, 68, 101405. https://doi.org/10.1016/J.CIMID.2019.101405spa
dcterms.referencesSilva, A. F., dos Santos, A. R., Coelho Trevisan, D. A., Ribeiro, A. B., Zanetti Campanerut-Sá, P. A., Kukolj, C., de Souza, E. M., Cardoso, R. F., Estivalet Svidzinski, T. I., de Abreu Filho, B. A., Junior, M. M., & Graton Mikcha, J. M. (2018). Cinnamaldehyde induces changes in the protein profile of Salmonella Typhimurium biofilm. Research in Microbiology, 169(1), 33–43. https://doi.org/10.1016/J.RESMIC.2017.09.007spa
dcterms.referencesSoni, K. A., Oladunjoye, A., Nannapaneni, R., Schilling, M. W., Silva, J. L., Mikel, B., & Bailey, R. H. (2013). Inhibition and Inactivation of Salmonella Typhimurium Biofilms from Polystyrene and Stainless Steel Surfaces by Essential Oils and Phenolic Constituent Carvacrol. Journal of Food Protection, 76(2), 205–212. https://doi.org/10.4315/0362-028X.JFP-12-196spa
dcterms.referencesSrey, S., Jahid, I. K., & Ha, S. Do. (2013). Biofilm formation in food industries: A food safety concern. Food Control, 31(2), 572–585. https://doi.org/10.1016/J.FOODCONT.2012.12.001spa
dcterms.referencesSzczepanski, S., & Lipski, A. (2014). Essential oils show specific inhibiting effects on bacterial biofilm formation. Food Control, 36(1), 224–229. https://doi.org/10.1016/J.FOODCONT.2013.08.023spa
dcterms.referencesTrevisan, D. A. C., Da Silva, A. F., Negri, M., De Abreu Filho, B. A., Machinski Junior, M., Patussi, E. V., Campanerut-Sá, P. A. Z., & Mikcha, J. M. G. (2018). Antibacterial and antibiofilm activity of carvacrol against Salmonella enterica serotype Typhimurium. Brazilian Journal of Pharmaceutical Sciences, 54(1), e17229. https://doi.org/10.1590/S2175-97902018000117229spa
dcterms.referencesWebber, B., Pottker, E. S., Rizzo, N. N., Núncio, A. S. P., Peixoto, C. S., Mistura, E., dos Santos, L. R., Rodrigues, L. B., & do Nascimento, V. P. (2022). Surface conditioning with bacteriophages reduces biofilm formation of Salmonella Heidelberg. Food Science and Technology International. https://doi.org/10.1177/10820132221074783/FORMAT/EPUBspa
oaire.versioninfo:eu-repo/semantics/acceptedVersionspa
sb.programaMicrobiologíaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
420.82 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
PDF_Resumen.pdf
Tamaño:
216.29 KB
Formato:
Adobe Portable Document Format

Colecciones