Artificial intelligence for the study of human ageing: a systematic literature review

datacite.rightshttp://purl.org/coar/access_right/c_abf2
dc.contributor.authorBernal, Mary Carlota
dc.contributor.authorBatista, Edgar
dc.contributor.authorMartínez-Ballesté, Antoni
dc.contributor.authorSolanas, Agusti
dc.date.accessioned2025-02-07T13:14:26Z
dc.date.available2025-02-07T13:14:26Z
dc.date.issued2024
dc.description.abstractAs society experiences accelerated ageing, understanding the complex biological processes of human ageing, which are affected by a large number of variables and factors, becomes increasingly crucial. Artificial intelligence (AI) presents a promising avenue for ageing research, offering the ability to detect patterns, make accurate predictions, and extract valuable insights from large volumes of complex, heterogeneous data. As ageing research increasingly leverages AI techniques, we present a timely systematic literature review to explore the current state-of-the-art in this field following a rigorous and transparent review methodology. As a result, a total of 77 articles have been identified, summarised, and categorised based on their characteristics. AI techniques, such as machine learning and deep learning, have been extensively used to analyse diverse datasets, comprising imaging, genetic, behavioural, and contextual data. Findings showcase the potential of AI in predicting age-related outcomes, developing ageing biomarkers, and determining factors associated with healthy ageing. However, challenges related to data quality, interpretability of AI models, and privacy and ethical considerations have also been identified. Despite the advancements, novel approaches suggest that there is still room for improvement to provide personalised AI-driven healthcare services and promote active ageing initiatives with the ultimate goal of enhancing the quality of life and well-being of older adults.eng
dc.format.mimetypepdf
dc.identifier.citationBernal, M., Batista, E., Martínez-Ballesté, A. et al. Artificial intelligence for the study of human ageing: a systematic literature review. Appl Intell 54, 11949–11977 (2024). https://doi.org/10.1007/s10489-024-05817-zeng
dc.identifier.doihttps://doi.org/10.1007/s10489-024-05817-z
dc.identifier.issn15737497 (Electrónico)
dc.identifier.urihttps://hdl.handle.net/20.500.12442/16231
dc.language.isoeng
dc.publisherSpringer Naturespa
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateseng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.sourceApplied Intelligenceeng
dc.sourceVol. 54 (2024)spa
dc.subject.keywordsAgeingeng
dc.subject.keywordsArtificial intelligenceeng
dc.subject.keywordsMachine learningeng
dc.subject.keywordsAgeing datasetseng
dc.subject.keywordsElderlyeng
dc.subject.keywordsOlder adultseng
dc.titleArtificial intelligence for the study of human ageing: a systematic literature revieweng
dc.type.driverinfo:eu-repo/semantics/article
dc.type.spaArtículo científicospa
dcterms.referencesUnited Nations (2022) World Population Prospects 2022: Summary of Results. Technical Report UN DESA/POP/2022/TR/NO. 3, United Nations Department of Economic and Social Affairs, Population Division, New York, USAspa
dcterms.referencesUnited Nations (2023) The Sustainable Development Goals Report 2023, Special. Technical report, United Nations Department of Economic and Social Affairs, New York, USAspa
dcterms.referencesWorld Health Organization (2020) Decade of healthy ageing: baseline report. Technical report, World Health Organization, Geneva, Switzerlandspa
dcterms.referencesBeard JR, Officer A, De Carvalho IA, Sadana R, Pot AM, Michel J-P, Lloyd-Sherlock P, Epping-Jordan JE, Peeters GG, Mahanani WR et al (2016) The World report on ageing and health: a policy framework for healthy ageing. The Lancet. 387(10033):2145–2154spa
dcterms.referencesJaul E, Barron J (2017) Age-related diseases and clinical and public health implications for the 85 years old and over population. Front Public Health 5:335spa
dcterms.referencesSolanas A, Patsakis C, Conti M, Vlachos IS, Ramos V, Falcone F, Postolache O, Pérez-Martínez PA, Di Pietro R, Perrea DN et al (2014) Smart health: a context-aware health paradigm within smart cities. IEEE Commun Mag 52(8):74–81spa
dcterms.referencesBatista E, Borràs F, Martínez-Ballesté A (2015) Monitoring People with MCI: Deployment in a Real Scenario for Low-Budget Smartphones. In: Proc. 6th International Conference on Information, Intelligence, Systems and Applications (IISA), Corfú, Greece, pp. 1–6. IEEEspa
dcterms.referencesCasino F, Patsakis C, Batista E, Borras F, Martinez-Balleste A (2017) Healthy routes in the smart city: a context-aware mobile recommender. IEEE Softw 34(6):42–47spa
dcterms.referencesMaresova P, Krejcar O, Barakovic S, Husic JB, Lameski P, Zdravevski E, Chorbev I, Trajkovik V (2020) Health-related ICT solutions of smart environments for elderly - systematic review. IEEE Access. 8:54574–54600spa
dcterms.referencesFerre M, Batista E, Solanas A, Martínez-Ballesté A (2021) Smart health-enhanced early mobilisation in intensive care units. Sensors. 21(16):5408spa
dcterms.referencesBatista E, Moncusi MA, López-Aguilar P, Martínez-Ballesté A, Solanas A (2021) Sensors for context-aware smart healthcare: a security perspective. Sensors. 21(20):6886spa
dcterms.referencesBatista E, Lopez-Aguilar P, Solanas A (2023) Smart health in the 6G era: bringing security to future smart health services. IEEE Communications Magazine 1–7spa
dcterms.referencesSecinaro S, Calandra D, Secinaro A, Muthurangu V, Biancone P (2021) The role of artificial intelligence in healthcare: a structured literature review. BMC Med Inform Decis Mak 21(125):1–23spa
dcterms.referencesMeskó B, Drobni Z, Bényei É, Gergely B, Győrffy Z (2017) Digital health is a cultural transformation of traditional healthcare. Mhealth 3spa
dcterms.referencesSolanas A, Casino F, Batista E, Rallo R (2017) Trends and challenges in smart healthcare research: a journey from data to wisdom. In: Proc. IEEE 3rd international forum on Research and Technologies for Society and Industry (RTSI), pp 1–6. IEEEspa
dcterms.referencesBernal MC, Martínez-Ballesté A, Solanas A (2021) A review of data sources for the study of ageing. In: Proc. IEEE 45th annual Computers, Software, and Applications Conference (COMPSAC), pp 1843–1848. IEEEspa
dcterms.referencesChu CH, Nyrup R, Leslie K, Shi J, Bianchi A, Lyn A, McNicholl M, Khan S, Rahimi S, Grenier A (2022) Digital ageism: challenges and opportunities in artificial intelligence for older adults. Gerontologist 62(7):947–955spa
dcterms.referencesBrocke J, Simons A, Niehaves B, Riemer K, Plattfaut R, Cleven, A (2009) Reconstructing the giant: on the importance of rigour in documenting the literature search process. In: Proc. 17th European Conference on Information Systems (ECIS), Verona, Italy, pp. 2206–2217spa
dcterms.referencesMoher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Group, P. (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4):264–269spa
dcterms.referencesInstitute of Electrical and Electronics Engineers: IEEE Thesaurus (2024). https://www.ieee.org/publications/services/thesaurus.htmlspa
dcterms.referencesNational Library of Medicine: Medical Subject Headings (MeSH) (2024). https://www.nlm.nih.gov/meshspa
dcterms.referencesAhmadi M, Nopour R, Nasiri S (2023) Developing a prediction model for successful aging among the elderly using machine learning algorithms. Digital Health. 9:20552076231178424spa
dcterms.referencesAla-Korpela M, Lehtimäki T, Kähönen M, Viikari J, Perola M, Salomaa V, Kettunen J, Raitakari OT, Mäkinen V-P (2023) Cross-sectionally calculated metabolic aging does not relate to longitudinal metabolic changes—support for stratified aging models. The Journal of Clinical Endocrinology & Metabolism. 108(8):2099–2104spa
dcterms.referencesBae J-H, Seo J-W, Kim DY (2023) Deep-learning model for predicting physical fitness in possible sarcopenia: analysis of the Korean physical fitness award from 2010 to 2023. Front Public Health 11:1241388spa
dcterms.referencesBegg R, Kamruzzaman J (2005) A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data. J Biomech 38(3):401–408spa
dcterms.referencesBidelman GM, Mahmud MS, Yeasin M, Shen D, Arnott SR, Alain C (2019) Age-related hearing loss increases full-brain connectivity while reversing directed signaling within the dorsal-ventral pathway for speech. Brain Struct Funct 224(8):2661–2676spa
dcterms.referencesBoyle R, Jollans L, Rueda-Delgado LM, Rizzo R, Yener GG, McMorrow JP, Knight SP, Carey D, Robertson IH, Emek-Savaş DD et al (2021) Brain-predicted age difference score is related to specific cognitive functions: a multi-site replication analysis. Brain Imaging Behav 15(1):327–345spa
dcterms.referencesCaballero FF, Soulis G, Engchuan W, Sánchez-Niubó A, Arndt H, Ayuso-Mateos JL, Haro JM, Chatterji S, Panagiotakos DB (2017) Advanced analytical methodologies for measuring healthy ageing and its determinants, using factor analysis and machine learning techniques: the ATHLOS project. Sci Rep 7(1):43955spa
dcterms.referencesCasanova R, Saldana S, Lutz MW, Plassman BL, Kuchibhatla M, Hayden KM (2020) Investigating predictors of cognitive decline using machine learning. The Journals of Gerontology: Series B - Psychological Sciences and Social Sciences. 75(4):733–742spa
dcterms.referencesCole JH, Poudel RPK, Tsagkrasoulis D, Caan MWA, Steves C, Spector TD, Montana G (2017) Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage 163:115–124spa
dcterms.referencesCole JH, Ritchie SJ, Bastin ME, Valdés Hernández MC, Maniega SM, Royle N, Corley J, Pattie A, Harris SE, Zhang Q et al (2018) Brain age predicts mortality. Mol Psychiatry 23(5):1385–1392spa
dcterms.referencesCruces-Salguero S, Larrañaga I, Mar J, Matheu A (2023) Descriptive and predictive analysis identify centenarians’ characteristics from the Basque population. Front Public Health 10:1096837spa
dcterms.referencesCunha Leme DE, De Oliveira C (2023) Machine learning models to predict future frailty in community-dwelling middle-aged and older adults: the ELSA cohort study. Journals of Gerontology: Series A - Biological Sciences and Medical Sciences. 78(11):2176–2184spa
dcterms.referencesDi X, Wölfer M, Amend M, Wehrl H, Ionescu TM, Pichler BJ, Biswal BB (2019) The Alzheimer’s disease neuroimaging initiative: interregional causal influences of brain metabolic activity reveal the spread of aging effects during normal aging. Hum Brain Mapp 40(16):4657–4668spa
dcterms.referencesFabris F, Magalhães JPD, Freitas AA (2017) A review of supervised machine learning applied to ageing research. Biogerontology 18(2):171–188spa
dcterms.referencesFarrell S, Stubbings G, Rockwood K, Mitnitski A, Rutenberg A (2021) The potential for complex computational models of aging. Mech Ageing Dev 193:111403spa
dcterms.referencesFarrell S, Mitnitski A, Rockwood K, Rutenberg AD (2022) Interpretable machine learning for high-dimensional trajectories of aging health. PLoS Comput Biol 18(1):1009746spa
dcterms.referencesFielding RA, Atkinson EJ, Aversa Z, White TA, Heeren AA, Achenbach SJ, Mielke MM, Cummings SR, Pahor M, Leeuwenburgh C, LeBrasseur NK (2022) Associations between biomarkers of cellular senescence and physical function in humans: observations from the lifestyle interventions for elders (LIFE) study. GeroScience. 44(6):2757–2770spa
dcterms.referencesFreitas AA, Vasieva O, Magalhães JP (2011) A data mining approach for classifying DNA repair genes into ageing-related or non-ageing-related. BMC Genomics 12(1):1–11spa
dcterms.referencesGanguli M, Beer JC, Zmuda JM, Ryan CM, Sullivan KJ, Chang C-CH, Rao RH (2020) Aging, diabetes, obesity, and cognitive decline: a population-based study. J Am Geriatr Soc 68(5):991–998spa
dcterms.referencesGu S, Wang L, Han R, Liu X, Wang Y, Chen T, Zheng Z (2023) Detection of sarcopenia using deep learning-based artificial intelligence body part measure system (AIBMS). Front Physiol 14:46spa
dcterms.referencesGullett JM, Chen Z, O’Shea A, Akbar M, Bian J, Rani A, Porges EC, Foster TC, Woods AJ, Modave F et al (2020) MicroRNA predicts cognitive performance in healthy older adults. Neurobiol Aging 95:186–194spa
dcterms.referencesHicks GE, Shardell M, Alley DE, Miller RR, Bandinelli S, Guralnik J, Lauretani F, Simonsick EM, Ferrucci L (2012) Absolute strength and loss of strength as predictors of mobility decline in older adults: the InCHIANTI study. Journals of Gerontology: Series A - Biological Sciences and Medical Sciences. 67(1):66–73spa
dcterms.referencesHuang C-C, Hsieh W-J, Lee P-L, Peng L-N, Liu L-K, Lee W-J, Huang J-K, Chen L-K, Lin C-P (2015) Age-related changes in resting-state networks of a large sample size of healthy elderly. CNS Neuroscience & Therapeutics. 21(10):817–825spa
dcterms.referencesKharabian Masouleh S, Beyer F, Lampe L, Loeffler M, Luck T, Riedel-Heller SG, Schroeter ML, Stumvoll M, Villringer A, Witte AV (2018) Gray matter structural networks are associated with cardiovascular risk factors in healthy older adults. Journal of Cerebral Blood Flow & Metabolism. 38(2):360–372spa
dcterms.referencesKhodabandehloo E, Riboni D, Alimohammadi A (2021) HealthXAI: collaborative and explainable AI for supporting early diagnosis of cognitive decline. Futur Gener Comput Syst 116:168–189spa
dcterms.referencesKimura N, Aso Y, Yabuuchi K, Ishibashi M, Hori D, Sasaki Y, Nakamichi A, Uesugi S, Fujioka H, Iwao S et al (2019) Modifiable lifestyle factors and cognitive function in older people: a cross-sectional observational study. Front Neurol 10:401spa
dcterms.referencesKoini M, Duering M, Gesierich BG, Rombouts SARB, Ropele S, Wagner F, Enzinger C, Schmidt R (2018) Grey-matter network disintegration as predictor of cognitive and motor function with aging. Brain Struct Funct 223:2475–2487spa
dcterms.referencesKomura T, Cowden RG, Chen R, Andrews RM, Shiba K (2023) Estimating the heterogeneous effect of life satisfaction on cognitive functioning among older adults: evidence of US and UK national surveys. SSM - Mental Health. 4:100260spa
dcterms.referencesKrakovska O, Christie GJ, Farzan F, Sixsmith A, Ester M, Moreno S (2021) Healthy memory aging - the benefits of regular daily activities increase with age. Aging (Albany NY). 13(24):25643spa
dcterms.referencesKuo C-Y, Lee P-L, Hung S-C, Liu L-K, Lee W-J, Chung C-P, Yang AC, Tsai S-J, Wang P-N, Chen L-K et al (2020) Large-scale structural covariance networks predict age in middle-to-late adulthood: a novel brain aging biomarker. Cereb Cortex 30(11):5844–5862spa
dcterms.referencesKwon Y-J, Kim HS, Jung D-H, Kim J-K (2020) Cluster analysis of nutritional factors associated with low muscle mass index in middle-aged and older adults. Clin Nutr 39(11):3369–3376spa
dcterms.referencesLa Corte V, Sperduti M, Malherbe C, Vialatte F, Lion S, Gallarda T, Oppenheim C, Piolino P (2016) Cognitive decline and reorganization of functional connectivity in healthy aging: the pivotal role of the salience network in the prediction of age and cognitive performances. Frontiers in Aging Neuroscience. 8:204spa
dcterms.referencesLange A-MG, Anatürk M, Suri S, Kaufmann T, Cole JH, Griffanti L, Zsoldos E, Jensen DEA, Filippini N, Singh-Manoux A et al (2020) Multimodal brain-age prediction and cardiovascular risk: the Whitehall II MRI sub-study. Neuroimage 222:117292spa
dcterms.referencesLee M, Noh Y, Youm C, Kim S, Park H, Noh B, Kim B, Choi H, Yoon H (2021) Estimating health-related quality of life based on demographic characteristics, questionnaires, gait ability, and physical fitness in Korean elderly adults. Int J Environ Res Public Health 18(22):11816spa
dcterms.referencesLee WH (2023) The choice of machine learning algorithms impacts the association between brain-predicted age difference and cognitive function. Mathematics. 11(5):1229spa
dcterms.referencesLeghissa M, Carrera Á, Iglesias CA (2023) Machine learning approaches for frailty detection, prediction and classification in elderly people: a systematic review. Int J Med Informatics 178:105172spa
dcterms.referencesLin L, Jin C, Fu Z, Zhang B, Bin G, Wu S (2016) Predicting healthy older adult’s brain age based on structural connectivity networks using artificial neural networks. Comput Methods Programs Biomed 125:8–17spa
dcterms.referencesLindbergh CA, Zhao Y, Lv J, Mewborn CM, Puente AN, Terry DP, Renzi-Hammond LM, Hammond BR, Liu T, Miller LS (2019) Intelligence moderates the relationship between age and inter-connectivity of resting state networks in older adults. Neurobiol Aging 78:121–129spa
dcterms.referencesMamoshina P, Volosnikova M, Ozerov IV, Putin E, Skibina E, Cortese F, Zhavoronkov A (2018) Machine learning on human muscle transcriptomic data for biomarker discovery and tissue-specific drug target identification. Front Genet 9:242spa
dcterms.referencesMeier TB, Desphande AS, Vergun S, Nair VA, Song J, Biswal BB, Meyerand ME, Birn RM, Prabhakaran V (2012) Support vector machine classification and characterization of age-related reorganization of functional brain networks. Neuroimage 60(1):601–613spa
dcterms.referencesMirzaeian R, Nopour R, Asghari Varzaneh Z, Shafiee M, Shanbehzadeh M, Kazemi-Arpanahi H (2023) Which are best for successful aging prediction? Bagging, boosting, or simple machine learning algorithms? Biomed Eng Online 22(1):85spa
dcterms.referencesMoezzi B, Pratti LM, Hordacre B, Graetz L, Berryman C, Lavrencic LM, Ridding MC, Keage HAD, McDonnell MD, Goldsworthy MR (2019) Characterization of young and old adult brains: an EEG functional connectivity analysis. Neuroscience 422:230–239spa
dcterms.referencesMolassiotis A, Kwok SWH, Leung AYM, Tyrovolas S (2022) Associations between sociodemographic factors, health spending, disease burden, and life expectancy of older adults (70+ years old) in 22 countries in the Western Pacific Region, 1995–2019: estimates from the Global Burden of Disease (GBD) Study 2019. GeroScience. 44(2):925–951spa
dcterms.referencesNa K-S (2019) Prediction of future cognitive impairment among the community elderly: a machine-learning based approach. Sci Rep 9(1):3335spa
dcterms.referencesNoh B, Yoon H, Youm C, Kim S, Lee M, Park H, Kim B, Choi H, Noh Y (2021) Prediction of decline in global cognitive function using machine learning with feature ranking of gait and physical fitness outcomes in older adults. Int J Environ Res Public Health 18(21):11347spa
dcterms.referencesNusinovici S, Rim TH, Yu M, Lee G, Tham Y-C, Cheung N, Chong CCY, Da Soh Z, Thakur S, Lee CJ et al (2022) Retinal photograph-based deep learning predicts biological age, and stratifies morbidity and mortality risk. Age Ageing 51(4):065spa
dcterms.referencesOnoda K, Ishihara M, Yamaguchi S (2012) Decreased functional connectivity by aging is associated with cognitive decline. J Cogn Neurosci 24(11):2186–2198spa
dcterms.referencesParaschiakos S, Sá CR, Okai J, Slagboom PE, Beekman M, Knobbe A (2022) A recurrent neural network architecture to model physical activity energy expenditure in older people. Data Min Knowl Disc 36(1):477–512spa
dcterms.referencesPark J, Carp J, Hebrank A, Park DC, Polk TA (2010) Neural specificity predicts fluid processing ability in older adults. J Neurosci 30(27):9253–9259spa
dcterms.referencesPereira JB, Harrison TM, La Joie R, Baker SL, Jagust WJ (2020) Spatial patterns of tau deposition are associated with amyloid, ApoE, sex, and cognitive decline in older adults. Eur J Nucl Med Mol Imaging 47(9):2155–2164spa
dcterms.referencesPutin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, Ostrovskiy A, Cantor C, Vijg J, Zhavoronkov A (2016) Deep biomarkers of human aging: application of deep neural networks to biomarker development. Aging (Albany NY). 8(5):1021spa
dcterms.referencesRen B, Wu Y, Huang L, Zhang Z, Huang B, Zhang H, Ma J, Li B, Liu X, Wu G et al (2022) Deep transfer learning of structural magnetic resonance imaging fused with blood parameters improves brain age prediction. Hum Brain Mapp 43(5):1640–1656spa
dcterms.referencesRibeiro CE, Zárate LE (2019) Classifying longevity profiles through longitudinal data mining. Expert Syst Appl 117:75–89spa
dcterms.referencesRobinson EC, Hammers A, Ericsson A, Edwards AD, Rueckert D (2010) Identifying population differences in whole-brain structural networks: a machine learning approach. Neuroimage 50(3):910–919spa
dcterms.referencesSajeev S, Champion S, Maeder A, Gordon S (2022) Machine learning models for identifying pre-frailty in community dwelling older adults. BMC Geriatr 22(1):794spa
dcterms.referencesSalami A, Wåhlin A, Kaboodvand N, Lundquist A, Nyberg L (2016) Longitudinal evidence for dissociation of anterior and posterior MTL resting-state connectivity in aging: links to perfusion and memory. Cereb Cortex 26(10):3953–3963spa
dcterms.referencesSantamaria-Garcia H, Moguilner S, Rodriguez-Villagra OA, Botero-Rodriguez F, Pina-Escudero SD, O’Donovan G, Albala C, Matallana D, Schulte M, Slachevsky A et al (2023) The impacts of social determinants of health and cardiometabolic factors on cognitive and functional aging in Colombian underserved populations. GeroScience 1–19spa
dcterms.referencesSchilling KG, Archer D, Yeh F-C, Rheault F, Cai LY, Hansen C, Yang Q, Ramdass K, Shafer AT, Resnick SM et al (2022) Aging and white matter microstructure and macrostructure: a longitudinal multi-site diffusion MRI study of 1218 participants. Brain Struct Funct 227(6):2111–2125spa
dcterms.referencesSone D, Beheshti I, Shinagawa S, Niimura H, Kobayashi N, Kida H, Shikimoto R, Noda Y, Nakajima S, Bun S et al (2022) Neuroimaging-derived brain age is associated with life satisfaction in cognitively unimpaired elderly: a community-based study. Transl Psychiatry 12(25):1–6spa
dcterms.referencesStatsenko Y, Habuza T, Smetanina D, Simiyu GL, Uzianbaeva L, Neidl-Van Gorkom K, Zaki N, Charykova I, Al Koteesh J, Almansoori TM et al (2022) Brain morphometry and cognitive performance in normal brain aging: age-and sex-related structural and functional changes. Frontiers in Aging Neuroscience. 13:713680spa
dcterms.referencesSun S, Liu D, Zhou Y, Yang G, Cui L-B, Xu X, Guo Y, Sun T, Jiang J, Li N et al (2023) Longitudinal real world correlation study of blood pressure and novel features of cerebral magnetic resonance angiography by artificial intelligence analysis on elderly cognitive impairment. Frontiers in Aging Neuroscience. 15:1121152spa
dcterms.referencesTan WY, Hargreaves C, Chen C, Hilal S (2023) A machine learning approach for early diagnosis of cognitive impairment using population-based data. J Alzheimers Dis 91(1):449–461spa
dcterms.referencesTatoli R, Lampignano L, Donghia R, Castellana F, Zupo R, Bortone I, De Nucci S, Campanile G, Lofù D, Vimercati L et al (2022) Dietary customs and social deprivation in an aging population from Southern Italy: a machine learning approach. Front Nutr 9:811076spa
dcterms.referencesVaughan BA, Simon JE, Grooms DR, Clark LA, Wages NP, Clark BC (2022) Brain-predicted age difference moderates the association between muscle strength and mobility. Frontiers in Aging Neuroscience. 14:808022spa
dcterms.referencesVergun S, Deshpande AS, Meier TB, Song J, Tudorascu DL, Nair VA, Singh V, Biswal BB, Meyerand ME, Birn RM et al (2013) Characterizing functional connectivity differences in aging adults using machine learning on resting state fMRI data. Front Comput Neurosci 7:38spa
dcterms.referencesVysata O, Kukal J, Prochazka A, Pazdera L, Simko J, Valis M (2014) Age-related changes in EEG coherence. Neurol Neurochir Pol 48(1):35–38spa
dcterms.referencesWang S, Wang W, Li X, Liu Y, Wei J, Zheng J, Wang Y, Ye B, Zhao R, Huang Y et al (2022) Using machine learning algorithms for predicting cognitive impairment and identifying modifiable factors among Chinese elderly people. Frontiers in Aging Neuroscience. 14:977034spa
dcterms.referencesWei M, He S, Meng D, Yang G, Wang Z (2023) Hybrid exercise program enhances physical fitness and reverses frailty in older adults: insights and predictions from machine learning. J Nutr Health Aging 27(10):894–902spa
dcterms.referencesWoodman RJ, Mangoni AA (2023) A comprehensive review of machine learning algorithms and their application in geriatric medicine: present and future. Aging Clin Exp Res 35(11):2363–2397spa
dcterms.referencesWu Y, Su B, Chen C, Zhao Y, Zhong P, Zheng X (2023) Urban-rural disparities in the prevalence and trends of depressive symptoms among Chinese elderly and their associated factors. J Affect Disord 340:258–268spa
dcterms.referencesXiong M, Lin L, Jin Y, Kang W, Wu S, Sun S (2023) Comparison of machine learning models for brain age prediction using six imaging modalities on middle-aged and older adults. Sensors. 23(7):3622spa
dcterms.referencesYamada Y, Shinkawa K, Kobayashi M, Badal VD, Glorioso D, Lee EE, Daly R, Nebeker C, Twamley EW, Depp C et al (2022) Automated analysis of drawing process to estimate global cognition in older adults: preliminary international validation on the US and Japan data sets. JMIR Formative Research. 6(5):37014spa
dcterms.referencesYamada S, Otani T, Ii S, Kawano H, Nozaki K, Wada S, Oshima M, Watanabe Y (2023) Aging-related volume changes in the brain and cerebrospinal fluid using artificial intelligence-automated segmentation. Eur Radiol 33(10):7099–7112spa
dcterms.referencesYu J, Huang W, Kahana E (2022) Investigating factors of active aging among Chinese older adults: a machine learning approach. Gerontologist 62(3):332–341spa
dcterms.referencesYuan J, Blumen HM, Verghese J, Holtzer R (2015) Functional connectivity associated with gait velocity during walking and walking-while-talking in aging: a resting-state fMRI study. Hum Brain Mapp 36(4):1484–1493spa
dcterms.referencesZhavoronkov A, Mamoshina P, Vanhaelen Q, Scheibye-Knudsen M, Moskalev A, Aliper A (2019) Artificial intelligence for aging and longevity research: recent advances and perspectives. Ageing Res Rev 49:49–66spa
dcterms.referencesZhavoronkov A, Mamoshina P (2019) Deep aging clocks: the emergence of AI-based biomarkers of aging and longevity. Trends Pharmacol Sci 40(8):546–549spa
dcterms.referencesBlack JE, Kueper JK, Williamson TS (2023) An introduction to machine learning for classification and prediction. Fam Pract 40(1):200–204spa
dcterms.referencesMinh D, Wang HX, Li YF, Nguyen TN (2022) Explainable artificial intelligence: a comprehensive review. Artif Intell Rev 55(1):3503–3568spa
dcterms.referencesMacNee W, Rabinovich RA, Choudhury G (2014) Ageing and the border between health and disease. Eur Respir J 44(5):1332–1352spa
dcterms.referencesMoqri M, Herzog C, Poganik JR, Justice J, Belsky DW, Higgins-Chen A, Moskalev A, Fuellen G, Cohen AA, Bautmans I et al (2023) Biomarkers of aging for the identification and evaluation of longevity interventions. Cell 186(18):3758–3775spa
dcterms.referencesWu X, Xiao L, Sun Y, Zhang J, Ma T, He L (2022) A survey of human-in-the-loop for machine learning. Futur Gener Comput Syst 135:364–381spa
dcterms.referencesChekroud AM, Hawrilenko M, Loho H, Bondar J, Gueorguieva R, Hasan A, Kambeitz J, Corlett PR, Koutsouleris N, Krumholz HM et al (2024) Illusory generalizability of clinical prediction models. Science 383(6679):164–167spa
dcterms.referencesBaltrušaitis T, Ahuja C, Morency L-P (2018) Multimodal machine learning: a survey and taxonomy. IEEE Trans Pattern Anal Mach Intell 41(2):423–443spa
dcterms.referencesWorld Health Organization (2021) Ethics and governance of artificial intelligence for health: WHO guidance. Technical report, World Health Organization, Geneva, Switzerlandspa
dcterms.referencesEuropean Union (2021) Proposal for a regulation of the European Parliament and the Council laying down harmonised rules on Artificial Intelligence (Artificial Intelligence Act) and amending certain Union legislative acts. EUR-Lex 52021PC0206:1–108spa
dcterms.referencesEuropean Union (2023) Artificial Intelligence Act: deal on comprehensive rules for trustworthy AI. Document 20231206IPR15699, Press Releasespa
dcterms.referencesLópez-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2023) Hallmarks of aging: an expanding universe. Cell 186(2):243–278spa
dcterms.referencesNavarro C, Salazar J, Díaz MP, Chacin M, Santeliz R, Vera I, Parra H, Bernal MC, Castro A, Escalona D et al (2023) Intrinsic and environmental basis of aging: a narrative review. Heliyon. 9(8):18239spa
dcterms.referencesWorld Health Organization (2019) Integrated care for older people (ICOPE): guidance for person-centred assessment and pathways in primary care. Technical report, World Health Organization, Geneva, Switzerlandspa
dcterms.referencesPiau A, Steinmeyer Z, Cesari M, Kornfeld J, Beattie Z, Kaye J, Vellas B, Nourhashemi F (2021) Intrinsic capacitiy monitoring by digital biomarkers in Integrated Care For Older People (ICOPE). The Journal of Frailty & Aging. 10:132–138spa
oaire.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
2.09 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones