Genomic Characterization of the Lytic Phage vB_EcoP_EcoN5 that infects Shiga toxin-producing Escherichia coli O157: H7
dc.contributor.author | Solano Castañeda, Cristian Alfredo | |
dc.date.accessioned | 2020-02-11T22:29:23Z | |
dc.date.available | 2020-02-11T22:29:23Z | |
dc.date.issued | 2019 | |
dc.description.abstract | Los bacteriófagos infectan y matan bacterias de forma selectiva y eficiente.La diseminación de cepas de Escherichia coli resistentes a los antibióticos volvió a atraer a los fagos como agentes terapéuticos potenciales. El objetivo de este estudio fue caracterizar un nuevo fago lítico, vB_EcoP_EcoN5, que infecta Escherichia coli O157: H7 productora de toxina shiga donde se tomó muestras de aguas residuales en Barranquilla – Colombia, para asilar el bacteriófago mediante un método de enriquecimiento, el cual permitió determinar la susceptibilidad H7 y se secuenció el genoma completo; una vez obtenida la biblioteca final que fue secuenciada con el instrumento de celda de flujo MiSeq v3 (Illumina Inc.), para generar al menos un millón de lecturas se ensamblaron en un único contig con una cobertura de 14217 veces usando SPAdes, después que Trimmomatic eliminó las secuencias del adaptador se realizó la respectiva anotación utilizando RAST (Anotación Rápida Usando Tecnología de Subsistema) (http://rast.theseed.org/FIG/rast.cgi), que es un servicio totalmente automatizado para anotar genomas completos de arca y fagos, y asignar funciones a los genes (Inicialmente se ejecutó un BLAST (https://blast.ncbi.nlm.nih.gov), para encontrar genomas con alta identidad como referencia y se usó también vB_EcoP_Eco32 como genoma de referencia (ID de taxonomía: 490103, Genbank NC: 010324), en la plataforma RAST, el genoma de referencia con su taxonomía ID se utilizó para llevar a cabo el proceso de anotación y se obtuvo un archivo gbk; el cual fue visualizado por Uniprot UGENE mediante BLASTP se verificó manualmente la función de cada ORF y la base de datos Pfam. | spa |
dc.description.abstract | Bacteriophages infect and kill bacteria selectively and efficiently. The dissemination of antibiotic-resistance strains of Escherichia coli, reattracted phages as potential therapeutic agents. The aim of this study was to characterize a novel lytic phage, vB_EcoP_EcoN5, infecting shiga toxin-producing Escherichia coli O157: H7. The genome was 76,083 bp long of dsDNA with a G+C of 42.09%. Annotation of EcoN5 revealed 128 ORFs where 40 ORFs had a predicted function by Blastp and HHPred analysis. EcoN5 genome codes for a rare arginine tRNA-anticodon UCU, which could give this phage a replication advantage during the infection cycle. Phylogenetic analysis and average nucleotide identity placed EcoN5 as new member of the Kuravirus genre within the Podoviridae family. This study advances the knowledge of E. coli phages and provides a possible candidate to be considered for phage therapy. | eng |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/4725 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Terapia con fagos | spa |
dc.subject | Diversidad de fagos | spa |
dc.subject | Resistencia a antibióticos | spa |
dc.subject | Fagos de E. coli | spa |
dc.subject | Phage therapy | eng |
dc.subject | Phage diversity | eng |
dc.subject | Antibiotic-resistance | eng |
dc.subject | E. coli phages | eng |
dc.title | Genomic Characterization of the Lytic Phage vB_EcoP_EcoN5 that infects Shiga toxin-producing Escherichia coli O157: H7 | eng |
dc.type | Other | spa |
dc.type.driver | Other | spa |
dcterms.references | Aguirre-López, Beatriz, Nallely Cabrera, Marietta Tuena de Gómez-Puyou, Ruy Perez-Montfort, and Armando Gómez-Puyou. 2017. “The Importance of Arginine Codons AGA and AGG for the Expression in E. Coli of Triosephosphate Isomerase from Seven Different Species.” Biotechnology Reports (Amsterdam, Netherlands) 13 (January): 42–48. https://doi.org/10.1016/j.btre.2017.01.002. | eng |
dcterms.references | Altschul, Stephen F, Thomas L Madden, Alejandro A Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J Lipman. 1997. “Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs.” Nucleic Acids Research 25 (17): 3389–3402. | eng |
dcterms.references | Aziz, Ramy K, Daniela Bartels, Aaron A Best, Matthew DeJongh, Terrence Disz, Robert A Edwards, Kevin Formsma, et al. 2008. “The RAST Server: Rapid Annotations Using Subsystems Technology.” BMC Genomics 9 (1): 75. https://doi.org/10.1186/1471-2164-9-75. | eng |
dcterms.references | Batinovic, Steven, Flavia Wassef, Sarah A. Knowler, Daniel T.F. Rice, Cassandra R. Stanton, Jayson Rose, Joseph Tucci, et al. 2019. “Bacteriophages in Natural and Artificial Environments.” Pathogens 8 (3): 1–19. https://doi.org/10.3390/pathogens8030100. | eng |
dcterms.references | Campbell, Allan. 2003. “The Future of Bacteriophage Biology.” Nature Reviews Genetics 4 (6): 471–77. https://doi.org/10.1038/nrg1089. | eng |
dcterms.references | Chen, Yibao, Himanshu Batra, Junhua Dong, Cen Chen, Venigalla B Rao, and Pan Tao. 2019. “Genetic Engineering of Bacteriophages Against Infectious Diseases.” Frontiers in Microbiology 10: 954. https://www.frontiersin.org/article/10.3389/fmicb.2019.00954. | eng |
dcterms.references | Clokie, Martha Rj, Andrew D Millard, Andrey V Letarov, and Shaun Heaphy. 2011. “Phages in Nature.” Bacteriophage 1 (1): 31–45. https://doi.org/10.4161/bact.1.1.14942. | eng |
dcterms.references | El-Gebali, Sara, Jaina Mistry, Alex Bateman, Sean R Eddy, Aurelien Luciani, Simon C Potter, Matloob Qureshi, et al. 2019. “The Pfam Protein Families Database in 2019.” Nucleic Acids Research 47 (D1): D427–32. https://doi.org/10.1093/nar/gky995. | eng |
dcterms.references | Fawaz, Maria V, Melissa E Topper, and Steven M Firestine. 2011. “The ATP-Grasp Enzymes.” Bioorganic Chemistry 39 (5–6): 185–91. https://doi.org/10.1016/j.bioorg.2011.08.004. | eng |
dcterms.references | Figueras, María J, Roxana Beaz-Hidalgo, Mohammad J Hossain, and Mark R Liles. 2014. “Taxonomic Affiliation of New Genomes Should Be Verified Using Average Nucleotide Identity and Multilocus Phylogenetic Analysis.” Genome Announcements 2 (6): e00927-14. https://doi.org/10.1128/genomeA.00927-14. | eng |
dcterms.references | Gish, Warren, and David J States. 1993. “Identification of Protein Coding Regions by Database Similarity Search.” Nature Genetics 3 (3): 266–72. https://doi.org/10.1038/ng0393-266. | eng |
dcterms.references | Haq, Irshad Ul, Waqas Nasir Chaudhry, Maha Nadeem Akhtar, Saadia Andleeb, and Ishtiaq Qadri. 2012. “Bacteriophages and Their Implications on Future Biotechnology: A Review.” Virology Journal 9 (January): 9. https://doi.org/10.1186/1743-422X-9-9. | eng |
dcterms.references | Iyer, Lakshminarayan M, Saraswathi Abhiman, A Maxwell Burroughs, and L Aravind. 2009. “Amidoligases with ATP-Grasp, Glutamine Synthetase-like and Acetyltransferase-like Domains: Synthesis of Novel Metabolites and Peptide Modifications of Proteins.” Molecular BioSystems 5 (12): 1636—1660. https://doi.org/10.1039/b917682a. | eng |
dcterms.references | Jurczak-Kurek, Agata, Tomasz Gąsior, Bożena Nejman-Faleńczyk, Sylwia Bloch, Aleksandra Dydecka, Gracja Topka, Agnieszka Necel, et al. 2016. “Biodiversity of Bacteriophages: Morphological and Biological Properties of a Large Group of Phages Isolated from Urban Sewage.” Scientific Reports 6 (1): 34338. https://doi.org/10.1038/srep34338. | eng |
dcterms.references | Klumpp, Jochen, Derrick E Fouts, and Shanmuga Sozhamannan. 2012. “Next Generation Sequencing Technologies and the Changing Landscape of Phage Genomics.” Bacteriophage 2 (3): 190–99. https://doi.org/10.4161/bact.22111. | eng |
dcterms.references | Kropinski, Andrew M, Amanda Mazzocco, Thomas E Waddell, Erika Lingohr, and Roger P Johnson. 2009. “Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay.” Methods in Molecular Biology (Clifton, N.J.) 501 (January): 69–76. https://doi.org/10.1007/978-1-60327-164-6_7. | eng |
dcterms.references | Kumar, Sudhir, Glen Stecher, and Koichiro Tamura. 2016. “MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.” Molecular Biology and Evolution 33 (7): 1870–74. https://doi.org/10.1093/molbev/msw054. | eng |
dcterms.references | Kutter, Elizabeth. 2009. “Phage Host Range and Efficiency of Plating.” Methods in Molecular Biology (Clifton, N.J.) 501: 141–49. https://doi.org/10.1007/978-1-60327-164-6_14. | eng |
dcterms.references | Lim, Ji Youn, Jangwon Yoon, and Carolyn J Hovde. 2010. “A Brief Overview of Escherichia Coli O157:H7 and Its Plasmid O157.” Journal of Microbiology and Biotechnology 20 (1): 5–14. https://www.ncbi.nlm.nih.gov/pubmed/20134227. | eng |
dcterms.references | Lowe, Todd M, and Patricia P Chan. 2016. “TRNAscan-SE On-Line: Integrating Search and Context for Analysis of Transfer RNA Genes.” Nucleic Acids Research 44 (W1): W54-7. https://doi.org/10.1093/nar/gkw413. | eng |
dcterms.references | Marchler-Bauer, Aron, Yu Bo, Lianyi Han, Jane He, Christopher J Lanczycki, Shennan Lu, Farideh Chitsaz, et al. 2017. “CDD/SPARCLE: Functional Classification of Proteins via Subfamily Domain Architectures.” Nucleic Acids Research 45 (D1): D200–203. https://doi.org/10.1093/nar/gkw1129. | eng |
dcterms.references | Marchler-Bauer, Aron, Shennan Lu, John B Anderson, Farideh Chitsaz, Myra K Derbyshire, Carol DeWeese-Scott, Jessica H Fong, et al. 2011. “CDD: A Conserved Domain Database for the Functional Annotation of Proteins.” Nucleic Acids Research 39 (Database issue): D225-9. https://doi.org/10.1093/nar/gkq1189. | eng |
dcterms.references | Mirzaei, Mohammadali Khan, Harald Eriksson, Kie Kasuga, Elisabeth Haggård-Ljungquist, and Anders S Nilsson. 2014. “Genomic, Proteomic, Morphological, and Phylogenetic Analyses of VB_EcoP_SU10, a Podoviridae Phage with C3 Morphology.” PLOS ONE 9 (12): e116294. https://doi.org/10.1371/journal.pone.0116294. | eng |
dcterms.references | Okonechnikov, Konstantin, Olga Golosova, and Mikhail Fursov. 2012. “Unipro UGENE: A Unified Bioinformatics Toolkit.” Bioinformatics (Oxford, England) 28 (8): 1166–67. https://doi.org/10.1093/bioinformatics/bts091. | eng |
dcterms.references | Patel, Roosheel S, Lauren E Lessor, Adriana C Hernandez, and Gabriel F Kuty Everett. 2015. “Complete Genome Sequence of Enterotoxigenic Escherichia Coli N4-Like Podophage Pollock.” Genome Announcements 3 (1): e01431-14. https://doi.org/10.1128/genomeA.01431-14. | eng |
dcterms.references | Philipson, Casandra W, Logan J Voegtly, Matthew R Lueder, Kyle A Long, Gregory K Rice, Kenneth G Frey, Biswajit Biswas, Regina Z Cer, Theron Hamilton, and Kimberly A Bishop-Lilly. 2018. “Characterizing Phage Genomes for Therapeutic Applications.” Viruses 10 (4): 188. https://doi.org/10.3390/v10040188. | eng |
dcterms.references | Savalia, Dhruti, Lars F Westblade, Manisha Goel, Laurence Florens, Priscilla Kemp, Natalja Akulenko, Olga Pavlova, et al. 2008. “Genomic and Proteomic Analysis of PhiEco32, a Novel Escherichia Coli Bacteriophage.” Journal of Molecular Biology 377 (3): 774–89. https://doi.org/10.1016/j.jmb.2007.12.077. | eng |
dcterms.references | Schneider, Caroline A, Wayne S Rasband, and Kevin W Eliceiri. 2012. “NIH Image to ImageJ: 25 Years of Image Analysis.” Nature Methods 9 (7): 671–75. | eng |
dcterms.references | Soding, Johannes. 2005. “Protein Homology Detection by HMM-HMM Comparison.” Bioinformatics (Oxford, England) 21 (7): 951–60. https://doi.org/10.1093/bioinformatics/bti125. | eng |
dcterms.references | Sullivan, Mitchell J, Nicola K Petty, and Scott A Beatson. 2011. “Easyfig: A Genome Comparison Visualizer.” Bioinformatics (Oxford, England) 27 (7): 1009–10. https://doi.org/10.1093/bioinformatics/btr039. | eng |
dcterms.references | Zimmermann, Lukas, Andrew Stephens, Seung-Zin Nam, David Rau, Jonas Kubler, Marko Lozajic, Felix Gabler, Johannes Soding, Andrei N Lupas, and Vikram Alva. 2018. “A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at Its Core.” Journal of Molecular Biology 430 (15): 2237–43. https://doi.org/10.1016/j.jmb.2017.12.007. | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | spa |
sb.programa | Maestría en Genética | spa |
sb.sede | Sede Barranquilla | spa |