Análisis y predición de epitopes T y B en proteínas de Helicobacter pylori: Una aproximación inicial al diseño racional de estrategias terapeuticas alternativas sin uso de antibióticos

dc.contributor.authorNavarro-Quiroz, Elkin
dc.contributor.authorNavarro-Quiroz, Roberto
dc.contributor.authorEspaña-Puccini, Pierine
dc.contributor.authorAhmad, Mostapha
dc.contributor.authorRios-Anillo, Margarita
dc.contributor.authorOlave-Jaller, Valeria
dc.contributor.authorDiaz, Anderson
dc.date.accessioned2018-03-05T15:16:13Z
dc.date.available2018-03-05T15:16:13Z
dc.date.issued2017-10
dc.description.abstractHelicobacter pylori (H. pylori) es un bacteria de forma espiral gram negativa que se estima afecta a más de la mitad de la población mundial, estableciendo una infección crónica en el estómago, debido a diversos mecanismos de evasión de la respuesta inmune. Este microorganismo se ha asociado con diversos trastornos gástricos que van desde gastritis hasta cáncer, por lo que es reconocido por la Organización Mundial de la Salud (OMS) como carcinógeno clase I. Regímenes de tratamiento convencionales involucran el uso de antibióticos, y estos fracasan cada vez más en el control de la infección, debido a que H. pylori ha adquirido de forma progresiva resistencia a los compuestos utilizados, lo cual sugiere la necesidad de desarrollar nuevas estrategias terapéuticas, lo cual implica la identificación de nuevos blancos terapéuticos. Este estudio tuvo como propósito la evaluación in silico de epitopes T y B en proteínas del Helicobacter pylori. Para ello fueron identificadas 22 proteínas de membrana externas de Helicobacter pylori Cepa 26695 con número de acceso NC_000915; en la selección se empleó la herramienta web Vaxign (disponible gratis en http://www.violinet.org/vaxign/), en las que se predijeron 100 epítopes (60 epítopes clases I y 40 epítopes clase II), que potencialmente podrían se utilizados en el desarrollo de nuevos abordajes terapéuticos de la infección por H. pylori sin uso de antibióticos.spa
dc.description.abstractHelicobacter pylori (H. pylori) is a gram-negative spiral bacterium, estimated to affect more than half the world population, establishing chronic infection in the stomach, due to diverse mechanisms of immune response evasion. This microorganism has been associated with various gastric disorders ranging from gastritis to cancer, and is recognized by the World Health Organization (WHO) as a class I carcinogen. Conventional treatment regimes involve the use of antibiotics and these fail every time but in the control of the infection, because H. pylori has progressively acquired resistance to the compounds used, suggesting the need to develop new therapeutic strategies, which implies the identification of new therapeutic targets. The present study aimed at the in silico evaluation of T and B epitopes in Helicobacter pylori proteins. For this, 22 external membrane proteins of Helicobacter pylori Strain 26695 with accession number NC_000915 were identified, in the selection the web tool Vaxign (was available free at http://www.violinet.org/vaxign/), in which they were predicted 100 epitopes (60 class I epitopes and 40 class II epitopes), which could potentially be used in the development of new therapeutic approaches to H. pylori infection without the use of antibiotics.eng
dc.identifier.issn01205552
dc.identifier.urihttp://hdl.handle.net/20.500.12442/1778
dc.language.isospaspa
dc.publisherUniversidad del Nortespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenselicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceRevista Científica Salud Uninortespa
dc.sourceVol. 33, No. 3 (2017)spa
dc.source.urihttp://rcientificas.uninorte.edu.co/index.php/salud/article/view/9275/10918
dc.titleAnálisis y predición de epitopes T y B en proteínas de Helicobacter pylori: Una aproximación inicial al diseño racional de estrategias terapeuticas alternativas sin uso de antibióticosspa
dc.title.alternativeAnalysis and prediction of T and B epitopes in enHelicobacter pylori proteins: An initial approach to the rational design of alternative therapeutic strategies without the use of antibioticsspa
dc.typearticlespa
dcterms.referencesNaz A, Awan FM, Obaid A, Muhammad SA, Paracha RZ, Ahmad J et al. Identification of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: a reverse vaccinology based approach. Infect Genet Evol. Jun 2015;32:280–91. Available: http://www.sciencedirect.com/ science/article/pii/S1567134815001124eng
dcterms.referencesRobin Warren J. Unidentified curved bacilli on gastric epithelium in active cronic gastritis. Lancet. Jun 1983];321(8336):1273–5. Available: http://www.thelancet.com/article/ S0140673683927198/fulltexteng
dcterms.referencesTomb J-F, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Aug 1997;388(6642):539-47.eng
dcterms.referencesSpohn G, Scarlato V, Motility, Chemotaxis, and Flagella. Helicobacter pylori: Physiology and Genetics. ASM Press; 2001. Available: http:// www.ncbi.nlm.nih.gov/pubmed/21290725eng
dcterms.referencesLambert JR, Lin SK, Aranda-Michel J. Helicobacter pylori. Scand J Gastroenterol Suppl. Jan 1995;208:33-46. Available: http://www.ncbi. nlm.nih.gov/pubmed/7777803eng
dcterms.referencesBauerfeind P, Garner R, Dunn BE, Mobley HL. Synthesis and activity of Helicobacter pylori urease and catalase at low pH. Gut. Jan 1997;40(1):25–30. Available: http://www. ncbi.nlm.nih.gov/pubmed/9155571eng
dcterms.referencesHa N-C, Oh S-T, Sung JY, Cha KA, Lee MH, Oh B-H. Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat Struct Biol. Jun 2001; 8(6):505–9. Available: http:// www.nature.com/doifinder/10.1038/88563eng
dcterms.referencesTorres J, Pérez-Pérez G, Goodman KJ, Atherton JC, Gold BD, Harris PR et al. A comprehensive review of the natural history of Helicobacter pylori infection in children. Arch Med Res. 2000;31(5):431–69. Available: http:// www.ncbi.nlm.nih.gov/pubmed/11179581eng
dcterms.referencesFrenck RW, Clemens J. Helicobacter in the developing world. Microbes Infect [Internet]. Jul 2003;5(8):705–13. Available: http://www. ncbi.nlm.nih.gov/pubmed/12814771eng
dcterms.referencesDunn BE, Cohen H, Blaser MJ. Helicobacter pylori. Clin Microbiol Rev. Oct 1997 9];10(4):720– 41. Available: http://www.pubmedcentral. nih.gov/articlerender.fcgi?artid=172942&tool =pmcentrez&rendertype=abstracteng
dcterms.referencesMégraud F. The challenge of Helicobacter pylori resistance to antibiotics: the comeback of bismuth-based quadruple therapy. Therap Adv Gastroenterol. Mar 2012;5(2):103–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/ 22423259eng
dcterms.referencesFallone CA, Chiba N, van Zanten SV, Fischbach L, Gisbert JP, Hunt RH et al. The Toronto Consensus for the Treatment of Helicobacter pylori Infection in Adults. Gastroenterology. Jul 2016;151(1):51-69.e14. Available: http://www.ncbi.nlm.nih.gov/ pubmed/27102658eng
dcterms.referencesAyraud S, Janvier B, Fauchère J-L. Experimental colonization of mice by fresh clinical isolates of Helicobacter pylori is not influenced by the cagA status and the vacA genotype. FEMS Immunol Med Microbiol. Nov 2002;34(3):169- 72. Available: http://www.ncbi.nlm.nih. gov/pubmed/12423767eng
dcterms.referencesCensini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M et al. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A. Dec 1996;93(25):14648–53. Available: http:// www.pubmedcentral.nih.gov/articlerender. fcgi?artid=26189&tool=pmcentrez&renderty pe=abstracteng
dcterms.referencesCrabtree JE, Taylor JD, Heatley RV, Shallcross TM, Rathbone BJ, Wyatt JI et al. Mucosal IgA recognition of Helicobacter pylori 120 kDa protein, peptic ulceration, and gastric pathology. Lancet. Aug 1991;338(8763):332–5. Available: http://www.sciencedirect.com/science/ article/pii/0140673691904777eng
dcterms.referencesPeek RM, Miller GG, Tham KT, Perez-Perez GI, Zhao X, Atherton JC et al. Heightened inflammatory response and cytokine expression in vivo to cagA+ Helicobacter pylori strains. Lab Invest. Dec 1995;73(6):760–70. Available: http://europepmc.org/abstract/ med/8558837eng
dcterms.referencesAtherton JC, Tham KT, Peek RM, Cover TL, Blaser MJ. Density of Helicobacter pylori Infection In Vivo as Assessed by Quantitative Culture and Histology. J Infect Dis. Sep 1996;174(3):552–6. Available: http://jid.oxfordjournals.org/cgi/content/ long/174/3/55Mohammadi M, Nedrud J, Redline R, Lycke N, Czinn SJ. Murine CD4 T-cell response to Helicobacter infection: TH1 cells enhance gastritis and TH2 cells reduce bacterial load. Gastroenterology. Dec 1997;113(6):1848–57. Available: http://www. ncbi.nlm.nih.gov/pubmed/9394724eng
dcterms.referencesFox JG, Beck P, Dangler CA, Whary MT, Wang TC, Shi HN et al. Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces helicobacter-induced gastric atrophy. Nat Med. May 2000;6(5):536–42. Available: http://www.ncbi.nlm.nih.gov/pubmed/ 10802709eng
dcterms.references20. Moss SF, Moise L, Lee DS, Kim W, Zhang S, Lee J et al. HelicoVax: epitope-based therapeutic Helicobacter pylori vaccination in a mouse model. Vaccine. Mar 2011;29(11):2085– 91. Available: http://www.pubmedcentral. nih.gov/articlerender.fcgi?artid=3046230&t ool=pmcentrez&rendertype=abstracteng
dcterms.referencesRappuoli R. Reverse vaccinology. Curr Opin Microbiol. Oct 2000;3(5):445–50. Available: http://www.sciencedirect.com/science/article/ pii/S1369527400001193eng
dcterms.referencesPizza M. Identification of Vaccine Candidates Against Serogroup B Meningococcus by Whole-Genome Sequencing. Science (80- ). March 2000;287(5459):1816–20. Available: http://www.sciencemag.org/content/ 287/5459/1816.abstracteng
dcterms.referencesLarsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S, Lund O et al. An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol. 2005;35(8):2295–303. Available: http:// www.ncbi.nlm.nih.gov/pubmed/15997466eng
dcterms.referencesOvsyannikova IG, Dhiman N, Jacobson RM, Poland GA. Human leukocyte antigen polymorphisms: variable humoral immune responses to viral vaccines. Expert Rev Vaccines. Feb 2006;5(1):33–43. Available: http://www. ncbi.nlm.nih.gov/pubmed/16451106eng
dcterms.referencesBrusic V, Rudy G, Honeyman G, Hammer J, Harrison L. Prediction of MHC class IIbinding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics. Jan 1998;14(2):121–30. Available: http://www.ncbi.nlm.nih.gov/pubmed/ 9545443eng
dcterms.referencesBuus S, Lauemøller SL, Worning P, Kesmir C, Frimurer T, Corbet S et al. Sensitive quantitative predictions of peptide-MHC binding by a “Query by Committee” artificial neural network approach. Tissue Antigens. 2003;62(5):378–84.eng
dcterms.referencesNielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. May 2003;12(5):1007–17. Available: http://www.pubmedcentral.nih. gov/articlerender.fcgi?artid=2323871&tool= pmcentrez&rendertype=abstracteng
dcterms.referencesNielsen M, Lundegaard C, Worning P, Sylvester Hvid C, Lamberth K, Buus S et al. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics. 2004;20(9):1388–97.eng
dcterms.referencesShah NA, Barua P, Khan K. Immunoinformatics Aided Prediction of Cytotoxic T Cell Epitope of Respiratory Syncytial Virus. 2015;1(2):99–104.eng
dcterms.referencesHe Y, Xiang Z, Mobley HLT. Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vaccine development. J Biomed Biotechnol. 2010; 2010: 297505. doi: 10.1155 / 2010/297505eng
dcterms.referencesXiang Z, He Y. Vaxign: a web-based vaccine target design program for reverse vaccinology. Procedia Vaccinol [Internet]. 2009;1(1):23–9. Available: http://www. sciencedirect.com/science/article/pii/ S1877282X09000368eng
dcterms.referencesFigueiredo C, Machado JC, Pharoah P, Seruca R, Sousa S, Carvalho R et al. Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J Natl Cancer Inst. Nov 2002;94(22):1680–7. Available: http://www. ncbi.nlm.nih.gov/pubmed/12441323eng
dcterms.referencesBlaser MJ. The biology of cag in the Helicobacter pylori-human interaction. Gastroenterology. May 2005;128(5):1512–5. Available: http://www.ncbi.nlm.nih.gov/ pubmed/15887132eng
dcterms.referencesvan Doorn LJ, Figueiredo C, Sanna R, Plaisier A, Schneeberger P, de Boer W et al. Clinical relevance of the cagA, vacA, and iceA status of Helicobacter pylori. Gastroenterology. Jul 1998;115(1):58–66. Available: http:// www.ncbi.nlm.nih.gov/pubmed/9649459eng
dcterms.referencesNilsson C, Sillén A, Eriksson L, Strand M-L, Enroth H, Normark S et al. Correlation between cag pathogenicity island composition and Helicobacter pylori-associated gastroduodenal disease. Infect Immun. Nov 2003;71(11):6573–81. Available: http:// www.pubmedcentral.nih.gov/articlerender. fcgi?artid=219608&tool=pmcentrez&re ndertype=abstracteng
dcterms.referencesMoise L, McMurry JA, Pappo J, Lee D-S, Moss SF, Martin WD et al. Identification of genome- derived vaccine candidates conserved between human and mouse-adapted strains of H. pylori. Hum Vaccin. 2008;4(3):219–23. Available: http://www.ncbi.nlm.nih.gov/ pubmed/18376134eng
dcterms.referencesArdito M, Fueyo J, Tassone R, Terry F, Da- Silva K, Zhang S et al. An Integrated Genomic and Immunoinformatic Approach to H. pylori Vaccine Design. Immunome Res. Jan 2011;7(2):1. Available: http://www.researchgate.net/publication/51842751_An_Integrated_ Genomic_and_Immunoinformatic_ Approach_to_H._pylori_Vaccine_Designeng
dcterms.referencesPruitt KD, Tatusova T, Maglott DR. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. Jan 2005;33(Database issue):D501-4. Available: http://www.pubmedcentral.nih. gov/articlerender.fcgi?artid=539979&tool= pmcentrez&rendertype=abstracteng
dcterms.referencesBenson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic Acids Res. Jan 2006;34(Database issue):D16-20. Available: http://www.pubmedcentral.nih. gov/articlerender.fcgi?artid=1347519&tool =pmcentrez&rendertype=abstracteng
dcterms.referencesYu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. Jul 2010;26(13):1608–15. Available: http://www.pubmedcentral.nih.gov/articlerender. fcgi?artid=2887053&tool=pmcent rez&rendertype=abstracteng
dcterms.referencesMcGeoch DJ, Dalrymple MA, Davison AJ, Dolan A, Frame MC, McNab D et al. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol. Jul 1988;69 ( Pt 7):1531–74. Available: http://www.ncbi. nlm.nih.gov/pubmed/2839594eng
dcterms.referencesMatthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. Oct 1975;405(2):442–51. Available: http://www. ncbi.nlm.nih.gov/pubmed/1180967eng
dcterms.referencesChen F, Mackey AJ, Stoeckert CJ, Roos DS. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. Jan 2006;34(Database issue):D363-8. Available: http://www.pubmedcentral. nih.gov/articlerender.fcgi?artid =1347485&tool=pmcentrez&rendertype=ab stracteng

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones