Predictive model for the identification of activities of daily living (ADL) in indoor environments using classification techniques based on Machine Learning

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.authorGarcía-Restrepo, Johanna
dc.contributor.authorAriza-Colpas, Paola Patricia
dc.contributor.authorOñate-Bowen, Alvaro Agustín
dc.contributor.authorSuarez-Brieva, Eydy del Carmen
dc.contributor.authorUrina-Triana, Miguel
dc.contributor.authorDe-la-Hoz-Franco, Emiro
dc.contributor.authorDíaz-Martínez, Jorge Luis
dc.contributor.authorButt, Shariq Aziz
dc.contributor.authorMolina_Estren, Diego
dc.date.accessioned2021-10-01T21:25:05Z
dc.date.available2021-10-01T21:25:05Z
dc.date.issued2021
dc.description.abstractAI-based techniques have included countless applications within the engineering field. These range from the automation of important procedures in Industry and companies, to the field of Process Control. Smart Home (SH) technology is designed to help house residents improve their daily activities and therefore enrich the quality of life while preserving their privacy. An SH system is usually equipped with a collection of software interrelated with hardware components to monitor the living space by capturing the behavior of the resident and their occupations. By doing so, the system can report risks, situations, and act on behalf of the resident to their satisfaction. This research article shows the experimentation carried out with the human activity recognition dataset, CASAS Kyoto, through preprocessing and cleaning processes of the data, showing the Vía Regression classifier as an excellent option to process this type of data with an accuracy 99.7% effectiveeng
dc.format.mimetypepdfspa
dc.identifier.doihttps://doi.org/10.1016/j.procs.2021.07.069
dc.identifier.issn18770509
dc.identifier.urihttps://hdl.handle.net/20.500.12442/8604
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S1877050921014721?via%3Dihub
dc.language.isoengeng
dc.publisherElseviereng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceProcedia Computer Scienceeng
dc.sourceVol. 191 (2021)
dc.subjectHAReng
dc.subjectHuman Activity Recognitioneng
dc.subjectMachine Learningeng
dc.subjectADLeng
dc.subjectActivity Daily Livingeng
dc.titlePredictive model for the identification of activities of daily living (ADL) in indoor environments using classification techniques based on Machine Learningeng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesagi S.Z., Burk R.D., Potter H.R. Back disorders and rehabilitation achievement Journal of Chronic Diseases, 18 (2) (1965), pp. 181-197 https://doi.org/10.1016/0021-9681(65)90101-3eng
dcterms.referencesLladó M.R., Código H., Lennin A., Quiroz P., Lima -Perú V. ENTORNO DOMÓTICO ADAPTADO A PERSONAS CON DISCAPACIDAD FÍSICA UTILIZANDO MODELOS OCULTOS DE MARKOV Tesis para optar el Título Profesional de Ingeniero de Sistemas Repositorio Institucional - Ulima, Universidad de Lima (2020) http://repositorio.ulima.edu.pe/handle/20.500.12724/11664eng
dcterms.referencesCarlos A., D’negri E., De Vito E.L., Zadeh L.A. Introducción al razonamiento aproximado: lógica difusa Revista Argentina de Medicina Respiratoria Año, 6 (2006)spa
dcterms.referencesMarcondes C.H., Almeida Campos M. L. de ONTOLOGIA E WEB SEMÂNTICA: O ESPAÇO DA PESQUISA EM CIÊNCIA DA INFORMAÇÃO PontodeAcesso, 2 (1) (2008), p. 107 https://doi.org/10.9771/1981-6766rpa.v2i1.2669fre
dcterms.referencesDANE. Archivo Nacional de Datos ANDA. 2014. [Citado Marzo 20,2016]. Available in: http://formularios.dane.gov.co/Anda_4_1/index.php/homespa
dcterms.referencesRonao C.A., Cho S.B. Human activity recognition with smartphone sensors using deep learning neural networks Expert Systems with Applications, 59 (2016), pp. 235-244 https://doi.org/10.1016/j.eswa.2016.04.032eng
dcterms.referencesCapela N.A., Lemaire E.D., Baddour N. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients PLoS ONE, 10 (4) (2015), p. e0124414 https://doi.org/10.1371/journal.pone.0124414eng
dcterms.referencesGudivada, V. N., Ding, J., & Apon, A. (2017). Data Quality Considerations for Big Data and Machine Learning: Going Beyond Data Cleaning and Transformations Flow Cytometry of 3-D structure View project Data Quality Considerations for Big Data and Machine Learning: Going Beyond Data Cleaning and Transf. October, 1–20. https://www.researchgate.net/publication/318432363eng
dcterms.referencesRen, X., & Malik, J. (2003). Learning a classification model for segmentation. Proceedings of the IEEE International Conference on Computer Vision, 1, 10– 17. https://doi.org/10.1109/iccv.2003.1238308eng
dcterms.referencesGalván-Tejada C.E., Galván-Tejada J.I., Celaya-Padilla J.M., DelgadoContreras J.R., Magallanes-Quintanar R., Martinez-Fierro M.L., GarzaVeloz I., López-Hernández Y., Gamboa-Rosales H. An Analysis of Audio Features to Develop a Human Activity Recognition Model Using Genetic Algorithms, Random Forests, and Neural Networks Mobile Information Systems, 2016 (2016), pp. 1-10 https://doi.org/10.1155/2016/1784101eng
dcterms.referencesEddy S.R. Profile hidden Markov models Academic.Oup.Com, 144 (9) (1998), pp. 755-763 https://academic.oup.com/bioinformatics/articleabstract/14/9/755/259550Envejecimiento y salud. (2018, February 5)eng
dcterms.referencesShah, C. (2020). Supervised Learning. In A Hands-On Introduction to Data Science (pp.235–289).eng
dcterms.referencesNettleton D.F., Orriols-Puig A., Fornells A. A study of the effect of different types of noise on the precision of supervised learning techniques Artificial Intelligence Review, 33 (4) (2010), pp. 275-306 https://doi.org/10.1007/s10462-010-9156-zeng
dcterms.referencesCaruana R., Niculescu-Mizil A. An empirical comparison of supervised learning algorithms ACM International Conference Proceeding Series, 148 (2006), pp. 161-168 https://doi.org/10.1145/1143844.1143865eng
dcterms.referencesMejia-Ricart, L. F., Helling, P., & Olmsted, A. (2018). Evaluate action primitives for human activity recognition using unsupervised learning approach. 2017 12th International Conference for Internet Technology and Secured Transactions, ICITST 2017, 186–188. https://doi.org/10.23919/ICITST.2017.8356374eng
dcterms.referencesCrandall, A. S. (2011). BEHAVIOMETRICS FOR MULTIPLE RESIDENTS IN A SMART ENVIRONMENT. https://SCI-HUB.si/http://research.wsulibs.wsu.edu/xmlui/handle/2376/2855eng
dcterms.referencesHoey J., Pltz T., Jackson D., Monk A., Pham C., Olivier P. Rapid specification and automated generation of prompting systems to assist people with dementia Pervasive and Mobile Computing, 7 (3) (2011), pp. 299-318 https://doi.org/10.1016/j.pmcj.2010.11.007eng
dcterms.referencesFahad, L. G., Tahir, S. F., & Rajarajan, M. (2015). Feature selection and data balancing for activity recognition in smart homes. IEEE International Conference on Communications, 2015-Septe, 512–517. https://doi.org/10.1109/ICC.2015.724837310eng
dcterms.referencesChawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P. SMOTE: Synthetic Minority Over-sampling Technique Journal of Artificial Intelligence Research, 16 (2002) https://SCI-HUB.si/http://www.jair.org/index.php/jair/article/view/10302eng
dcterms.referencesLópez Saca F., Ferreyra Ramírez A., Avilés Cruz C., Villegas Cortez J., Zúñiga López A., Rodrigez Martinez E. Preprocesamiento de bases de datos de imágenes para mejorar el rendimiento de redes neuronales convolucionales Research in Computing Science, 147 (7) (2018), pp. 35-45 https://doi.org/10.13053/rcs-147-7-3spa
dcterms.referencesRuan Y.X., Lin H.T., Tsai M.F. Improving ranking performance with cost-sensitive ordinal classification via regression Information Retrieval, 17 (1) (2014), pp. 1-20 https://doi.org/10.1007/s10791-013-9219-2eng
dcterms.referencesHo T.K. The random subspace method for constructing decision forests IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (8) (1998), pp. 832-844 https://doi.org/10.1109/34.709601eng
dcterms.referencesBreiman L. Bagging predictors Machine Learning, 24 (2) (1996), pp. 123-140 https://doi.org/10.1007/bf00058655eng
dcterms.referencesNagalla R., Pothuganti P., Pawar D.S. Analyzing Gap Acceptance Behavior at Unsignalized Intersections Using Support Vector Machines, Decision Tree and Random Forests Procedia Computer Science, 109 (2017), pp. 474-481 https://doi.org/10.1016/j.procs.2017.05.312eng
dcterms.referencesSalzberg S.L. C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993 Machine Learning, 16 (3) (1994), pp. 235-240 https://doi.org/10.1007/bf00993309eng
dcterms.referencesKumar K., Kumar G., Kumar Y. Feature Selection Approach for Intrusion Detection System International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), 2 (5) (2013), pp. 47-53eng
dcterms.referencesAriza Colpas P., Vicario E., De-La-Hoz-Franco E., Pineres-Melo M., Oviedo-Carrascal A., Patara F. Unsupervised human activity recognition using the clustering approach: A review Sensors, 20 (9) (2020), p. 2702eng
dcterms.referencesChandra S., Maheshkar S. Verification of static signature pattern based on random subspace, REP tree and bagging Multimedia Tools and Applications, 76 (18) (2017), pp. 19139-19171 https://doi.org/10.1007/s11042-017-4531-2eng
dcterms.referencesAsaju L.B., Shola P.B., Franklin N., Abiola H.M. Intrusion Detection System on a Computer Network Using an Ensemble of Randomizable Filtered Classifier, K-Nearest … Ftstjournal.Com, 2 (1) (2017), pp. 550-553 http://www.ftstjournal.comeng
dcterms.referencesKalmegh S. Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News International Journal of Innovative Science, Engineering & Technology, 2 (2) (2015), pp. 438-446 http://www.ijiset.comeng
dcterms.referencesRajput A., Aharwal R.P., Dubey M., Saxena S.P., Raghuvanshi M. J48 and JRIP rules for e-governance data International Journal of Computer Science and Security, 5 (2) (2011), pp. 201-207 11eng
dcterms.referencesCai Y.D., Feng K.Y., Lu W.C., Chou K.C. Using LogitBoost classifier to predict protein structural classes Journal of Theoretical Biology, 238 (1) (2006), pp. 172-176 https://doi.org/10.1016/j.jtbi.2005.05.034eng
dcterms.referencesQian H., Mao Y., Xiang W., Wang Z. Recognition of human activities using SVM multi-class classifier Pattern Recognition Letters, 31 (2) (2010), pp. 100-111 https://doi.org/10.1016/j.patrec.2009.09.019eng
dcterms.referencesSuykens J.A.K., Vandewalle J. Training multilayer perceptron classifiers based on a modified support vector method IEEE Transactions on Neural Networks, 10 (4) (1999), pp. 907-911 https://doi.org/10.1109/72.774254eng
dcterms.referencesKhalajzadeh H., Mansouri M., Teshnehlab M. Face recognition using convolutional neural network and simple logistic classifier Advances in Intelligent Systems and Computing, 223 (2014), pp. 197-207 https://doi.org/10.1007/978-3-319-00930-8_18eng
dcterms.referencesChoudhury, S., & Bhowal, A. (2015). Comparative analysis of machine learning algorithms along with classifiers for network intrusion detection. 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials, ICSTM 2015 - Proceedings, 89–95. https://doi.org/10.1109/ICSTM.2015.7225395eng
oaire.versioninfo:eu-repo/semantics/publishedVersionspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
2.29 MB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones