Flow regulation at constant head in feedwater pumps in a sugar industry

dc.contributor.authorGómez, Julio R.
dc.contributor.authorSousa, Vladimir
dc.contributor.authorQuintana, Mario S.
dc.contributor.authorViego, Percy R.
dc.contributor.authorHernández, Hernán
dc.contributor.authorQuispe, Enrique C.
dc.date.accessioned2019-01-16T16:32:21Z
dc.date.available2019-01-16T16:32:21Z
dc.date.issued2018-11
dc.description.abstractIn this paper the feasibility of energy saving by implementing flow regulation at constant load in feedwater pumps in a sugar industry is studied. As regulation strategy, the use of a variable speed drive in the hydraulic system is proposed. For the project evaluation, the Net Present Value and Payback Period techniques are used. Among the variables considered are the price of energy, the equipment useful life, financial data and those related to environmental impact. As a result, it was found that if only a commercial approach is considered, the energy saving strategy is profitable but not attractive, because investment is recovered in a period close to the useful life of technology. However, if a government focus that encourages the implementation of these energies saving strategies is considered, the investment of the project recovers in a short time.eng
dc.identifier.issn20888708
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2448
dc.language.isoengeng
dc.publisherInstitute of Advanced Engineering and Scienceeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceInternational Journal of Electrical and Computer Engineering (IJECE)eng
dc.sourceVol. 9, No. 2 (2018)spa
dc.source.uriDOI: 10.11591/ijece.v9i2.pp.732-741eng
dc.subjectEnergy savingeng
dc.subjectFeedwater pumpseng
dc.subjectFlow regulationeng
dc.subjectSugar cane industryeng
dc.subjectVariable speed driveseng
dc.titleFlow regulation at constant head in feedwater pumps in a sugar industryeng
dc.typearticleeng
dcterms.referencesUS Energy Information Administration, “DOE/EIA-0484 International Energy Outlook 2016 with Projections to 2040,” May 2016.eng
dcterms.referencesA. Dietmair and A. Verl, “Energy Consumption Assessment and Optimisation in the Design and use Phase of Machine Tools,” in Proceedings of the 17th CIRP International Conference on Life Cycle Engineering, 2010, pp. 116-121.eng
dcterms.referencesS. P. Singh, “Technical Change and Productivity Growth in the Indian Sugar Industry,” Procedia Economics and Finance, vol. 39, pp. 131-139, 2016.eng
dcterms.referencesM. Morato, et al., “Future Hybrid Local Energy Generation Paradigm for the Brazilian Sugarcane Industry Scenario,” International Journal of Electrical Power & Energy Systems, vol. 101, pp. 139-150, 2018.eng
dcterms.referencesJ. Q. Albarelli, et al., “Product Diversification To Enhance Economic Viability of Second Generation Ethanol Production in Brazil: The Case of the Sugar and Ethanol Joint Production,” Chemical Engineering Research and Design, vol. 92, no. 8, pp. 1470-1481, 2014.eng
dcterms.referencesM. K. Chauhan, et al., “Life Cycle Assessment of Sugar Industry: A Review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 7, pp. 3445-3453, 2011.eng
dcterms.referencesS. Sathitbun-anan, et al., “Energy Efficiency and Greenhouse Gas Emission Reduction Potentials in Sugar Production Processes in Thailand,” Energy for Sustainable Development, vol. 23, pp. 266-274, 2014.eng
dcterms.referencesE.C., Quispe, et al., “Unbalanced Voltages Impacts on the Energy Performance of Induction Motors,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 3, pp. 1412-1422, 2018.eng
dcterms.referencesV. Sousa, et al., “Estimating Induction Motor Efficiency under no-controlled Conditions in the Presences of Unbalanced and Harmonics Voltages,” in 2015 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Santiago, 2015, pp. 567-5.eng
dcterms.referencesV. Sousa, et al., “Shaft Power Estimation in Induction Motor Operating under Unbalanced and Harmonics Voltages,” IEEE Latin America Transactions, vol. 14, no. 5, pp. 2309-2315, 2016.eng
dcterms.referencesM. Koor, et al., “Optimization of Pump Efficiencies with different Pumps Characteristics Working in Parallel Mode,” Advances in Engineering Software, vol. 101, pp. 69-76, 2016.eng
dcterms.referencesV. Sousa, et al., “Harmonic Distortion Evaluation Generated by PWM Motor Drives in Electrical Industrial Systems,” International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 6, pp. 3207-3216, 2017.eng
dcterms.referencesV. Sousa, et al., “Analysis of Harmonic Distortion Generated by PWM Motor Drives,” in 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, 2017, pp. 1-6.eng
dcterms.referencesP. Olszewski, “Genetic Optimization and Experimental Verification of Complex Parallel Pumping Station with Centrifugal Pumps,” Applied Energy, vol. 178, pp. 527-539, 2016.eng
dcterms.referencesM. D. Z. Izquierdo and J. J. S. Jiménez, “Operación óptima de bombas en paralelo empleando variadores de velocidad,” Ingenierías, vol. 13, no. 46, p. 57, 2010.spa
dcterms.referencesZ. Ma and S. Wang, “An Optimal Control Strategy for Complex Building Central Chilled Water Systems for Practical and Real-time Applications,” Building and Environment, vol. 44, pp. 1188-1198, 2009.eng
dcterms.referencesS. Wang, “Intelligent Buildings and Building Automation,” Spon Press, London, 2010, pp. 203.eng
dcterms.referencesM. I. Jahmeerbacus, “Flow Rate Regulation of a Variable Speed Driven Pumping System using Fuzzy Logic,” in 4th International Conference on Electric Power and Energy Conversion Systems (EPECS), Sharjah, United Arab Emirates, 2015.eng
dcterms.referencesC. A. Solano, et al., “Sistema de control de presión para el suministro de agua en la central de servicios del centro médico nacional la raza,” México, 2012.spa
dcterms.referencesJ. A. Saavedra, “Control de presión mediante variador de frecuencia y motobomba,” Chile, 2007.spa
dcterms.referencesR. A. Castillo, “Automatización del sistema de bombas de agua fría de fábrica de tejidos imperial S. A.,” 2009.spa
dcterms.referencesJ. J. García, et al., “Modelado y simulación de una bomba centrífuga con motor monofásico en Simulink,” Revista Colombiana de Tecnologías de Avanzada, vol. 2, no. 22, pp. 78-84, 2013.spa
dcterms.referencesP. Gómez, et al., “Procedimiento para la selección de la estrategia de regulación más adecuada en estaciones de bombeo,” in IV Jornadas de Ingeniería del Agua, JIA 2015, Córdoba, España, 2015, pp. 1191-1202.spa
dcterms.referencesH. Díaz, et al., “Diseño de un sistema de control para obtener presión constante de agua,” in XXII Congreso Internacional de Ingeniería Eléctrica, Electrónica, Computación y Afines, Huancayo, Perú, 2015.spa
dcterms.referencesF. E. Hoyos, et al., "Selection and Validation of Mathematical Models of Power Converters using Rapid Modeling and Control Prototyping Methods,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 3, pp. 1551-1568, 2018.eng
dcterms.referencesJ. R. Gómez, et al., “Experiencia de aplicación de accionamiento de velocidad variable. opción de alto comportamiento para la gestión energética,” in 48 Congreso de la ATAC, La Habana, 2002.spa
dcterms.referencesY. Delgado, “Estudio de factibilidad técnico-económica de regulación de la capacidad con variadores de frecuencia de las bombas de agua de alimentar de la CTE „Carlosma Manuel de Céspedes‟. Cienfuegos. Cuba,” 2014.spa
dcterms.referencesV. A. Shankar, et al., “Real Time Simulation of Variable Speed Parallel Pumping System,” Energy Procedia, vol. 142, pp. 2102-2108, 2017.eng
dcterms.referencesJ. Viholainen, “Energy-efficient Control Strategies for Variable Speed Driven Parallel Pumping Systems based on Pump Operation Point Monitoring with Frequency Converters,” Act Universitatis Lappeenrantaensis, 2014.eng
dcterms.referencesF. J. Ferreira, et al., “Ecoanalysis of Variable-speed Drives for Flow Regulation in Pumping Systems,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2117-2125, 2011.eng
dcterms.referencesJ. A. Madrigal, et al., “Planificación energética para el ahorro de fueloil en una lavandería industrial,” Ingeniare. Revista chilena de ingeniería, vol. 26, no. 1, pp. 86-96, 2018.spa
dcterms.referencesA. Sagastume, et al., “Electricity Management in the Production of Lead-acid Batteries: The Industrial Case of a Production plant in Colombia,” Journal of Cleaner Production, vol. 198, no. 10, pp. 1443-1458, 2018.eng
dcterms.referencesJ. R. Gómez, et al., “A New Energy Performance Indicator for Energy Management System of a wheat mill plant,” International Journal of Energy Economics and Policy, vol. 8, no.4, pp. 324-330, 2018.eng
dcterms.referencesI. J. Karassik and R. Carter, “Bombas centrífugas. Selección, operación y mantenimiento,” Companhia Editorial Continental, 1966.spa
dcterms.referencesCrane Co., “Flujo de fluidos en válvulas, accesorios y tuberías,” McGRAW-HILL, 1977.spa
dcterms.referencesE. Hugot, “Handbook of Cane Sugar Engineering,” New York: Elsevier, 1986.eng
dcterms.referencesI. Salazar, et al., “Estimado de la reducción de la emisión de CO2 por accione de ahorro de electricidad en las condiciones de Cuba,” Ingeniería Energética, vol. 31, no. 3, pp. 1-5, 2010.spa
dcterms.referencesBanco Central de Cuba, Circular 5/2011 y Circular 2/2012, La Habana, Cuba.spa
dcterms.referencesGaceta Oficial de la República de Cuba, Ley 113, artículo 97, La Habana, Cuba, 2012.spa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
528.53 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
368 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones