Modulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emission
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.contributor.author | Galán-Freyle, Nataly J. | |
dc.contributor.author | Pacheco-Londoño, Leonardo C. | |
dc.contributor.author | Figueroa-Navedo, Amanda M. | |
dc.contributor.author | Ortiz-Rivera, William | |
dc.contributor.author | Castro-Suarez, John R. | |
dc.contributor.author | Hernández-Rivera, Samuel P. | |
dc.date.accessioned | 2020-07-02T15:16:43Z | |
dc.date.available | 2020-07-02T15:16:43Z | |
dc.date.issued | 2020 | |
dc.description.abstract | In a homeland security setting, the ability to detect explosives at a distance is a top security priority. Consequently, the development of remote, noncontact detection systems continues to represent a path forward. In this vein, a remote detection system for excitation of infrared emissions using a CO2 laser for generating laser-induced thermal emission (LITE) is a possible solution. However, a LITE system using a CO2 laser has certain limitations, such as the requirement of careful alignment, interference by the CO2 signal during detection, and the power density loss due to the increase of the laser image at the sample plane with the detection distance. A remote chopped-laser induction system for LITE detection using a CO2 laser source coupled to a focusing telescope was built to solve some of these limitations. Samples of fixed surface concentration (500 μg∕cm2) of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) were used for the remote detection experiments at distances ranging between 4 and 8 m. This system was capable of thermally exciting and capturing the thermal emissions (TEs) at different times in a cyclic manner by a Fourier transform infrared (FTIR) spectrometer coupled to a gold-coated reflection optics telescope (FTIR-GT). This was done using a wheel blocking the capture of TE by the FTIR-GT chopper while heating the sample with the CO2 laser. As the wheel moved, it blocked the CO2 laser and allowed the spectroscopic system to capture the TEs of RDX. Different periods (or frequencies) of wheel spin and FTIR-GT integration times were evaluated to find dependence with observation distance of the maximum intensity detection, minimum signal-to-noise ratio, CO2 laser spot size increase, and the induced temperature increment | eng |
dc.format.mimetype | spa | |
dc.identifier.doi | http://dx.doi.org/10.1117/1.OE.59.9.092008 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/6140 | |
dc.identifier.url | https://www.spiedigitallibrary.org/journals/Optical-Engineering/volume-59/issue-9/092008/Modulated-laser-source-induction-system-for-remote-detection-of-infrared/10.1117/1.OE.59.9.092008.short?SSO=1 | |
dc.language.iso | eng | eng |
dc.publisher | Optical Engineering | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Society of Photo-optical Instrumentation Engineers (SPIE) | eng |
dc.source | Vol. 59 N° 9 (2020) | |
dc.subject | Standoff detection | eng |
dc.subject | Laser-induced thermal emission | eng |
dc.subject | Highly energetic materials | eng |
dc.subject | Midinfrared emission spectroscopy | spa |
dc.subject | Carbon dioxide laser | eng |
dc.title | Modulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emission | eng |
dc.type.driver | info:eu-repo/semantics/article | eng |
dc.type.spa | Artículo científico | spa |
dcterms.references | N. J. Galán-Freyle et al., “Standoff detection of highly energetic materials using laserinduced thermal excitation of infrared emission,” Appl. Spectrosc. 69(5), 535–544 (2015). | eng |
dcterms.references | L. T. Lin, D. D. Archibald, and D. E. Honigs, “Preliminary Studies of laser-induced thermal emission spectroscopy of condensed phases,” Appl. Spectrosc. 42(3), 477–483 (1988). | eng |
dcterms.references | M. J. Wilhelm et al., “The lowest quartet-state of the ketenyl (HCCO) radical: collisioninduced intersystem crossing and the v2 vibrational mode,” Chem. Phys. 422, 290–296 (2013). | eng |
dcterms.references | M. J. Wilhelm et al., “Photodissociation of vinyl cyanide at 193 nm: nascent product distributions of the molecular elimination channels,” J. Chem. Phys 130(4), 044307 (2009). | eng |
dcterms.references | L. T. Letendre et al., “Time-resolved FTIR emission spectroscopy of transient radicals,” J. Chin. Chem. 52(4), 677–686 (2005). | eng |
dcterms.references | L. T. Letendre et al., “Interfacing a transient digitizer to a step-scan Fourier transform spectrometer for nanosecond time resolved spectroscopy,” Rev. Sci. Instrum. 70(1), 18–22 (1999). | eng |
dcterms.references | V. Karpovych et al., “Laser-induced thermal emission of rough carbon surfaces,” J. Laser Appl. 32(1), 012010 (2020). | eng |
dcterms.references | S. Wallin et al., “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem 395(2), 259–274 (2009). | eng |
dcterms.references | C.W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81(5), 1952–1956 (2009). | eng |
dcterms.references | L. Pacheco-Londoño et al., “Vibrational spectroscopy standoff detection of explosives,” Anal. Bioanal. Chem. 395(2), 323–335 (2009). | eng |
dcterms.references | J. R. Castro-Suarez et al., “FT-IR standoff detection of thermally excited emissions of trinitrotoluene (TNT) deposited on aluminum substrates,” Appl. Spectrosc. 67(2), 181–186 (2013). | eng |
dcterms.references | A. Mukherjee, S. Von der Porten, and C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. 49(11), 2072–2078 (2010). | eng |
dcterms.references | J. C. Carter et al., “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59(6), 769–775 (2005). | eng |
dcterms.references | J. L. Gottfried et al., “Standoff detection of chemical and biological threats using laserinduced breakdown spectroscopy,” Appl. Spectrosc. 62(4), 353–363 (2008). | eng |
dcterms.references | A. K. Misra et al., “Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime,” Appl. Spectrosc. 66(11), 1279–1285 (2012). | eng |
dcterms.references | J. E. Parmeter, “The challenge of standoff explosives detection,” in 38th Annu. 2004 Int. Carnahan Conf. Secur. Technol., pp. 55–358 (2004). | eng |
dcterms.references | B. E. Bernacki and M. C. Phillips, “Standoff hyperspectral imaging of explosives residues using broadly tunable external cavity quantum cascade laser illumination,” Proc. SPIE 7665, 76650I (2010). | eng |
dcterms.references | W. Ortiz-Rivera et al., “Vibrational spectroscopy standoff detection of threat chemicals,” Proc. SPIE 8031, 803129 (2011). | eng |
dcterms.references | A. Pettersson et al., “Explosives standoff detection using Raman spectroscopy: from bulk towards trace detection,” Proc. SPIE 7664, 76641K (2010). | eng |
dcterms.references | A. Pettersson et al., “Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance,” Propellants Explos. Pyrotech. 34(4), 297–306 (2009). | eng |
dcterms.references | A. R. Ford et al., “Explosives sensing using multiple optical techniques in a standoff regime with a common platform,” Spectroscopy Online, April (2011). | eng |
dcterms.references | N. J. Galán-Freyle et al., “Artificial intelligence assisted mid-infrared laser spectroscopy in situ detection of petroleum in soils,” Appl. Sci. 10(4), 1319 (2020). | eng |
dcterms.references | G. L. McEneff et al., “Sorbent film-coated passive samplers for explosives vapour detection part b: deployment in semi-operational environments and alternative applications,” Sci. Rep. 8(1), 5816 (2018). | eng |
dcterms.references | W. Zhang et al., “Recent developments in spectroscopic techniques for the detection of explosives,” Materials 11(8), 1364 (2018). | eng |
dcterms.references | F. Jin et al., “Chemical and explosive detection with long-wave infrared laser induced breakdown spectroscopy,” Proc. SPIE 9824, 98240Q (2016). | eng |
dcterms.references | R. J. Pell et al., “Quantitative infrared emission spectroscopy using multivariate calibration,” Anal. Chem. 60(24), 2824–2827 (1988). | eng |
dcterms.references | M. Friedrich and D. R. T. Zahn, “Emission spectroscopy: an excellent tool for the infrared characterization of textile fibers,” Appl. Spectrosc. 52(12), 1530–1535 (1998). | eng |
dcterms.references | M. J. Zuerlein et al., “Modeling thermal emission in dental enamel induced by 9–11 μm laser light,” Appl. Surf. Sci. 127–129, 863–868 (1998). | eng |
dcterms.references | R.W. Jones et al., “Chemical analysis of wood chips in motion using thermal-emission midinfrared spectroscopy with projection to latent structures regression,” Anal. Chem. 74(2), 453–457 (2001). | eng |
dcterms.references | T. M. Niemczyk, S. Zhang, and D. M. Haaland, “Monitoring dielectric thin-film production on product wafers using infrared emission spectroscopy,” Appl. Spectrosc. 55(8), 1053– 1059 (2001). | eng |
dcterms.references | R. Furstenberg et al., “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008). | eng |
dcterms.references | N. Y. Galán-Freyle et al., “Standoff laser-induced thermal emission of explosives,” Proc. SPIE 8705, 870508 (2013). | eng |
dcterms.references | A. Figueroa-Navedo et al., “Improved detection of highly energetic materials traces on surfaces by standoff laser-induced thermal emission incorporating neural networks,” Proc. SPIE 8705, 87050D (2013). | eng |
dcterms.references | A. M. Figueroa-Navedo et al., “Chemometrics-enhanced laser-induced thermal emission detection of PETN and other explosives on various substrates,” J. Chemom. 29(6), 329– 337 (2015). | eng |
dcterms.references | F. B. Gonzaga and C. Pasquini, “Near-infrared emission spectrometry based on an acoustooptical tunable filter,” Anal. Chem. 77(4), 1046–1054 (2005). | eng |
dcterms.references | A. Tsuge, Y. Uwamino, and T. Ishizuka, “Applications of laser-induced thermal emission spectroscopy to various samples,” Appl. Spectrosc. 43(7), 1145–1149 (1989). | eng |
dcterms.references | O. Primera-Pedrozo et al., “High explosives mixtures detection using fiber optics coupled: grazing angle probe/Fourier transform reflection absorption infrared spectroscopy,” Sens. Imaging 9(3-4), 27–40 (2008). | eng |
dcterms.references | M. Wrable-Rose et al., “Preparation of TNT, RDX and ammonium nitrate standards on gold-on-silicon surfaces by thermal inkjet technology,” Sens. Imaging 11(4), 147–169 (2010). | eng |
dcterms.references | R. Infante-Castillo, L. C. Pacheco-Londoño, and S. P. Hernández-Rivera, “Monitoring the α→β solid-solid phase transition of RDX with Raman spectroscopy: a theoretical and experimental study,” J. Mol. Struct. 970(1–3), 51–58 (2010). | eng |
dcterms.references | R. Infante-Castillo, L. Pacheco-Londoño, and S. P. Hernández-Rivera, “Vibrational spectra and structure of RDX and its 13C- and 15N-labeled derivatives: a theoretical and experimental study,” Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 76(2), 137–141 (2010). | eng |
oaire.version | info:eu-repo/semantics/submittedVersion | eng |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Modulated_laser_source_induction_system_remote_detection_Preprint.pdf
- Tamaño:
- 2.56 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 381 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: