Modulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emission

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.authorGalán-Freyle, Nataly J.
dc.contributor.authorPacheco-Londoño, Leonardo C.
dc.contributor.authorFigueroa-Navedo, Amanda M.
dc.contributor.authorOrtiz-Rivera, William
dc.contributor.authorCastro-Suarez, John R.
dc.contributor.authorHernández-Rivera, Samuel P.
dc.date.accessioned2020-07-02T15:16:43Z
dc.date.available2020-07-02T15:16:43Z
dc.date.issued2020
dc.description.abstractIn a homeland security setting, the ability to detect explosives at a distance is a top security priority. Consequently, the development of remote, noncontact detection systems continues to represent a path forward. In this vein, a remote detection system for excitation of infrared emissions using a CO2 laser for generating laser-induced thermal emission (LITE) is a possible solution. However, a LITE system using a CO2 laser has certain limitations, such as the requirement of careful alignment, interference by the CO2 signal during detection, and the power density loss due to the increase of the laser image at the sample plane with the detection distance. A remote chopped-laser induction system for LITE detection using a CO2 laser source coupled to a focusing telescope was built to solve some of these limitations. Samples of fixed surface concentration (500 μg∕cm2) of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) were used for the remote detection experiments at distances ranging between 4 and 8 m. This system was capable of thermally exciting and capturing the thermal emissions (TEs) at different times in a cyclic manner by a Fourier transform infrared (FTIR) spectrometer coupled to a gold-coated reflection optics telescope (FTIR-GT). This was done using a wheel blocking the capture of TE by the FTIR-GT chopper while heating the sample with the CO2 laser. As the wheel moved, it blocked the CO2 laser and allowed the spectroscopic system to capture the TEs of RDX. Different periods (or frequencies) of wheel spin and FTIR-GT integration times were evaluated to find dependence with observation distance of the maximum intensity detection, minimum signal-to-noise ratio, CO2 laser spot size increase, and the induced temperature incrementeng
dc.format.mimetypepdfspa
dc.identifier.doihttp://dx.doi.org/10.1117/1.OE.59.9.092008
dc.identifier.urihttps://hdl.handle.net/20.500.12442/6140
dc.identifier.urlhttps://www.spiedigitallibrary.org/journals/Optical-Engineering/volume-59/issue-9/092008/Modulated-laser-source-induction-system-for-remote-detection-of-infrared/10.1117/1.OE.59.9.092008.short?SSO=1
dc.language.isoengeng
dc.publisherOptical Engineeringeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceSociety of Photo-optical Instrumentation Engineers (SPIE)eng
dc.sourceVol. 59 N° 9 (2020)
dc.subjectStandoff detectioneng
dc.subjectLaser-induced thermal emissioneng
dc.subjectHighly energetic materialseng
dc.subjectMidinfrared emission spectroscopyspa
dc.subjectCarbon dioxide lasereng
dc.titleModulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emissioneng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesN. J. Galán-Freyle et al., “Standoff detection of highly energetic materials using laserinduced thermal excitation of infrared emission,” Appl. Spectrosc. 69(5), 535–544 (2015).eng
dcterms.referencesL. T. Lin, D. D. Archibald, and D. E. Honigs, “Preliminary Studies of laser-induced thermal emission spectroscopy of condensed phases,” Appl. Spectrosc. 42(3), 477–483 (1988).eng
dcterms.referencesM. J. Wilhelm et al., “The lowest quartet-state of the ketenyl (HCCO) radical: collisioninduced intersystem crossing and the v2 vibrational mode,” Chem. Phys. 422, 290–296 (2013).eng
dcterms.referencesM. J. Wilhelm et al., “Photodissociation of vinyl cyanide at 193 nm: nascent product distributions of the molecular elimination channels,” J. Chem. Phys 130(4), 044307 (2009).eng
dcterms.referencesL. T. Letendre et al., “Time-resolved FTIR emission spectroscopy of transient radicals,” J. Chin. Chem. 52(4), 677–686 (2005).eng
dcterms.referencesL. T. Letendre et al., “Interfacing a transient digitizer to a step-scan Fourier transform spectrometer for nanosecond time resolved spectroscopy,” Rev. Sci. Instrum. 70(1), 18–22 (1999).eng
dcterms.referencesV. Karpovych et al., “Laser-induced thermal emission of rough carbon surfaces,” J. Laser Appl. 32(1), 012010 (2020).eng
dcterms.referencesS. Wallin et al., “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem 395(2), 259–274 (2009).eng
dcterms.referencesC.W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81(5), 1952–1956 (2009).eng
dcterms.referencesL. Pacheco-Londoño et al., “Vibrational spectroscopy standoff detection of explosives,” Anal. Bioanal. Chem. 395(2), 323–335 (2009).eng
dcterms.referencesJ. R. Castro-Suarez et al., “FT-IR standoff detection of thermally excited emissions of trinitrotoluene (TNT) deposited on aluminum substrates,” Appl. Spectrosc. 67(2), 181–186 (2013).eng
dcterms.referencesA. Mukherjee, S. Von der Porten, and C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. 49(11), 2072–2078 (2010).eng
dcterms.referencesJ. C. Carter et al., “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59(6), 769–775 (2005).eng
dcterms.referencesJ. L. Gottfried et al., “Standoff detection of chemical and biological threats using laserinduced breakdown spectroscopy,” Appl. Spectrosc. 62(4), 353–363 (2008).eng
dcterms.referencesA. K. Misra et al., “Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime,” Appl. Spectrosc. 66(11), 1279–1285 (2012).eng
dcterms.referencesJ. E. Parmeter, “The challenge of standoff explosives detection,” in 38th Annu. 2004 Int. Carnahan Conf. Secur. Technol., pp. 55–358 (2004).eng
dcterms.referencesB. E. Bernacki and M. C. Phillips, “Standoff hyperspectral imaging of explosives residues using broadly tunable external cavity quantum cascade laser illumination,” Proc. SPIE 7665, 76650I (2010).eng
dcterms.referencesW. Ortiz-Rivera et al., “Vibrational spectroscopy standoff detection of threat chemicals,” Proc. SPIE 8031, 803129 (2011).eng
dcterms.referencesA. Pettersson et al., “Explosives standoff detection using Raman spectroscopy: from bulk towards trace detection,” Proc. SPIE 7664, 76641K (2010).eng
dcterms.referencesA. Pettersson et al., “Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance,” Propellants Explos. Pyrotech. 34(4), 297–306 (2009).eng
dcterms.referencesA. R. Ford et al., “Explosives sensing using multiple optical techniques in a standoff regime with a common platform,” Spectroscopy Online, April (2011).eng
dcterms.referencesN. J. Galán-Freyle et al., “Artificial intelligence assisted mid-infrared laser spectroscopy in situ detection of petroleum in soils,” Appl. Sci. 10(4), 1319 (2020).eng
dcterms.referencesG. L. McEneff et al., “Sorbent film-coated passive samplers for explosives vapour detection part b: deployment in semi-operational environments and alternative applications,” Sci. Rep. 8(1), 5816 (2018).eng
dcterms.referencesW. Zhang et al., “Recent developments in spectroscopic techniques for the detection of explosives,” Materials 11(8), 1364 (2018).eng
dcterms.referencesF. Jin et al., “Chemical and explosive detection with long-wave infrared laser induced breakdown spectroscopy,” Proc. SPIE 9824, 98240Q (2016).eng
dcterms.referencesR. J. Pell et al., “Quantitative infrared emission spectroscopy using multivariate calibration,” Anal. Chem. 60(24), 2824–2827 (1988).eng
dcterms.referencesM. Friedrich and D. R. T. Zahn, “Emission spectroscopy: an excellent tool for the infrared characterization of textile fibers,” Appl. Spectrosc. 52(12), 1530–1535 (1998).eng
dcterms.referencesM. J. Zuerlein et al., “Modeling thermal emission in dental enamel induced by 9–11 μm laser light,” Appl. Surf. Sci. 127–129, 863–868 (1998).eng
dcterms.referencesR.W. Jones et al., “Chemical analysis of wood chips in motion using thermal-emission midinfrared spectroscopy with projection to latent structures regression,” Anal. Chem. 74(2), 453–457 (2001).eng
dcterms.referencesT. M. Niemczyk, S. Zhang, and D. M. Haaland, “Monitoring dielectric thin-film production on product wafers using infrared emission spectroscopy,” Appl. Spectrosc. 55(8), 1053– 1059 (2001).eng
dcterms.referencesR. Furstenberg et al., “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).eng
dcterms.referencesN. Y. Galán-Freyle et al., “Standoff laser-induced thermal emission of explosives,” Proc. SPIE 8705, 870508 (2013).eng
dcterms.referencesA. Figueroa-Navedo et al., “Improved detection of highly energetic materials traces on surfaces by standoff laser-induced thermal emission incorporating neural networks,” Proc. SPIE 8705, 87050D (2013).eng
dcterms.referencesA. M. Figueroa-Navedo et al., “Chemometrics-enhanced laser-induced thermal emission detection of PETN and other explosives on various substrates,” J. Chemom. 29(6), 329– 337 (2015).eng
dcterms.referencesF. B. Gonzaga and C. Pasquini, “Near-infrared emission spectrometry based on an acoustooptical tunable filter,” Anal. Chem. 77(4), 1046–1054 (2005).eng
dcterms.referencesA. Tsuge, Y. Uwamino, and T. Ishizuka, “Applications of laser-induced thermal emission spectroscopy to various samples,” Appl. Spectrosc. 43(7), 1145–1149 (1989).eng
dcterms.referencesO. Primera-Pedrozo et al., “High explosives mixtures detection using fiber optics coupled: grazing angle probe/Fourier transform reflection absorption infrared spectroscopy,” Sens. Imaging 9(3-4), 27–40 (2008).eng
dcterms.referencesM. Wrable-Rose et al., “Preparation of TNT, RDX and ammonium nitrate standards on gold-on-silicon surfaces by thermal inkjet technology,” Sens. Imaging 11(4), 147–169 (2010).eng
dcterms.referencesR. Infante-Castillo, L. C. Pacheco-Londoño, and S. P. Hernández-Rivera, “Monitoring the α→β solid-solid phase transition of RDX with Raman spectroscopy: a theoretical and experimental study,” J. Mol. Struct. 970(1–3), 51–58 (2010).eng
dcterms.referencesR. Infante-Castillo, L. Pacheco-Londoño, and S. P. Hernández-Rivera, “Vibrational spectra and structure of RDX and its 13C- and 15N-labeled derivatives: a theoretical and experimental study,” Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 76(2), 137–141 (2010).eng
oaire.versioninfo:eu-repo/semantics/submittedVersioneng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Modulated_laser_source_induction_system_remote_detection_Preprint.pdf
Tamaño:
2.56 MB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones