Statistical techniques for digital pre-processing of computed tomography medical images: A current review

datacite.rightshttp://purl.org/coar/access_right/c_abf2
dc.contributor.authorValbuena Prada, Oscar
dc.contributor.authorVera, Miguel
dc.contributor.authorRamírez, Guillermo
dc.contributor.authorBarrientos Rojel, Ricardo
dc.contributor.authorMojica Maldonado, David
dc.date.accessioned2025-02-07T14:09:17Z
dc.date.available2025-02-07T14:09:17Z
dc.date.issued2024
dc.description.abstractDigital pre-processing is a vital stage in the processing of the information contained in multilayer computed tomography images. The purpose of digital pre-processing is the minimization of the effect of image imperfections, which are associated with the noise and artifacts that affect the quality of the images during acquisition, storage, and/or transmission processes. Likewise, there is a wide variety of techniques in specialized literature that address the problem of imperfections, noise, and artifacts present in images. In this study, a comprehensive review of specialized literature on statistical techniques used in the pre-processing of digital images was conducted. The review summarizes updated information from 56 studies conducted over the last 5 years (2018–2022) on the main statistical techniques used for the digital processing of medical images obtained under different modalities, with a special focus on computed tomography. Additionally, the most often used statistical metrics for measuring the performance of pre-processing techniques in the field of medical imaging are described. The most often used pre-processing techniques in the field of medical imaging were found to be statistical filters based on median, neural networks, Gaussian filters based on deep learning, mean, and machine learning applied to multilayer computed tomography images and magnetic resonance images of the brain, abdomen, lungs, and heart, among other organs of the body.eng
dc.format.mimetypepdf
dc.identifier.doihttps://doi.org/10.1016/j.displa.2024.102835
dc.identifier.issn18727387
dc.identifier.urihttps://hdl.handle.net/20.500.12442/16232
dc.language.isoeng
dc.publisherELSEVIEReng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateseng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.sourceDisplayseng
dc.sourceVol. 85 (2024)spa
dc.subject.keywordsStatistical techniqueseng
dc.subject.keywordsMetricseng
dc.subject.keywordsPre-processing of medical imageseng
dc.subject.keywordsMultilayer computed tomographyeng
dc.subject.keywordsNoiseeng
dc.subject.keywordsArtifactseng
dc.titleStatistical techniques for digital pre-processing of computed tomography medical images: A current revieweng
dc.type.driverinfo:eu-repo/semantics/article
dc.type.spaArtículo científicospa
dcterms.referencesStoitsis J., Valavanis I., Mougiakakou S.G., Golemati S., Nikita A., Nikita K.S. Computer aided diagnosis based on medical image processing and artificial intelligence methods Nucl. Instrum. Methods Phys. Res. A, 569 (2) (2006), pp. 591-595spa
dcterms.referencesValbuena O., Vera M., Huérfano Y., Gelvez E., Salazar J., Molina V., Sáenz F., Vera M.I., Salazar W. Computational strategy for the segmentation of the aortic annulus in cardiac computed tomography images J. Phys. Conf. Ser., 1160 (2019)spa
dcterms.referencesGoldberg R., Smith R., Mottley J., Ferrara W. Ultrasound Bronzino J. (Ed.), The Biomedical Engineering Handbook: Second Edition, Vol. 1, CRC Press LLC, Boca Raton (2000), pp. 1247-1289spa
dcterms.referencesReba R. Nuclear medicine, vol. 270, no. 2 (1993), pp. 230-233spa
dcterms.referencesGarcia E., Faber T., Galt J., Cooke C., Folks R. Advances in nuclear emission PET and SPECT imaging IEEE Eng. Med. Biol. Mag., 19 (5) (2000), pp. 21-33spa
dcterms.referencesMacovski A., Pauly J., Schenck J., Kwong K., Chesler D., Hu X., Chen W., Patel M., Ugurbil K., Olly S. Magnetic resonance imaging Bronzino J.D. (Ed.), The Biomedical Engineering Handbook: Second Edition, Vol. 1, CRC Press LLC, Boca Raton (2000), pp. 1174-1215spa
dcterms.referencesDey N., Ashour A., Ashour A., Singh A. Digital analysis of microscopic images in medicine J. Adv. Microsc. Res., 10 (2015), pp. 1-13spa
dcterms.referencesEast J., Vleugels L., Roelandt P., Bhandari P., Horgan G., Kiesslich R., Longcroft G., Wilson A., Dumonceau M. Dvanced endoscopic imaging: European society of gastrointestinal endoscopy (ESGE) technology review Endoscopy, 48 (11) (2016), pp. 1029-1045spa
dcterms.referencesBaim D. Grossman’s Cardiac Catheterization, Angiography and Intervention Lippincott Williams and Wilkins, USA (2006)spa
dcterms.referencesCournand A. Cardiac catheterization. Development of the technique, its contributions to experimental medicine, and its initial application in man Scand. Suppl. Med. Rec., 32 (1) (1975), pp. 579-592spa
dcterms.referencesGordon R., Bender R., Herman G. Algebraic reconstruction techniques (ART) for three–dimensional electron microscopy and X–ray photography J. Theoret. Biol., 29 (9) (1970), pp. 471-482spa
dcterms.referencesKalender W.A. Computed Tomography: Fundamentals, System Technology, Image Quality, Applications Publicis MCD Verlag, Munich, Germany (2000)spa
dcterms.referencesWang G., Crawford C. Guest editorial: Multirow detector and cone–beam spiral/helical CT IEEE Trans. Med. Imaging, 19 (9) (2000), pp. 817-820spa
dcterms.referencesHounsfield G. Computarized transverse axial scanning tomography: Part I Br. J. Radiol., 1 (1973), pp. 1016-1022spa
dcterms.referencesOhnesorge B., Flohr T., Becker C., Kopp A., Schoepf U., Baum U., Knez A., Klingenbeck K., Reiser M. Cardiac imaging by means of electrocardiographically gated multisection spiral CT: Initial experience, vol. 217, no. 2 (2000), pp. 564-671spa
dcterms.referencesFuchs T., Kachelriess M., Kalender W. Systems performance multislice spiral computed tomography IEEE Eng. Med. Biol., 19 (5) (2000), pp. 63-70spa
dcterms.referencesKruger R. X–ray Digital Cineangiocardiography, en Cardiac Imaging and Image Processing MacGraw–Hill, USA (1986)spa
dcterms.referencesKroft L., De Roos A., Geleijns J. Artifacts in ECG–synchronized MDCT coronary angiography, vol. 189, no. 3 (2007), pp. 581-591spa
dcterms.referencesMaiera A., Wigstrm L., Hofmann H., Hornegger J., Zhu L., Strobel N., Fahrig R. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT Med. Phys., 38 (11) (2011), pp. 5896-5909spa
dcterms.referencesFakhre A., Sami R. Challenges and solutions in multimodal medical image subregion detection and registration J. Med. Imaging Radiat. Sci., 50 (2019), pp. 24-30spa
dcterms.referencesZanella R., Boccacci P., Zanni L., Bertero M. Efficient gradient projection methods for edge-preserving removal of Poisson noise Inverse Problems, 25 (4) (2009), pp. 1-24spa
dcterms.referencesChan R., Chen K. Multilevel algorithm for a Poisson noise removal model with total–Variation regularization Int. J. Comput. Math. (5) (2007), pp. 1-18spa
dcterms.referencesVera M., Bravo A., Medina R. Description and use of three-dimensional numerical phantoms of cardiac computed tomography images Data, 7 (2022), p. 115spa
dcterms.referencesJ. Hsieh, Image artifacts: Appearances, causes, and corrections, in: SPIE Press Computed Tomography: Principles, Design, Artifacts, and Recent Advances, Bellingham, WA, USA, 2003, pp. 167–240.spa
dcterms.referencesBarrett J., Keat N. Artifacts in CT: Recognition and avoidance Radiographics, 24 (6) (2004), pp. 1679-1691spa
dcterms.referencesRubin G., Paik D., Johnston P., Napel S. Measurement of the aorta and its branches with helical CT Radiology (206) (1998), pp. 823-829spa
dcterms.referencesPratt W. Digital Image Processing John Wiley & Sons Inc, USA (2007)spa
dcterms.referencesGonzález R., Woods R. Digital Image Processing Prentice Hall, USA (2001)spa
dcterms.referencesArce G. A general weighted median filter structure admitting negative weights IEEE Trans. Signal Process., 46 (12) (1998), pp. 3195-3205spa
dcterms.referencesFischer M., Paredes J., Arce G. Image sharpening for the world wide web IEEE Trans. Image Process., 11 (3) (2002), pp. 717-727spa
dcterms.referencesM. Fischer, J. Paredes, G. Arce, Image Sharpeners Using Permutation Weighted Median Filters, in: EUROSIP, Tampere, Finland, 2010, pp. 299–303.spa
dcterms.referencesBuades A., Coll B., Morel J. A review of image denoising algorithms with a new one Multiscale Model. Simul., 4 (2) (2005), pp. 490-530spa
dcterms.referencesCoupé P., Yger P., Prima S., Hellier P., Kervrann C., Barillot C. An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images, vol. 27, no. 4 (2008), pp. 425-441spa
dcterms.referencesA. Bravo, J. Clemente, M. Vera, J. Avila, R. Medina, A hybrid boundary–region left ventricle segmentation in computed tomography, in: 5th VISAPP, Angers, France, 2010, pp. 107–114.spa
dcterms.referencesM. Vera, A. Bravo, M. Garreau, R. Medina, Similarity Enhancement for Automatic Segmentation of Cardiac Structures in Computed Tomography Volumes, in: Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE, Boston, USA, 2011, pp. 8094–8097.spa
dcterms.referencesBravo A., Vera M., Huerfano Maldonado Y., Hidalgo Y. A comprehensive study of a similarity criterion in cardiac computerized tomography images enhancement Revista Facultad de Ingeniería Universidad de Antioquia (2020)spa
dcterms.referencesPassarielo G., Mora F. Imágenes Médicas, Adquisición, Análisis, Procesamiento e Interpretación Equinoccio Universidad Simón Bolivar, Venezuela (1995)spa
dcterms.referencesRivest J., Soille P., Beucher S. Morphological gradients Electron. Imaging, 2 (4) (1993), pp. 326-336spa
dcterms.referencesZ. Yu, G. Wei, C. Zhen, T. Jing, L. Ling, Medical Images Edge Detection Based on Mathematical Morphology, in: Proceedings of the IEEE Eng. Med. Biol. 27th Annual Conference, Shanghai–China, 2005, pp. 6492–6495.spa
dcterms.referencesHaralick R., Shapiro L. Computer and Robot Vision, Addison–Wesley, USA (1992)spa
dcterms.referencesMukhopadhyay S., Chanda B. A multiscale morphological approach to local contrast enhancement Signal Process., 80 (4) (2000), pp. 685-696spa
dcterms.referencesPauwels E., Frederix G. Finding Salient Regions in images: Non–parametric clustering for image segmentation and grouping, vol. 18, no. 1–2 (1999), pp. 73-85 Special issuespa
dcterms.referencesMeijering H. Image Enhancement in Digital X–Ray Angiography (Ph.D. thesis) Utrecht University, Netherlands (2000)spa
dcterms.referencesA. Fabijańska, Variance filter for edge detection and edge-based image segmentation, in: 2011 Proceedings of 7th International Conference on Perspective Technologies and Methods in MEMS Design, MEMSTECH 2011, 2011.spa
dcterms.referencesChen T., Wu Q., Rahmani R., Hughes J. A pseudo top-hat mathematical morphological approach to edge detection in dark regions, vol. 35, no. 1 (2002), pp. 199-210spa
dcterms.referencesPajares G., Cruz. J. Visión Por Computador. Imágenes Digitales Y Aplicaciones RaMa, Madrid, España (2001)spa
dcterms.referencesCanny J. Finding Edges and Lines in Images: Report 720 Massachusetts MIT: Massachusetts Institute of Technology (1983)spa
dcterms.referencesCanny J. A Computational Approach to Edge Detection (1986), pp. 679-698spa
dcterms.referencesJaya L., Gopikakumari R. IEM: A new image enhancement metric for contrast and sharpness measurements Int. J. Comput. Appl., 79 (9) (2013), pp. 1-9spa
dcterms.referencesShannon C.E. A mathematical theory of communication Bell Syst. Tech. J., 27 (3) (1948), pp. 379-423spa
dcterms.referencesGirod B. What’s wrong with mean-squared error Digital Images and Human Vision, MIT Press, Cambridge, MA, USA (1993), pp. 207-220spa
dcterms.referencesGupta S., Porwal R. Appropriate contrast enhancement measures for brain and breast cancer images Int. J. Biomed. Imaging, 2016 (2016), pp. 1-8spa
dcterms.referencesPanetta K., Wharton E., Agaian S. Human visual system-based image enhancement and logarithmic contrast measure IEEE Trans. Syst. Man Cybern., 38 (1) (2008), pp. 174-188spa
dcterms.referencesRidha Ilyas B., Beladgham M., Merit K., taleb ahmed A. Improved facial expression recognition based on DWT feature for deep CNN Electronics, 8 (2019), p. 324spa
dcterms.referencesCárdenes R., de Luis-García R., Bach-Cuadra M. A multidimensional segmentation evaluation for medical image data Comput. Methods Programs Biomed., 96 (2) (2009), pp. 108-124spa
dcterms.referencesChang H.-H., Zhuang A.H., Valentino D.J., Chu W.-C. Performance measure characterization for evaluating neuroimage segmentation algorithms NeuroImage, 47 (1) (2009), pp. 122-135spa
dcterms.referencesBlair D. Information retrieval J. Am. Soc. Inf. Sci., 30 (6) (1979), pp. 374-375spa
dcterms.referencesDice L. Measures of the amount of ecologic association between species Ecology, 26 (3) (1945), pp. 297-302spa
dcterms.referencesD. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in: Proc. 8th Int’L Conf. Computer Vision, 2001, pp. 416–423.spa
dcterms.referencesTaha A., Hanbury A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool BMC Med. Imaging, 15 (29) (2015), pp. 1-28spa
dcterms.referencesRand W. Objective criteria for the evaluation of clustering methods J. Amer. Statist. Assoc., 66 (1971), pp. 846-850spa
dcterms.referencesHubert L., Arabie P. Comparing partitions J. Classification, 2 (1985), pp. 193-218spa
dcterms.referencesP. Viola, W. Wells, Alignment by maximization of mutual information, in: Proceedings of IEEE International Conference on Computer Vision, 1995, pp. 16–23.spa
dcterms.referencesMeilă M. Comparing clusterings by the variation of information Schölkopf B., Warmuth M.K. (Eds.), Learning Theory and Kernel Machines, Springer Berlin Heidelberg, Berlin, Heidelberg (2003), pp. 173-187spa
dcterms.referencesShrout P., Fleiss J. Intraclass correlations: Uses in assessing rater reliability Psychol. Bull., 86 (2) (1979), pp. 420-428spa
dcterms.referencesGerig G., Jomier M., Chakos M. Valmet: A new validation tool for assessing and improving 3D object segmentation Medical Image Computing and Computer-Assisted Intervention, MICCAI, Springer, Berlin, Heidelberg (2001), pp. 516-523spa
dcterms.referencesBradley A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms Pattern Recognit., 30 (7) (1997), pp. 1145-1159spa
dcterms.referencesTaha A., Hanbury A. An efficient algorithm for calculating the exact hausdorff distance IEEE Trans. Pattern Anal. Mach. Intell., 37 (11) (2015), pp. 2153-2163spa
dcterms.referencesShapiro M., Blaschko M. On Hausdorff Distance Measures: Technical Report Department of Computer Science, University of Massachusetts Amherst (2004)spa
dcterms.referencesMahalanobis P. On the generalized distance in statistics Proceedings of the National Institute of Sciences (Calcutta), vol. 2 (1936), pp. 49-55spa
dcterms.referencesMclachlan G. Mahalanobis distance Resonance, 4 (1999), pp. 20-26spa
dcterms.referencesPolak M., Zhang H., Pi M. An evaluation metric for image segmentation of multiple objects Image Vis. Comput., 27 (8) (2009), pp. 1223-1227spa
dcterms.referencesOmer H., Tamam N., Alameen S., Algadi S., Thanh Tai D., Sulieman A. Elimination of biological and physical artifacts in abdomen and brain computed tomography procedures using filtering techniques Saudi J. Biol. Sci., 29 (4) (2022), pp. 2180-2186spa
dcterms.referencesKhan M.N., Altalbe A. Experimental evaluation of filters used for removing speckle noise and enhancing ultrasound image quality Biomed. Signal Process. Control, 73 (2022), Article 103399spa
dcterms.referencesNiwa S., Ichikawa K., Kawashima H., Takata T., Minami S., Mitsui W. Reduction of streak artifacts caused by low photon counts utilizing an image-based forward projection in computed tomography Comput. Biol. Med., 135 (2021), Article 104583spa
dcterms.referencesChillarón M., Vidal V., Verdú G. Evaluation of image filters for their integration with LSQR computerized tomography reconstruction method PLoS ONE, 15 (3) (2020), Article e0229113spa
dcterms.referencesIchikawa K., Kawashima H., Shimada M., Adachi T., Takata T. A three-dimensional cross-directional bilateral filter for edge-preserving noise reduction of low-dose computed tomography images Comput. Biol. Med., 111 (2019), Article 103353spa
dcterms.referencesDo H.N., Ijaz A., Gharahi H., Zambrano B., Choi J., Lee W., Baek S. Prediction of abdominal aortic aneurysm growth using dynamical Gaussian process implicit surface IEEE Trans. Biomed. Eng., 66 (3) (2019), pp. 609-622spa
dcterms.referencesAlis D., Alis C., Yergin M., Topel C., Asmakutlu O., Bagcilar O., Senli Y.D., Ustundag A., Salt V., Dogan S.N., Velioglu M., Selcuk H.H., Kara B., Ozer C., Oksuz I., Kizilkilic O., Karaarslan E. A joint convolutional-recurrent neural network with an attention mechanism for detecting intracranial hemorrhage on noncontrast head CT Sci. Rep., 12 (2084) (2022)spa
dcterms.referencesYuan Q., Peng Z., Chen Z., Guo Y., Yang B., Zeng X. Edge-preserving median filter and weighted coding with sparse nonlocal regularization for low-dose CT image denoising algorithm J. Healthcare Eng., 2021 (2021), pp. 1-7spa
dcterms.referencesArabi H., AkhavanAllaf A., Sanaat A., Shiri I., Zaidi H. The promise of artificial intelligence and deep learning in PET and SPECT imaging Eur. J. Med. Phys., 83 (2021), pp. 122-137spa
dcterms.referencesGobhinath S., Anandkumar S., Dhayalan R., Ezhilbharathi P., Haridharan R. Human brain tumor detection and classification by medical image processing 2021 7th International Conference on Advanced Computing and Communication Systems, vol. 1, ICACCS (2021), pp. 561-564spa
dcterms.referencesSrinivasa Reddy K., Jaya T. De-noising and enhancement of MRI medical images using Gaussian filter and histogram equalization Mater. Today: Proc. (2021)spa
dcterms.referencesLi Q., Wang W., Chen G., Zhao D. Medical image fusion using segment graph filter and sparse representation Comput. Biol. Med., 131 (2021), Article 104239spa
dcterms.referencesJiang Y., Liu J., Sheng H. High resolution image processing and CT perfusion imaging detection in patients with cerebral hemorrhage based on embedded system Microprocess. Microsyst., 81 (2021), Article 103700spa
dcterms.referencesShibu D.S., Priyadharsini S.S. Multi scale decomposition based medical image fusion using convolutional neural network and sparse representation Biomed. Signal Process. Control, 69 (2021), Article 102789spa
dcterms.referencesUllah Z., Farooq M.U., Lee S.-H., An D. A hybrid image enhancement based brain MRI images classification technique Med. Hypotheses, 143 (2020), Article 109922spa
dcterms.referencesO’Sullivan F., Gu F., Wu Q., O’Suilleabhain L.D. A generalized linear modeling approach to bootstrapping multi-frame PET image data Med. Image Anal., 72 (2021), Article 102132spa
dcterms.referencesReddy M., Reddy P., Reddy P. Medical image fusion using integrated guided nonlinear anisotropic filtering with image statistics Int. J. Intell. Eng. Syst., 13 (2020), pp. 25-34spa
dcterms.referencesLee J.Y., Kim J.S., Kim T.Y., Kim Y.S. Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm Sci. Rep., 10 (20546) (2020)spa
dcterms.referencesGinat D.T. Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage Neuroradiology (62) (2020), pp. 335-340spa
dcterms.referencesZ. Al-Ameen, Contrast Enhancement of Medical Images Using Statistical Methods with Image Processing Concepts, in: 2020 6th International Engineering Conference “Sustainable Technology and Development”, IEC, 2020, pp. 169–173.spa
dcterms.referencesBurduja M., Ionescu R.T., Verga N. Accurate and efficient intracranial hemorrhage detection and subtype classification in 3D CT scans with convolutional and long short-term memory neural networks Sensors, 20 (19) (2020)spa
dcterms.referencesYou X., Cao N., Lu H., Mao M., Wang W. Denoising of MR images with rician noise using a wider neural network and noise range division Magn. Reson. Imaging, 64 (2019), pp. 154-159spa
dcterms.referencesPrezzi D., Owczarczyk K., Bassett P., Siddique M., Breen D., Cook G., Goh V. Adaptive statistical iterative reconstruction (ASIR) affects CT radiomics quantification in primary colorectal cancer Eur. Radiol., 29 (2019)spa
dcterms.referencesMiller R.J., Singh A., Dey D., Slomka P. Artificial intelligence and cardiac PET/computed PET Clin., 17 (2022), pp. 85-94spa
dcterms.referencesBravo Valero A.J., Vera M.Á., Huérfano Maldonado Y.K., Manrique Hidalgo Y.F. A comprehensive study of a similarity criterion in cardiac computerized tomography images enhancement Revista Facultad de Ingeniería Universidad de Antioquia (102) (2020), pp. 51-61spa
dcterms.referencesNagy M.V., Jermendy Á.L., Suhai F.I., Panajotu A., Csőre J., Borzsák S., Fontanini D.M., Kolossváry M., Vattay B., Boussoussou M., Novák C.C., Merkely B., Horvat P.M., Szilveszter B. Model-based adaptive filter for a dedicated cardiovascular CT scanner: Assessment of image noise, sharpness and quality Eur. J. Radiol., 145 (2021), Article 110032spa
dcterms.referencesYahia Y., Meddeber L., Zouagui T., Jennane R. A topology constrained geometric deformable model for medical image segmentation Biomed. Signal Process. Control, 64 (2021), Article 102299spa
dcterms.referencesLareyre F., Adam C., Carrier M., Dommerc C., Mialhe C., Raffort J. A fully automated pipeline for mining abdominal aortic aneurysm using image segmentation Sci. Rep., 9 (13750) (2019)spa
dcterms.referencesBaygin M., Yaman O., Barua P.D., Dogan S., Tuncer T., Acharya U.R. Exemplar darknet19 feature generation technique for automated kidney stone detection with coronal CT images Artif. Intell. Med., 127 (2022), Article 102274spa
dcterms.referencesSudharson S., Pratap T., Kokil P. Noise level estimation for effective blind despeckling of medical ultrasound images Biomed. Signal Process. Control, 68 (2021), Article 102744spa
dcterms.referencesKaur R., Juneja M., Mandal A. Machine learning based quantitative texture analysis of CT images for diagnosis of renal lesions Biomed. Signal Process. Control, 64 (2021), Article 102311spa
dcterms.referencesAkai H., Yasaka K., Kunimatsu A., Ohtomo K., Abe O., Kiryu S. Application of CT texture analysis to assess the localization of primary aldosteronism Sci. Rep., 10 (472) (2020)spa
dcterms.referencesTraverso A., Kazmierski M., Shi Z., Kalendralis P., Welch M., Nissen H.D., Jaffray D., Dekker A., Wee L. Stability of radiomic features of apparent diffusion coefficient (ADC) maps for locally advanced rectal cancer in response to image pre-processing Phys. Medica, 61 (2019), pp. 44-51spa
dcterms.referencesBahrami A., Karimian A., Arabi H. Comparison of different deep learning architectures for synthetic CT generation from MR images Eur. J. Med. Phys., 90 (2021), pp. 99-107spa
dcterms.referencesAnam C., Adi K., Sutanto H., Arifin Z., Budi W.S., Fujibuchi T., Dougherty G. Noise reduction in CT images using a selective mean filter J. Biomed. Phys. Eng., 10 (5) (2020), pp. 623-634spa
dcterms.referencesGarg S., Vijay R., Urooj S. Statistical approach to compare image denoising techniques in medical MR images Procedia Comput. Sci., 152 (2019), pp. 367-374 International Conference on Pervasive Computing Advances and Applications- PerCAA 2019spa
dcterms.referencesValbuena O., Vera M.I., Vera M., Gelvez-Almeida E., Huérfano Y., Borrero M., Salazar-Torres J., Salazar W. Volumetric quantification in ovarian pathology using abdomino-pelvic computed tomography J. Phys. Conf. Ser., 1403 (1) (2019), Article 012014spa
dcterms.referencesVera M., Sáenz F., Huérfano Y., Gelvez-Almeida E., Vera M.I., Salazar-Torres J., Valbuena O. Smart operator for the human liver automatic segmentation, present in medical images J. Phys. Conf. Ser., 1386 (1) (2019), Article 012132spa
dcterms.referencesPrabha B., Kaur S., Singh J., Nandankar P., Kumar Jain S., Pallathadka H. Intelligent predictions of Covid disease based on lung CT images using machine learning strategy Mater. Today: Proc. (2021)spa
dcterms.referencesGungor M.A. A comparative study on wavelet denoising for high noisy CT images of COVID-19 disease Optik, 235 (2021), Article 166652spa
dcterms.referencesKuo C.-F.J., Barman J., Hsieh C.W., Hsu H.-H. Fast fully automatic detection, classification and 3D reconstruction of pulmonary nodules in CT images by local image feature analysis Biomed. Signal Process. Control, 68 (2021), Article 102790spa
dcterms.referencesXu Y., Souza L.F., Silva I.C., Marques A.G., Silva F.H., Nunes V.X., Han T., Jia C., de Albuquerque V.H.C., Filho P.P.R. A soft computing automatic based in deep learning with use of fine-tuning for pulmonary segmentation in computed tomography images Appl. Soft Comput., 112 (2021), Article 107810spa
dcterms.referencesHuang Z., Liu X., Wang R., Chen J., Lu P., Zhang Q., Jiang C., Yang Y., Liu X., Zheng H., Liang D., Hu Z. Considering anatomical prior information for low-dose CT image enhancement using attribute-augmented wasserstein generative adversarial networks Neurocomputing, 428 (2021), pp. 104-115spa
dcterms.referencesKuo C.-F.J., Huang C.-C., Siao J.-J., Hsieh C.-W., Huy V.Q., Ko K.-H., Hsu H.-H. Automatic lung nodule detection system using image processing techniques in computed tomography Biomed. Signal Process. Control, 56 (2020), Article 101659spa
dcterms.referencesLiu Q., Leung C., Hu P. A two-dimensional sparse matrix profile DenseNet for COVID-19 diagnosis using chest CT images IEEE Access, 8 (2020), pp. 213718-213728spa
dcterms.referencesPerumal S., Thambusamy V. Preprocessing by contrast enhancement techniques for medical images Int. J. Pure Appl. Math., 118 (2018), pp. 3681-3688spa
dcterms.referencesSoto O.R., Esparza E.R., Mata S.E.B., Oliva D., Hassanien A.E., Meleppat R.K., Zawadzki R.J. An efficient retinal blood vessel segmentation in eye fundus images by using optimized top-hat and homomorphic filtering Comput. Methods Programs Biomed., 201 (2021), Article 105949spa
dcterms.referencesSaoji S., Sarode M. Speckle and rician medical I noise removal from mages and ultrasound images Int. J. Recent Technol. Eng., 8 (2020), pp. 1851-1854spa
dcterms.referencesKong W., Miao Q., Liu R., Lei Y., Cui J., Xie Q. Multimodal medical image fusion using gradient domain guided filter random walk and side window filtering in framelet domain Inform. Sci., 585 (2022), pp. 418-440spa
dcterms.referencesTang Y., Gao R., Han S., Chen Y., Gao D., Nath V., Bermudez C., Savona M.R., Bao S., Lyu I., Huo Y., Landman B.A. Body part regression with self-supervision IEEE Trans. Med. Imaging, 40 (5) (2021), pp. 1499-1507spa
dcterms.referencesDiwakar M., Singh P., Shankar A. Multi-modal medical image fusion framework using co-occurrence filter and local extrema in NSST domain Biomed. Signal Process. Control, 68 (2021), Article 102788spa
dcterms.referencesAcharya U.K., Kumar S. Genetic algorithm based adaptive histogram equalization (GAAHE) technique for medical image enhancement Optik, 230 (2021), Article 166273spa
dcterms.referencesXu X., Fugen Zhou B.L., Fu D., Ba X. Efficient multiple organ localization in CT image using 3D region proposal network IEEE Trans. Med. Med. Imaging, 38 (8) (2019), pp. 1885-1898spa
dcterms.referencesAbella M., Martínez C., Desco M., Vaquero J.J., Fessler J.A. Simplified statistical image reconstruction for X-ray CT with beam-hardening artifact compensation IEEE Trans. Med. Imaging, 39 (1) (2020), pp. 111-118spa
dcterms.referencesWirtti T.T., Salles E.O.T. A soft-threshold filtering approach for tomography reconstruction from a limited number of projections with bilateral edge preservation Sensors, 19 (10) (2019)spa
dcterms.referencesS. Yadav, S. Kulkarni, R. Patole, Image Quality Assessment, Denoising and Comparative Analysis using Filters for C-arm X-ray Images, in: IEEE Region 10 Conference, TENCON, 2019, pp. 2143–2147.spa
dcterms.referencesHuérfano-Maldonado Y., Mora M., Vilches K., Hernández-García R., Gutiérrez R., Vera M. A comprehensive review of extreme learning machine on medical imaging Neurocomputing, 556 (2023), Article 126618spa
dcterms.referencesDixon S. Diagnostic Imaging Dataset Statistical Release NHS England and NHS Improvement (2022) Reporte, Version 1, URL https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2022/12/Statistical-Release-15th-December-2022-PDF-487KB.pdfspa
oaire.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
3.78 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones