Statistical techniques for digital pre-processing of computed tomography medical images: A current review
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.contributor.author | Valbuena Prada, Oscar | |
dc.contributor.author | Vera, Miguel | |
dc.contributor.author | Ramírez, Guillermo | |
dc.contributor.author | Barrientos Rojel, Ricardo | |
dc.contributor.author | Mojica Maldonado, David | |
dc.date.accessioned | 2025-02-07T14:09:17Z | |
dc.date.available | 2025-02-07T14:09:17Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Digital pre-processing is a vital stage in the processing of the information contained in multilayer computed tomography images. The purpose of digital pre-processing is the minimization of the effect of image imperfections, which are associated with the noise and artifacts that affect the quality of the images during acquisition, storage, and/or transmission processes. Likewise, there is a wide variety of techniques in specialized literature that address the problem of imperfections, noise, and artifacts present in images. In this study, a comprehensive review of specialized literature on statistical techniques used in the pre-processing of digital images was conducted. The review summarizes updated information from 56 studies conducted over the last 5 years (2018–2022) on the main statistical techniques used for the digital processing of medical images obtained under different modalities, with a special focus on computed tomography. Additionally, the most often used statistical metrics for measuring the performance of pre-processing techniques in the field of medical imaging are described. The most often used pre-processing techniques in the field of medical imaging were found to be statistical filters based on median, neural networks, Gaussian filters based on deep learning, mean, and machine learning applied to multilayer computed tomography images and magnetic resonance images of the brain, abdomen, lungs, and heart, among other organs of the body. | eng |
dc.format.mimetype | ||
dc.identifier.doi | https://doi.org/10.1016/j.displa.2024.102835 | |
dc.identifier.issn | 18727387 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/16232 | |
dc.language.iso | eng | |
dc.publisher | ELSEVIER | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.source | Displays | eng |
dc.source | Vol. 85 (2024) | spa |
dc.subject.keywords | Statistical techniques | eng |
dc.subject.keywords | Metrics | eng |
dc.subject.keywords | Pre-processing of medical images | eng |
dc.subject.keywords | Multilayer computed tomography | eng |
dc.subject.keywords | Noise | eng |
dc.subject.keywords | Artifacts | eng |
dc.title | Statistical techniques for digital pre-processing of computed tomography medical images: A current review | eng |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.spa | Artículo científico | spa |
dcterms.references | Stoitsis J., Valavanis I., Mougiakakou S.G., Golemati S., Nikita A., Nikita K.S. Computer aided diagnosis based on medical image processing and artificial intelligence methods Nucl. Instrum. Methods Phys. Res. A, 569 (2) (2006), pp. 591-595 | spa |
dcterms.references | Valbuena O., Vera M., Huérfano Y., Gelvez E., Salazar J., Molina V., Sáenz F., Vera M.I., Salazar W. Computational strategy for the segmentation of the aortic annulus in cardiac computed tomography images J. Phys. Conf. Ser., 1160 (2019) | spa |
dcterms.references | Goldberg R., Smith R., Mottley J., Ferrara W. Ultrasound Bronzino J. (Ed.), The Biomedical Engineering Handbook: Second Edition, Vol. 1, CRC Press LLC, Boca Raton (2000), pp. 1247-1289 | spa |
dcterms.references | Reba R. Nuclear medicine, vol. 270, no. 2 (1993), pp. 230-233 | spa |
dcterms.references | Garcia E., Faber T., Galt J., Cooke C., Folks R. Advances in nuclear emission PET and SPECT imaging IEEE Eng. Med. Biol. Mag., 19 (5) (2000), pp. 21-33 | spa |
dcterms.references | Macovski A., Pauly J., Schenck J., Kwong K., Chesler D., Hu X., Chen W., Patel M., Ugurbil K., Olly S. Magnetic resonance imaging Bronzino J.D. (Ed.), The Biomedical Engineering Handbook: Second Edition, Vol. 1, CRC Press LLC, Boca Raton (2000), pp. 1174-1215 | spa |
dcterms.references | Dey N., Ashour A., Ashour A., Singh A. Digital analysis of microscopic images in medicine J. Adv. Microsc. Res., 10 (2015), pp. 1-13 | spa |
dcterms.references | East J., Vleugels L., Roelandt P., Bhandari P., Horgan G., Kiesslich R., Longcroft G., Wilson A., Dumonceau M. Dvanced endoscopic imaging: European society of gastrointestinal endoscopy (ESGE) technology review Endoscopy, 48 (11) (2016), pp. 1029-1045 | spa |
dcterms.references | Baim D. Grossman’s Cardiac Catheterization, Angiography and Intervention Lippincott Williams and Wilkins, USA (2006) | spa |
dcterms.references | Cournand A. Cardiac catheterization. Development of the technique, its contributions to experimental medicine, and its initial application in man Scand. Suppl. Med. Rec., 32 (1) (1975), pp. 579-592 | spa |
dcterms.references | Gordon R., Bender R., Herman G. Algebraic reconstruction techniques (ART) for three–dimensional electron microscopy and X–ray photography J. Theoret. Biol., 29 (9) (1970), pp. 471-482 | spa |
dcterms.references | Kalender W.A. Computed Tomography: Fundamentals, System Technology, Image Quality, Applications Publicis MCD Verlag, Munich, Germany (2000) | spa |
dcterms.references | Wang G., Crawford C. Guest editorial: Multirow detector and cone–beam spiral/helical CT IEEE Trans. Med. Imaging, 19 (9) (2000), pp. 817-820 | spa |
dcterms.references | Hounsfield G. Computarized transverse axial scanning tomography: Part I Br. J. Radiol., 1 (1973), pp. 1016-1022 | spa |
dcterms.references | Ohnesorge B., Flohr T., Becker C., Kopp A., Schoepf U., Baum U., Knez A., Klingenbeck K., Reiser M. Cardiac imaging by means of electrocardiographically gated multisection spiral CT: Initial experience, vol. 217, no. 2 (2000), pp. 564-671 | spa |
dcterms.references | Fuchs T., Kachelriess M., Kalender W. Systems performance multislice spiral computed tomography IEEE Eng. Med. Biol., 19 (5) (2000), pp. 63-70 | spa |
dcterms.references | Kruger R. X–ray Digital Cineangiocardiography, en Cardiac Imaging and Image Processing MacGraw–Hill, USA (1986) | spa |
dcterms.references | Kroft L., De Roos A., Geleijns J. Artifacts in ECG–synchronized MDCT coronary angiography, vol. 189, no. 3 (2007), pp. 581-591 | spa |
dcterms.references | Maiera A., Wigstrm L., Hofmann H., Hornegger J., Zhu L., Strobel N., Fahrig R. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT Med. Phys., 38 (11) (2011), pp. 5896-5909 | spa |
dcterms.references | Fakhre A., Sami R. Challenges and solutions in multimodal medical image subregion detection and registration J. Med. Imaging Radiat. Sci., 50 (2019), pp. 24-30 | spa |
dcterms.references | Zanella R., Boccacci P., Zanni L., Bertero M. Efficient gradient projection methods for edge-preserving removal of Poisson noise Inverse Problems, 25 (4) (2009), pp. 1-24 | spa |
dcterms.references | Chan R., Chen K. Multilevel algorithm for a Poisson noise removal model with total–Variation regularization Int. J. Comput. Math. (5) (2007), pp. 1-18 | spa |
dcterms.references | Vera M., Bravo A., Medina R. Description and use of three-dimensional numerical phantoms of cardiac computed tomography images Data, 7 (2022), p. 115 | spa |
dcterms.references | J. Hsieh, Image artifacts: Appearances, causes, and corrections, in: SPIE Press Computed Tomography: Principles, Design, Artifacts, and Recent Advances, Bellingham, WA, USA, 2003, pp. 167–240. | spa |
dcterms.references | Barrett J., Keat N. Artifacts in CT: Recognition and avoidance Radiographics, 24 (6) (2004), pp. 1679-1691 | spa |
dcterms.references | Rubin G., Paik D., Johnston P., Napel S. Measurement of the aorta and its branches with helical CT Radiology (206) (1998), pp. 823-829 | spa |
dcterms.references | Pratt W. Digital Image Processing John Wiley & Sons Inc, USA (2007) | spa |
dcterms.references | González R., Woods R. Digital Image Processing Prentice Hall, USA (2001) | spa |
dcterms.references | Arce G. A general weighted median filter structure admitting negative weights IEEE Trans. Signal Process., 46 (12) (1998), pp. 3195-3205 | spa |
dcterms.references | Fischer M., Paredes J., Arce G. Image sharpening for the world wide web IEEE Trans. Image Process., 11 (3) (2002), pp. 717-727 | spa |
dcterms.references | M. Fischer, J. Paredes, G. Arce, Image Sharpeners Using Permutation Weighted Median Filters, in: EUROSIP, Tampere, Finland, 2010, pp. 299–303. | spa |
dcterms.references | Buades A., Coll B., Morel J. A review of image denoising algorithms with a new one Multiscale Model. Simul., 4 (2) (2005), pp. 490-530 | spa |
dcterms.references | Coupé P., Yger P., Prima S., Hellier P., Kervrann C., Barillot C. An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images, vol. 27, no. 4 (2008), pp. 425-441 | spa |
dcterms.references | A. Bravo, J. Clemente, M. Vera, J. Avila, R. Medina, A hybrid boundary–region left ventricle segmentation in computed tomography, in: 5th VISAPP, Angers, France, 2010, pp. 107–114. | spa |
dcterms.references | M. Vera, A. Bravo, M. Garreau, R. Medina, Similarity Enhancement for Automatic Segmentation of Cardiac Structures in Computed Tomography Volumes, in: Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE, Boston, USA, 2011, pp. 8094–8097. | spa |
dcterms.references | Bravo A., Vera M., Huerfano Maldonado Y., Hidalgo Y. A comprehensive study of a similarity criterion in cardiac computerized tomography images enhancement Revista Facultad de Ingeniería Universidad de Antioquia (2020) | spa |
dcterms.references | Passarielo G., Mora F. Imágenes Médicas, Adquisición, Análisis, Procesamiento e Interpretación Equinoccio Universidad Simón Bolivar, Venezuela (1995) | spa |
dcterms.references | Rivest J., Soille P., Beucher S. Morphological gradients Electron. Imaging, 2 (4) (1993), pp. 326-336 | spa |
dcterms.references | Z. Yu, G. Wei, C. Zhen, T. Jing, L. Ling, Medical Images Edge Detection Based on Mathematical Morphology, in: Proceedings of the IEEE Eng. Med. Biol. 27th Annual Conference, Shanghai–China, 2005, pp. 6492–6495. | spa |
dcterms.references | Haralick R., Shapiro L. Computer and Robot Vision, Addison–Wesley, USA (1992) | spa |
dcterms.references | Mukhopadhyay S., Chanda B. A multiscale morphological approach to local contrast enhancement Signal Process., 80 (4) (2000), pp. 685-696 | spa |
dcterms.references | Pauwels E., Frederix G. Finding Salient Regions in images: Non–parametric clustering for image segmentation and grouping, vol. 18, no. 1–2 (1999), pp. 73-85 Special issue | spa |
dcterms.references | Meijering H. Image Enhancement in Digital X–Ray Angiography (Ph.D. thesis) Utrecht University, Netherlands (2000) | spa |
dcterms.references | A. Fabijańska, Variance filter for edge detection and edge-based image segmentation, in: 2011 Proceedings of 7th International Conference on Perspective Technologies and Methods in MEMS Design, MEMSTECH 2011, 2011. | spa |
dcterms.references | Chen T., Wu Q., Rahmani R., Hughes J. A pseudo top-hat mathematical morphological approach to edge detection in dark regions, vol. 35, no. 1 (2002), pp. 199-210 | spa |
dcterms.references | Pajares G., Cruz. J. Visión Por Computador. Imágenes Digitales Y Aplicaciones RaMa, Madrid, España (2001) | spa |
dcterms.references | Canny J. Finding Edges and Lines in Images: Report 720 Massachusetts MIT: Massachusetts Institute of Technology (1983) | spa |
dcterms.references | Canny J. A Computational Approach to Edge Detection (1986), pp. 679-698 | spa |
dcterms.references | Jaya L., Gopikakumari R. IEM: A new image enhancement metric for contrast and sharpness measurements Int. J. Comput. Appl., 79 (9) (2013), pp. 1-9 | spa |
dcterms.references | Shannon C.E. A mathematical theory of communication Bell Syst. Tech. J., 27 (3) (1948), pp. 379-423 | spa |
dcterms.references | Girod B. What’s wrong with mean-squared error Digital Images and Human Vision, MIT Press, Cambridge, MA, USA (1993), pp. 207-220 | spa |
dcterms.references | Gupta S., Porwal R. Appropriate contrast enhancement measures for brain and breast cancer images Int. J. Biomed. Imaging, 2016 (2016), pp. 1-8 | spa |
dcterms.references | Panetta K., Wharton E., Agaian S. Human visual system-based image enhancement and logarithmic contrast measure IEEE Trans. Syst. Man Cybern., 38 (1) (2008), pp. 174-188 | spa |
dcterms.references | Ridha Ilyas B., Beladgham M., Merit K., taleb ahmed A. Improved facial expression recognition based on DWT feature for deep CNN Electronics, 8 (2019), p. 324 | spa |
dcterms.references | Cárdenes R., de Luis-García R., Bach-Cuadra M. A multidimensional segmentation evaluation for medical image data Comput. Methods Programs Biomed., 96 (2) (2009), pp. 108-124 | spa |
dcterms.references | Chang H.-H., Zhuang A.H., Valentino D.J., Chu W.-C. Performance measure characterization for evaluating neuroimage segmentation algorithms NeuroImage, 47 (1) (2009), pp. 122-135 | spa |
dcterms.references | Blair D. Information retrieval J. Am. Soc. Inf. Sci., 30 (6) (1979), pp. 374-375 | spa |
dcterms.references | Dice L. Measures of the amount of ecologic association between species Ecology, 26 (3) (1945), pp. 297-302 | spa |
dcterms.references | D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in: Proc. 8th Int’L Conf. Computer Vision, 2001, pp. 416–423. | spa |
dcterms.references | Taha A., Hanbury A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool BMC Med. Imaging, 15 (29) (2015), pp. 1-28 | spa |
dcterms.references | Rand W. Objective criteria for the evaluation of clustering methods J. Amer. Statist. Assoc., 66 (1971), pp. 846-850 | spa |
dcterms.references | Hubert L., Arabie P. Comparing partitions J. Classification, 2 (1985), pp. 193-218 | spa |
dcterms.references | P. Viola, W. Wells, Alignment by maximization of mutual information, in: Proceedings of IEEE International Conference on Computer Vision, 1995, pp. 16–23. | spa |
dcterms.references | Meilă M. Comparing clusterings by the variation of information Schölkopf B., Warmuth M.K. (Eds.), Learning Theory and Kernel Machines, Springer Berlin Heidelberg, Berlin, Heidelberg (2003), pp. 173-187 | spa |
dcterms.references | Shrout P., Fleiss J. Intraclass correlations: Uses in assessing rater reliability Psychol. Bull., 86 (2) (1979), pp. 420-428 | spa |
dcterms.references | Gerig G., Jomier M., Chakos M. Valmet: A new validation tool for assessing and improving 3D object segmentation Medical Image Computing and Computer-Assisted Intervention, MICCAI, Springer, Berlin, Heidelberg (2001), pp. 516-523 | spa |
dcterms.references | Bradley A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms Pattern Recognit., 30 (7) (1997), pp. 1145-1159 | spa |
dcterms.references | Taha A., Hanbury A. An efficient algorithm for calculating the exact hausdorff distance IEEE Trans. Pattern Anal. Mach. Intell., 37 (11) (2015), pp. 2153-2163 | spa |
dcterms.references | Shapiro M., Blaschko M. On Hausdorff Distance Measures: Technical Report Department of Computer Science, University of Massachusetts Amherst (2004) | spa |
dcterms.references | Mahalanobis P. On the generalized distance in statistics Proceedings of the National Institute of Sciences (Calcutta), vol. 2 (1936), pp. 49-55 | spa |
dcterms.references | Mclachlan G. Mahalanobis distance Resonance, 4 (1999), pp. 20-26 | spa |
dcterms.references | Polak M., Zhang H., Pi M. An evaluation metric for image segmentation of multiple objects Image Vis. Comput., 27 (8) (2009), pp. 1223-1227 | spa |
dcterms.references | Omer H., Tamam N., Alameen S., Algadi S., Thanh Tai D., Sulieman A. Elimination of biological and physical artifacts in abdomen and brain computed tomography procedures using filtering techniques Saudi J. Biol. Sci., 29 (4) (2022), pp. 2180-2186 | spa |
dcterms.references | Khan M.N., Altalbe A. Experimental evaluation of filters used for removing speckle noise and enhancing ultrasound image quality Biomed. Signal Process. Control, 73 (2022), Article 103399 | spa |
dcterms.references | Niwa S., Ichikawa K., Kawashima H., Takata T., Minami S., Mitsui W. Reduction of streak artifacts caused by low photon counts utilizing an image-based forward projection in computed tomography Comput. Biol. Med., 135 (2021), Article 104583 | spa |
dcterms.references | Chillarón M., Vidal V., Verdú G. Evaluation of image filters for their integration with LSQR computerized tomography reconstruction method PLoS ONE, 15 (3) (2020), Article e0229113 | spa |
dcterms.references | Ichikawa K., Kawashima H., Shimada M., Adachi T., Takata T. A three-dimensional cross-directional bilateral filter for edge-preserving noise reduction of low-dose computed tomography images Comput. Biol. Med., 111 (2019), Article 103353 | spa |
dcterms.references | Do H.N., Ijaz A., Gharahi H., Zambrano B., Choi J., Lee W., Baek S. Prediction of abdominal aortic aneurysm growth using dynamical Gaussian process implicit surface IEEE Trans. Biomed. Eng., 66 (3) (2019), pp. 609-622 | spa |
dcterms.references | Alis D., Alis C., Yergin M., Topel C., Asmakutlu O., Bagcilar O., Senli Y.D., Ustundag A., Salt V., Dogan S.N., Velioglu M., Selcuk H.H., Kara B., Ozer C., Oksuz I., Kizilkilic O., Karaarslan E. A joint convolutional-recurrent neural network with an attention mechanism for detecting intracranial hemorrhage on noncontrast head CT Sci. Rep., 12 (2084) (2022) | spa |
dcterms.references | Yuan Q., Peng Z., Chen Z., Guo Y., Yang B., Zeng X. Edge-preserving median filter and weighted coding with sparse nonlocal regularization for low-dose CT image denoising algorithm J. Healthcare Eng., 2021 (2021), pp. 1-7 | spa |
dcterms.references | Arabi H., AkhavanAllaf A., Sanaat A., Shiri I., Zaidi H. The promise of artificial intelligence and deep learning in PET and SPECT imaging Eur. J. Med. Phys., 83 (2021), pp. 122-137 | spa |
dcterms.references | Gobhinath S., Anandkumar S., Dhayalan R., Ezhilbharathi P., Haridharan R. Human brain tumor detection and classification by medical image processing 2021 7th International Conference on Advanced Computing and Communication Systems, vol. 1, ICACCS (2021), pp. 561-564 | spa |
dcterms.references | Srinivasa Reddy K., Jaya T. De-noising and enhancement of MRI medical images using Gaussian filter and histogram equalization Mater. Today: Proc. (2021) | spa |
dcterms.references | Li Q., Wang W., Chen G., Zhao D. Medical image fusion using segment graph filter and sparse representation Comput. Biol. Med., 131 (2021), Article 104239 | spa |
dcterms.references | Jiang Y., Liu J., Sheng H. High resolution image processing and CT perfusion imaging detection in patients with cerebral hemorrhage based on embedded system Microprocess. Microsyst., 81 (2021), Article 103700 | spa |
dcterms.references | Shibu D.S., Priyadharsini S.S. Multi scale decomposition based medical image fusion using convolutional neural network and sparse representation Biomed. Signal Process. Control, 69 (2021), Article 102789 | spa |
dcterms.references | Ullah Z., Farooq M.U., Lee S.-H., An D. A hybrid image enhancement based brain MRI images classification technique Med. Hypotheses, 143 (2020), Article 109922 | spa |
dcterms.references | O’Sullivan F., Gu F., Wu Q., O’Suilleabhain L.D. A generalized linear modeling approach to bootstrapping multi-frame PET image data Med. Image Anal., 72 (2021), Article 102132 | spa |
dcterms.references | Reddy M., Reddy P., Reddy P. Medical image fusion using integrated guided nonlinear anisotropic filtering with image statistics Int. J. Intell. Eng. Syst., 13 (2020), pp. 25-34 | spa |
dcterms.references | Lee J.Y., Kim J.S., Kim T.Y., Kim Y.S. Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm Sci. Rep., 10 (20546) (2020) | spa |
dcterms.references | Ginat D.T. Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage Neuroradiology (62) (2020), pp. 335-340 | spa |
dcterms.references | Z. Al-Ameen, Contrast Enhancement of Medical Images Using Statistical Methods with Image Processing Concepts, in: 2020 6th International Engineering Conference “Sustainable Technology and Development”, IEC, 2020, pp. 169–173. | spa |
dcterms.references | Burduja M., Ionescu R.T., Verga N. Accurate and efficient intracranial hemorrhage detection and subtype classification in 3D CT scans with convolutional and long short-term memory neural networks Sensors, 20 (19) (2020) | spa |
dcterms.references | You X., Cao N., Lu H., Mao M., Wang W. Denoising of MR images with rician noise using a wider neural network and noise range division Magn. Reson. Imaging, 64 (2019), pp. 154-159 | spa |
dcterms.references | Prezzi D., Owczarczyk K., Bassett P., Siddique M., Breen D., Cook G., Goh V. Adaptive statistical iterative reconstruction (ASIR) affects CT radiomics quantification in primary colorectal cancer Eur. Radiol., 29 (2019) | spa |
dcterms.references | Miller R.J., Singh A., Dey D., Slomka P. Artificial intelligence and cardiac PET/computed PET Clin., 17 (2022), pp. 85-94 | spa |
dcterms.references | Bravo Valero A.J., Vera M.Á., Huérfano Maldonado Y.K., Manrique Hidalgo Y.F. A comprehensive study of a similarity criterion in cardiac computerized tomography images enhancement Revista Facultad de Ingeniería Universidad de Antioquia (102) (2020), pp. 51-61 | spa |
dcterms.references | Nagy M.V., Jermendy Á.L., Suhai F.I., Panajotu A., Csőre J., Borzsák S., Fontanini D.M., Kolossváry M., Vattay B., Boussoussou M., Novák C.C., Merkely B., Horvat P.M., Szilveszter B. Model-based adaptive filter for a dedicated cardiovascular CT scanner: Assessment of image noise, sharpness and quality Eur. J. Radiol., 145 (2021), Article 110032 | spa |
dcterms.references | Yahia Y., Meddeber L., Zouagui T., Jennane R. A topology constrained geometric deformable model for medical image segmentation Biomed. Signal Process. Control, 64 (2021), Article 102299 | spa |
dcterms.references | Lareyre F., Adam C., Carrier M., Dommerc C., Mialhe C., Raffort J. A fully automated pipeline for mining abdominal aortic aneurysm using image segmentation Sci. Rep., 9 (13750) (2019) | spa |
dcterms.references | Baygin M., Yaman O., Barua P.D., Dogan S., Tuncer T., Acharya U.R. Exemplar darknet19 feature generation technique for automated kidney stone detection with coronal CT images Artif. Intell. Med., 127 (2022), Article 102274 | spa |
dcterms.references | Sudharson S., Pratap T., Kokil P. Noise level estimation for effective blind despeckling of medical ultrasound images Biomed. Signal Process. Control, 68 (2021), Article 102744 | spa |
dcterms.references | Kaur R., Juneja M., Mandal A. Machine learning based quantitative texture analysis of CT images for diagnosis of renal lesions Biomed. Signal Process. Control, 64 (2021), Article 102311 | spa |
dcterms.references | Akai H., Yasaka K., Kunimatsu A., Ohtomo K., Abe O., Kiryu S. Application of CT texture analysis to assess the localization of primary aldosteronism Sci. Rep., 10 (472) (2020) | spa |
dcterms.references | Traverso A., Kazmierski M., Shi Z., Kalendralis P., Welch M., Nissen H.D., Jaffray D., Dekker A., Wee L. Stability of radiomic features of apparent diffusion coefficient (ADC) maps for locally advanced rectal cancer in response to image pre-processing Phys. Medica, 61 (2019), pp. 44-51 | spa |
dcterms.references | Bahrami A., Karimian A., Arabi H. Comparison of different deep learning architectures for synthetic CT generation from MR images Eur. J. Med. Phys., 90 (2021), pp. 99-107 | spa |
dcterms.references | Anam C., Adi K., Sutanto H., Arifin Z., Budi W.S., Fujibuchi T., Dougherty G. Noise reduction in CT images using a selective mean filter J. Biomed. Phys. Eng., 10 (5) (2020), pp. 623-634 | spa |
dcterms.references | Garg S., Vijay R., Urooj S. Statistical approach to compare image denoising techniques in medical MR images Procedia Comput. Sci., 152 (2019), pp. 367-374 International Conference on Pervasive Computing Advances and Applications- PerCAA 2019 | spa |
dcterms.references | Valbuena O., Vera M.I., Vera M., Gelvez-Almeida E., Huérfano Y., Borrero M., Salazar-Torres J., Salazar W. Volumetric quantification in ovarian pathology using abdomino-pelvic computed tomography J. Phys. Conf. Ser., 1403 (1) (2019), Article 012014 | spa |
dcterms.references | Vera M., Sáenz F., Huérfano Y., Gelvez-Almeida E., Vera M.I., Salazar-Torres J., Valbuena O. Smart operator for the human liver automatic segmentation, present in medical images J. Phys. Conf. Ser., 1386 (1) (2019), Article 012132 | spa |
dcterms.references | Prabha B., Kaur S., Singh J., Nandankar P., Kumar Jain S., Pallathadka H. Intelligent predictions of Covid disease based on lung CT images using machine learning strategy Mater. Today: Proc. (2021) | spa |
dcterms.references | Gungor M.A. A comparative study on wavelet denoising for high noisy CT images of COVID-19 disease Optik, 235 (2021), Article 166652 | spa |
dcterms.references | Kuo C.-F.J., Barman J., Hsieh C.W., Hsu H.-H. Fast fully automatic detection, classification and 3D reconstruction of pulmonary nodules in CT images by local image feature analysis Biomed. Signal Process. Control, 68 (2021), Article 102790 | spa |
dcterms.references | Xu Y., Souza L.F., Silva I.C., Marques A.G., Silva F.H., Nunes V.X., Han T., Jia C., de Albuquerque V.H.C., Filho P.P.R. A soft computing automatic based in deep learning with use of fine-tuning for pulmonary segmentation in computed tomography images Appl. Soft Comput., 112 (2021), Article 107810 | spa |
dcterms.references | Huang Z., Liu X., Wang R., Chen J., Lu P., Zhang Q., Jiang C., Yang Y., Liu X., Zheng H., Liang D., Hu Z. Considering anatomical prior information for low-dose CT image enhancement using attribute-augmented wasserstein generative adversarial networks Neurocomputing, 428 (2021), pp. 104-115 | spa |
dcterms.references | Kuo C.-F.J., Huang C.-C., Siao J.-J., Hsieh C.-W., Huy V.Q., Ko K.-H., Hsu H.-H. Automatic lung nodule detection system using image processing techniques in computed tomography Biomed. Signal Process. Control, 56 (2020), Article 101659 | spa |
dcterms.references | Liu Q., Leung C., Hu P. A two-dimensional sparse matrix profile DenseNet for COVID-19 diagnosis using chest CT images IEEE Access, 8 (2020), pp. 213718-213728 | spa |
dcterms.references | Perumal S., Thambusamy V. Preprocessing by contrast enhancement techniques for medical images Int. J. Pure Appl. Math., 118 (2018), pp. 3681-3688 | spa |
dcterms.references | Soto O.R., Esparza E.R., Mata S.E.B., Oliva D., Hassanien A.E., Meleppat R.K., Zawadzki R.J. An efficient retinal blood vessel segmentation in eye fundus images by using optimized top-hat and homomorphic filtering Comput. Methods Programs Biomed., 201 (2021), Article 105949 | spa |
dcterms.references | Saoji S., Sarode M. Speckle and rician medical I noise removal from mages and ultrasound images Int. J. Recent Technol. Eng., 8 (2020), pp. 1851-1854 | spa |
dcterms.references | Kong W., Miao Q., Liu R., Lei Y., Cui J., Xie Q. Multimodal medical image fusion using gradient domain guided filter random walk and side window filtering in framelet domain Inform. Sci., 585 (2022), pp. 418-440 | spa |
dcterms.references | Tang Y., Gao R., Han S., Chen Y., Gao D., Nath V., Bermudez C., Savona M.R., Bao S., Lyu I., Huo Y., Landman B.A. Body part regression with self-supervision IEEE Trans. Med. Imaging, 40 (5) (2021), pp. 1499-1507 | spa |
dcterms.references | Diwakar M., Singh P., Shankar A. Multi-modal medical image fusion framework using co-occurrence filter and local extrema in NSST domain Biomed. Signal Process. Control, 68 (2021), Article 102788 | spa |
dcterms.references | Acharya U.K., Kumar S. Genetic algorithm based adaptive histogram equalization (GAAHE) technique for medical image enhancement Optik, 230 (2021), Article 166273 | spa |
dcterms.references | Xu X., Fugen Zhou B.L., Fu D., Ba X. Efficient multiple organ localization in CT image using 3D region proposal network IEEE Trans. Med. Med. Imaging, 38 (8) (2019), pp. 1885-1898 | spa |
dcterms.references | Abella M., Martínez C., Desco M., Vaquero J.J., Fessler J.A. Simplified statistical image reconstruction for X-ray CT with beam-hardening artifact compensation IEEE Trans. Med. Imaging, 39 (1) (2020), pp. 111-118 | spa |
dcterms.references | Wirtti T.T., Salles E.O.T. A soft-threshold filtering approach for tomography reconstruction from a limited number of projections with bilateral edge preservation Sensors, 19 (10) (2019) | spa |
dcterms.references | S. Yadav, S. Kulkarni, R. Patole, Image Quality Assessment, Denoising and Comparative Analysis using Filters for C-arm X-ray Images, in: IEEE Region 10 Conference, TENCON, 2019, pp. 2143–2147. | spa |
dcterms.references | Huérfano-Maldonado Y., Mora M., Vilches K., Hernández-García R., Gutiérrez R., Vera M. A comprehensive review of extreme learning machine on medical imaging Neurocomputing, 556 (2023), Article 126618 | spa |
dcterms.references | Dixon S. Diagnostic Imaging Dataset Statistical Release NHS England and NHS Improvement (2022) Reporte, Version 1, URL https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2022/12/Statistical-Release-15th-December-2022-PDF-487KB.pdf | spa |
oaire.version | info:eu-repo/semantics/publishedVersion |