Digital processing of medical images: application in synthetic cardiac datasets using the CRISP_DM methodology
dc.contributor.author | Contreras, Yudith | |
dc.contributor.author | Vera, Miguel | |
dc.contributor.author | Huérfano, Yoleidy | |
dc.contributor.author | Valbuena, Oscar | |
dc.contributor.author | Salazar, Williams | |
dc.contributor.author | Vera, María Isabel | |
dc.contributor.author | Borrero, Maryury | |
dc.contributor.author | Barrera, Doris | |
dc.contributor.author | Hernández, Carlos | |
dc.contributor.author | Molina, Ángel Valentín | |
dc.contributor.author | Martínez, Luis Javier | |
dc.contributor.author | Sáenz, Frank | |
dc.contributor.author | Vivas, Marisela | |
dc.contributor.author | Salazar, Juan | |
dc.contributor.author | Gelvez, Elkin | |
dc.date.accessioned | 2019-01-25T16:23:23Z | |
dc.date.available | 2019-01-25T16:23:23Z | |
dc.date.issued | 2018 | |
dc.description.abstract | In this work an adaptation of the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology, in the context of digital medical image processing is proposed. Specifically, synthetic images reported in the literature are used as numerical phantoms. Construction of the synthetic images was inspired by a detailed analysis of some of the imperfections found in the real multilayer cardiac computed tomography images. Of all the imperfections considered, only Poisson noise was selected and incorporated into a synthetic database. An example is presented in which images contaminated with Poisson noise are processed and then subject to two classical digital smoothing techniques, identified as Gaussian filter and anisotropic diffusion filter. Additionally, the peak of the signal-to-noise ratio (PSNR) is considered as a metric to analyze the performance of these filters. | eng |
dc.identifier.issn | 18564550 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12442/2527 | |
dc.language.iso | eng | eng |
dc.publisher | Sociedad Latinoamericana de Hipertensión | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.source | Revista Latinoamericana de Hipertensión | spa |
dc.source | Vol. 13, No. 4 (2018) | spa |
dc.source.uri | http://www.revhipertension.com/rlh_4_2018/1_digital_processing_of_medical.pdf | eng |
dc.subject | CRISP-DM Methodology | eng |
dc.subject | Synthetic cardiac images | eng |
dc.subject | Computerized tomography | eng |
dc.subject | Noise | eng |
dc.subject | Artifacts | eng |
dc.title | Digital processing of medical images: application in synthetic cardiac datasets using the CRISP_DM methodology | eng |
dc.title.alternative | Procesamiento digital de imágenes médicas: aplicación a bases de datos sintéticas cardiacas usando la metodología CRISP-DM | spa |
dc.type | article | eng |
dcterms.references | Moine J. Methodologies for the discovery of knowledge in databases: a comparative study. [Master´s thesis]. Mar de Plata-Argentina: University of la Plata, 2013. | eng |
dcterms.references | Dnuggets K (2007). Poll: ¿What main methodology are you using for data mining? Recovered in 7 de noviembre de 2010, de http://www. kdnuggets.com/polls/2007/data_mining_methodology.htm. | eng |
dcterms.references | Vera M. Segmentation of cardiac structures in multi-slice computed tomography images. [Doctoral thesis]. Merida-Venezuela: Los Andes University, 2014. | eng |
dcterms.references | Shapiro L, Stockman G. Computer Vision. 1 edition. Upper Saddle River, NJ: Pearson; 2001. | eng |
dcterms.references | Devroye L. Non–Uniform Random Variate Generation. New York, USA: Springer–Verlag, 1986. | eng |
dcterms.references | Pratt W. Digital Image Processing. USA: John Wiley & Sons Inc, 2007. | eng |
dcterms.references | González R., Woods R. Digital Image Processing. USA: Prentice Hall, 2001. | eng |
dcterms.references | Perona P., Malik J. Scalespace and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990:12 (7), pp. 629–639. | eng |
dcterms.references | Coupé P., Yger P., Prima S., Hellier P., Kervrann C., Barillot C. An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Transactions on Medical Imaging, 2008: 27 (4), pp. 425–441. | eng |
dcterms.references | Meijering H. Image enhancement in digital X–ray angiography. [Tesis Doctoral], Utrecht University, Netherlands, 2000. | eng |
dcterms.references | Lei T., Sewchand W. Statistical approach to x–ray CT imaging and its applications in image analysis. statistical analysis of x–ray CT imaging. IEEE Transactions on Medical Imaging, 1992: 11 (1), pp. 53–61. | eng |
dcterms.references | Lu H., Li X., Hsiao I., Liang Z. Analytical noise treatment for low-dose ct projection data by penalized weighted least-square smoothing in the kl domain. Proceedings of SPIE Medical Imaging, 2002: 4682, pp. 146–152. | eng |
dcterms.references | Schroeder W., Martin K., Lorensen B. The Visualization Toolkit, An Object-Oriented Approach to 3D Graphics. New York: Prentice Hall, 2001. | eng |
dcterms.references | Fast Light Toolkit (FLTK). Web page available on line: http://fltk.org/ last access: Oct, 2017. | eng |
dcterms.references | B. Stroustrup, The C++ Programming Language. MA, USA: Addison– Wesley, 2000. | eng |