Digital processing of medical images: application in synthetic cardiac datasets using the CRISP_DM methodology

dc.contributor.authorContreras, Yudith
dc.contributor.authorVera, Miguel
dc.contributor.authorHuérfano, Yoleidy
dc.contributor.authorValbuena, Oscar
dc.contributor.authorSalazar, Williams
dc.contributor.authorVera, María Isabel
dc.contributor.authorBorrero, Maryury
dc.contributor.authorBarrera, Doris
dc.contributor.authorHernández, Carlos
dc.contributor.authorMolina, Ángel Valentín
dc.contributor.authorMartínez, Luis Javier
dc.contributor.authorSáenz, Frank
dc.contributor.authorVivas, Marisela
dc.contributor.authorSalazar, Juan
dc.contributor.authorGelvez, Elkin
dc.date.accessioned2019-01-25T16:23:23Z
dc.date.available2019-01-25T16:23:23Z
dc.date.issued2018
dc.description.abstractIn this work an adaptation of the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology, in the context of digital medical image processing is proposed. Specifically, synthetic images reported in the literature are used as numerical phantoms. Construction of the synthetic images was inspired by a detailed analysis of some of the imperfections found in the real multilayer cardiac computed tomography images. Of all the imperfections considered, only Poisson noise was selected and incorporated into a synthetic database. An example is presented in which images contaminated with Poisson noise are processed and then subject to two classical digital smoothing techniques, identified as Gaussian filter and anisotropic diffusion filter. Additionally, the peak of the signal-to-noise ratio (PSNR) is considered as a metric to analyze the performance of these filters.eng
dc.identifier.issn18564550
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2527
dc.language.isoengeng
dc.publisherSociedad Latinoamericana de Hipertensiónspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceRevista Latinoamericana de Hipertensiónspa
dc.sourceVol. 13, No. 4 (2018)spa
dc.source.urihttp://www.revhipertension.com/rlh_4_2018/1_digital_processing_of_medical.pdfeng
dc.subjectCRISP-DM Methodologyeng
dc.subjectSynthetic cardiac imageseng
dc.subjectComputerized tomographyeng
dc.subjectNoiseeng
dc.subjectArtifactseng
dc.titleDigital processing of medical images: application in synthetic cardiac datasets using the CRISP_DM methodologyeng
dc.title.alternativeProcesamiento digital de imágenes médicas: aplicación a bases de datos sintéticas cardiacas usando la metodología CRISP-DMspa
dc.typearticleeng
dcterms.referencesMoine J. Methodologies for the discovery of knowledge in databases: a comparative study. [Master´s thesis]. Mar de Plata-Argentina: University of la Plata, 2013.eng
dcterms.referencesDnuggets K (2007). Poll: ¿What main methodology are you using for data mining? Recovered in 7 de noviembre de 2010, de http://www. kdnuggets.com/polls/2007/data_mining_methodology.htm.eng
dcterms.referencesVera M. Segmentation of cardiac structures in multi-slice computed tomography images. [Doctoral thesis]. Merida-Venezuela: Los Andes University, 2014.eng
dcterms.referencesShapiro L, Stockman G. Computer Vision. 1 edition. Upper Saddle River, NJ: Pearson; 2001.eng
dcterms.referencesDevroye L. Non–Uniform Random Variate Generation. New York, USA: Springer–Verlag, 1986.eng
dcterms.referencesPratt W. Digital Image Processing. USA: John Wiley & Sons Inc, 2007.eng
dcterms.referencesGonzález R., Woods R. Digital Image Processing. USA: Prentice Hall, 2001.eng
dcterms.referencesPerona P., Malik J. Scalespace and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990:12 (7), pp. 629–639.eng
dcterms.referencesCoupé P., Yger P., Prima S., Hellier P., Kervrann C., Barillot C. An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Transactions on Medical Imaging, 2008: 27 (4), pp. 425–441.eng
dcterms.referencesMeijering H. Image enhancement in digital X–ray angiography. [Tesis Doctoral], Utrecht University, Netherlands, 2000.eng
dcterms.referencesLei T., Sewchand W. Statistical approach to x–ray CT imaging and its applications in image analysis. statistical analysis of x–ray CT imaging. IEEE Transactions on Medical Imaging, 1992: 11 (1), pp. 53–61.eng
dcterms.referencesLu H., Li X., Hsiao I., Liang Z. Analytical noise treatment for low-dose ct projection data by penalized weighted least-square smoothing in the kl domain. Proceedings of SPIE Medical Imaging, 2002: 4682, pp. 146–152.eng
dcterms.referencesSchroeder W., Martin K., Lorensen B. The Visualization Toolkit, An Object-Oriented Approach to 3D Graphics. New York: Prentice Hall, 2001.eng
dcterms.referencesFast Light Toolkit (FLTK). Web page available on line: http://fltk.org/ last access: Oct, 2017.eng
dcterms.referencesB. Stroustrup, The C++ Programming Language. MA, USA: Addison– Wesley, 2000.eng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
402.73 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
368 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones