Evaluación de genotoxicidad de nanopartículas de carbón usando células V79

datacite.rightshttp://purl.org/coar/access_right/c_16ecspa
dc.contributor.advisorLeón Mejía, Grethel
dc.contributor.advisorMiranda Guevara, Alvaro
dc.contributor.authorRodríguez Tapia, Julian David
dc.date.accessioned2023-11-28T21:38:49Z
dc.date.available2023-11-28T21:38:49Z
dc.date.issued2023
dc.description.abstractLa exposición crónica al material particulado derivado de la actividad minera se asocia con graves consecuencias clínicas. Los estudios han vinculado esta exposición con neumoconiosis, bronquitis crónica, enfisema, fibrosis y cáncer pulmonar en mineros de carbón, además de alteraciones en parámetros biológicos en las poblaciones aledañas. Sin embargo, establecer una causalidad directa es complejo debido a múltiples variables características de los modelos de exposición crónica. En orden de explorar los efectos de la exposición a nanopartículas de carbón proveniente de una de las minas cercanas a La Loma-Cesar, el presente trabajo buscó caracterizar el contenido de hidrocarburos aromáticos policíclicos (HAP) de las nanopartículas (NP) usando Cromatografía de Gases acoplada a Espectrometría de Masas (GC/MS) y se evaluaron los efectos de la exposición in vitro a diferentes concentraciones de NP en células de fibroblastos de pulmón de hámster chino (V79) usando el ensayo cometa alcalino y modificado con enzimas EndoIII y FPG. Dentro de los resultados obtenidos se destaca la presencia de HAPs en las NP tales como fluoranteno, naftaleno, antraceno, 7H-benzo[c]fluoreno, fenantreno, pireno, benceno[a]antraceno, criseno y algunos derivados alquilados. En el análisis de genotoxicidad de las NP sobre células V79 se encontró un efecto dosis-respuesta ante las concentraciones usadas. Estos datos respaldan la hipótesis de que las nanopartículas de carbón derivadas de la actividad minera tienen un impacto en la integridad genética y pueden llevar a muerte celular programada. Estos resultados pueden direccionar futuras investigaciones y estudios adicionales para profundizar en la comprensión de los efectos, los cuales sean punto de apoyo para explorar estrategias de mitigación o de reducción de los riesgos asociados con la exposición a nanopartículas de carbón.spa
dc.description.abstractChronic exposure to particulate matter derived from mining activity is associated with serious clinical consequences. Studies have linked this exposure to pneumoconiosis, chronic bronchitis, emphysema, fibrosis, and lung cancer in coal miners, in addition to alterations in biological parameters in surrounding populations. However, establishing direct causality is complex due to multiple variables characteristic of chronic exposure models. In order to explore the effects of exposure to carbon nanoparticles from one of the mines near La Loma-Cesar, the present work sought to characterize the polycyclic aromatic hydrocarbon (PAH) content of the nanoparticles (NP) using Gas Chromatography coupled to Mass Spectrometry (GC/MS) and the effects of in vitro exposure to different concentrations of NP in Chinese hamster lung fibroblast cells (V79) were evaluated using the alkaline comet assay and modified with EndoIII and FPG enzymes. Among the results obtained, the presence of PAHs in the NPs stands out, such as fluoranthene, naphthalene, anthracene, 7H-benzo[c]fluorene, phenanthrene, pyrene, benzene[a]anthracene, chrysene and some alkylated derivatives. In the genotoxicity analysis of the NPs on V79 cells, a dose-response effect was found with the concentrations used. These data support the hypothesis that carbon nanoparticles derived from mining activity have an impact on genetic integrity and can lead to programmed cell death. These results can direct future research and additional studies to deepen the understanding of the effects, which can serve as a basis for exploring mitigation or reduction strategies for the risks associated with exposure to carbon nanoparticles.eng
dc.format.mimetypepdfspa
dc.identifier.urihttps://hdl.handle.net/20.500.12442/13471
dc.language.isospaspa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias Básicas y Biomédicasspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectNanopartículas de carbónspa
dc.subjectGenotoxicidadspa
dc.subjectEstrés oxidativospa
dc.subjectHidrocarburos aromáticos policíclicosspa
dc.subjectCélulas V79spa
dc.subjectCarbon nanoparticleseng
dc.subjectGenetic damageeng
dc.subjectOxidative stresseng
dc.subjectPolycyclic aromatic hydrocarbonseng
dc.subjectMining activity V79.eng
dc.titleEvaluación de genotoxicidad de nanopartículas de carbón usando células V79spa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.spaTrabajo de grado - pregradospa
dcterms.referencesBalat M. Coal in the Global Energy Scene. Energy Sources, Part B: Economics, Planning, and Policy. 2009 Dec 28;5(1):50–62.eng
dcterms.referencesLien L. Advances in coal mining technology. In: The Coal Handbook: Towards Cleaner Production. Elsevier; 2013. p. 193–225eng
dcterms.referencesSahu SP, Yadav M, Rani N, Das AJ. Assessment of occupational health exposure to particulate matter around opencast coal mines, India: a case study. Arabian Journal of Geosciences. 2018 Jul 12;11(14):373eng
dcterms.referencesArregocés HA, Rojano R, Restrepo G. Meteorological factors contributing to organic and elemental carbon concentrations in PM10 near an open-pit coal mine. Environmental Science and Pollution Research. 2022 Apr 6;29(19):28854–65.eng
dcterms.referencesYang Y, Ligouis B, Pies C, Grathwohl P, Hofmann T. Occurrence of coal and coal-derived particle-bound polycyclic aromatic hydrocarbons (PAHs) in a river floodplain soil. Environmental Pollution. 2008 Jan;151(1):121–9.eng
dcterms.referencesSun L, Liao X, Yan X, Zhu G, Ma D. Evaluation of heavy metal and polycyclic aromatic hydrocarbons accumulation in plants from typical industrial sites: potential candidate in phytoremediation for co-contamination. Environmental Science and Pollution Research. 2014 Nov 20;21(21):12494–504eng
dcterms.referencesKwon HS, Ryu MH, Carlsten C. Ultrafine particles: unique physicochemical properties relevant to health and disease. Exp Mol Med. 2020 Mar 17;52(3):318–28.eng
dcterms.referencesEnvironmental Protection Agency. Air Quality Criteria for Particulate Matter (Final Report, 2004). Vol. EPA 600. 2004eng
dcterms.referencesLarionov A, Volobaev V, Zverev A, Vdovina E, Bach S, Schetnikova E, et al. Chemical Composition and Toxicity of PM10 and PM0.1 Samples near Open-Pit Mines and Coal Power Stations. Life. 2022 Jul 13;12(7):1047eng
dcterms.referencesPietroiusti A. Health implications of engineered nanomaterials. Nanoscale. 2012;4(4):1231eng
dcterms.referencesBrugge D, Durant JL, Rioux C. Near-highway pollutants in motor vehicle exhaust: A review of epidemiologic evidence of cardiac and pulmonary health risks. Environmental Health. 2007 Dec 9;6(1):23.eng
dcterms.referencesOberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, et al. Translocation of Inhaled Ultrafine Particles to the Brain. Inhal Toxicol. 2004 Jan;16(6–7):437–45.eng
dcterms.referencesTerzano C, Di Stefano F, Conti V, Graziani E, Petroianni A. Air pollution ultrafine particles: toxicity beyond the lung. Eur Rev Med Pharmacol Sci. 2010 Oct;14(10):809–21.eng
dcterms.referencesRenwick LC, Donaldson K, Clouter A. Impairment of Alveolar Macrophage Phagocytosis by Ultrafine Particles. Toxicol Appl Pharmacol. 2001 Apr;172(2):119–27.eng
dcterms.referencesOberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ Health Perspect. 2005 Jul;113(7):823–39.eng
dcterms.referencesBlamey Benavides X, Mosquera E, Díaz F. Estudio exploratorio II: Identificación de nanopartículas en procesos industriales de soldadura y de minería. Ciencia & trabajo. 2016;18(55):28–36spa
dcterms.referencesHuertas JI, Huertas ME, Solís DA. Characterization of airborne particles in an open pit mining region. Science of The Total Environment. 2012 Apr;423:39–46.eng
dcterms.referencesRen M, Zheng L, Hu J, Chen X, Zhang Y, Dong X, et al. Characterization of polycyclic aromatic hydrocarbons in soil in a coal mining area, East China: Spatial distribution, sources, and carcinogenic risk assessment. Front Earth Sci (Lausanne). 2022 Oct 31;10.eng
dcterms.referencesMasto RE, Singh MK, Rout TK, Kumar A, Kumar S, George J, et al. Health risks from PAHs and potentially toxic elements in street dust of a coal mining area in India. Environ Geochem Health. 2019 Oct 4;41(5):1923–37.eng
dcterms.referencesWu D, Wang Z, Chen J, Kong S, Fu X, Deng H, et al. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 and PM10 at a coal-based industrial city: Implication for PAH control at industrial agglomeration regions, China. Atmos Res. 2014 Nov;149:217–29.eng
dcterms.referencesTrechera P, Moreno T, Córdoba P, Moreno N, Zhuang X, Li B, et al. Comprehensive evaluation of potential coal mine dust emissions in an open-pit coal mine in Northwest China. Int J Coal Geol. 2021 Feb;235:103677.eng
dcterms.referencesEspitia-Pérez L, da Silva J, Espitia-Pérez P, Brango H, Salcedo-Arteaga S, Hoyos-Giraldo LS, et al. Cytogenetic instability in populations with residential proximity to open-pit coal mine in Northern Colombia in relation to PM10 and PM2.5 levels. Ecotoxicol Environ Saf. 2018 Feb;148:453–66.eng
dcterms.referencesBray C, Battye W, Uttamang P, Pillai P, Aneja V. Characterization of Particulate Matter (PM2.5 and PM10) Relating to a Coal Power Plant in the Boroughs of Springdale and Cheswick, PA. Atmosphere (Basel). 2017 Sep 23;8(10):186.eng
dcterms.referencesTimonen H. TK, AM, RF, VY, BM, OP, HR, AE& SS. Sources and composition of particulate matter in boreal arctic environment next to an active mining area. Boreal Env Res. 2018;23:105–25.eng
dcterms.referencesAbdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum. 2016 Mar;25(1):107–23.eng
dcterms.referencesAchten C, Hofmann T. Native polycyclic aromatic hydrocarbons (PAH) in coals – A hardly recognized source of environmental contamination. Science of The Total Environment. 2009 Apr;407(8):2461–73.eng
dcterms.referencesLiu J, Liu G, Zhang J, Yin H, Wang R. Occurrence and risk assessment of polycyclic aromatic hydrocarbons in soil from the Tiefa coal mine district, Liaoning, China. Journal of Environmental Monitoring. 2012;14(10):2634eng
dcterms.referencesTopinka J, Rossner P, Milcova A, Schmuczerova J, Svecova V, Sram RJ. DNA adducts and oxidative DNA damage induced by organic extracts from PM2.5 in an acellular assay. Toxicol Lett. 2011 May;202(3):186–92.eng
dcterms.referencesOhno M, Sakumi K, Fukumura R, Furuichi M, Iwasaki Y, Hokama M, et al. 8-oxoguanine causes spontaneous de novo germline mutations in mice. Sci Rep. 2014 Apr 15;4(1):4689.eng
dcterms.referencesParry EM. Detection and characterization of mechanisms of action of aneugenic chemicals. Mutagenesis. 2002 Nov 1;17(6):509–21.eng
dcterms.referencesIARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum. 2010;92:1–853.eng
dcterms.referencesPham AN, Xing G, Miller CJ, Waite TD. Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J Catal. 2013 May;301:54–64.eng
dcterms.referencesGo LHT, Cohen RA. Coal Workers’ Pneumoconiosis and Other Mining-Related Lung Disease. Clin Chest Med. 2020 Dec;41(4):687–96.eng
dcterms.referencesRomero M, Varona M, Ibáñez-Pinilla M, Briceño L. Prevalence of pneumoconiosis and spirometric findings in underground mining workers in Cundinamarca, Colombia. Revista de la Facultad de Medicina. 2019 Oct 1;67(4):393–8.eng
dcterms.referencesLaney AS, Weissman DN. Respiratory Diseases Caused by Coal Mine Dust. J Occup Environ Med. 2014 Oct;56(Supplement 10):S18–22.eng
dcterms.referencesButtling LG, McKnight MX, Kolivras KN, Ranganathan S, Gohlke JM. Maternal proximity to Central Appalachia surface mining and birth outcomes. Environmental Epidemiology. 2021 Feb;5(1):e128.eng
dcterms.referencesRuktanonchai CW, McKnight MX, Buttling L, Kolivras K, Krometis LA, Gohlke J. Identifying exposure pathways mediating adverse birth outcomes near active surface mines in Central Appalachia. Environmental Epidemiology. 2022 Jun;6(3):e208.eng
dcterms.referencesHendryx M, Entwhistle J. Association between residence near surface coal mining and blood inflammation. Extr Ind Soc. 2015 Apr;2(2):246–51.eng
dcterms.referencesLeón-Mejía G, Quintana M, Debastiani R, Dias J, Espitia-Pérez L, Hartmann A, et al. Genetic damage in coal miners evaluated by buccal micronucleus cytome assay. Ecotoxicol Environ Saf. 2014 Sep;107:133–9.eng
dcterms.referencesLeón-Mejía G, Espitia-Pérez L, Hoyos-Giraldo LS, Da Silva J, Hartmann A, Henriques JAP, et al. Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. Science of The Total Environment. 2011 Jan;409(4):686–91.eng
dcterms.referencesÁvila Júnior S, Possamai FP, Budni P, Backes P, Parisotto EB, Rizelio VM, et al. Occupational airborne contamination in south Brazil: 1. Oxidative stress detected in the blood of coal miners. Ecotoxicology. 2009 Nov 18;18(8):1150–7.eng
dcterms.referencesPlinio Enrique Bustamante Ortega; Rafael Eduardo García Molano; Oswald Maya Sánchez; Juan Felipe Rodríguez López; Tatiana Aguilar Londoño. Minería de carbón en colombia transformando el futuro de la industria. Ministerio de Minas y Energía. 2022;eng
dcterms.referencesDrummond Ltd. https://www.drummondltd.com/nuestras-operaciones/minas/]. Nuestras operaciones: Minas.eng
dcterms.referencesGuerrero-Castilla A, Olivero-Verbel J, Marrugo-Negrete J. Heavy metals in wild house mice from coal-mining areas of Colombia and expression of genes related to oxidative stress, DNA damage and exposure to metals. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2014 Mar;762:24–9.eng
dcterms.referencesLeón-Mejía G, Rueda RA, Pérez Pérez J, Miranda-Guevara A, Moreno OF, Quintana-Sosa M, et al. Analysis of the cytotoxic and genotoxic effects in a population chronically exposed to coal mining residues. Environmental Science and Pollution Research. 2023 Mar 4;30(18):54095–105.eng
dcterms.referencesLeón-Mejía G, Vargas JE, Quintana-Sosa M, Rueda RA, Pérez JP, Miranda-Guevara A, et al. Exposure to coal mining can lead to imbalanced levels of inorganic elements and DNA damage in individuals living near open-pit mining sites. Environ Res. 2023 Jun;227:115773.eng
dcterms.referencesMiranda-Guevara A, Muñoz-Acevedo A, Fiorillo-Moreno O, Acosta-Hoyos A, Pacheco-Londoño L, Quintana-Sosa M, et al. The dangerous link between coal dust exposure and DNA damage: unraveling the role of some of the chemical agents and oxidative stress. Environ Geochem Health. 2023 Oct 4;45(10):7081–97.eng
dcterms.referencesFlint OP. In Vitro Toxicity Testing: Purpose, Validation and Strategy. Alternatives to Laboratory Animals. 1990 Nov 13;18(1_part_1):11–8.eng
dcterms.referencesLeón-Mejía G, Silva LFO, Civeira MS, Oliveira MLS, Machado M, Villela IV, et al. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells. Environmental Science and Pollution Research. 2016 Dec 16;23(23):24019–31.eng
dcterms.referencesMatzenbacher CA, Garcia ALH, dos Santos MS, Nicolau CC, Premoli S, Corrêa DS, et al. DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro. J Hazard Mater. 2017 Feb;324:781–8.eng
dcterms.referencesCaria H, Chaveca T, Laires A, Rueff J. Genotoxicity of quercetin in the micronucleus assay in mouse bone marrow erythrocytes, human lymphocytes, V79 cell line and identification of kinetochore-containing (CREST staining) micronuclei in human lymphocytes. Mutation Research/Genetic Toxicology. 1995 Jun;343(2–3):85–94eng
dcterms.referencesSARIGÖL KILIÇ Z, ÇAL T, ÜNDEĞER BUCURGAT Ü. Evaluation of the Methylation and Acetylation Profiles of Dinitroaniline Herbicides and Resveratrol on the V79 Cell Line. Turk J Pharm Sci. 2020 Dec 1;17(6):631–7.eng
dcterms.referencesOlive PL, Banáth JP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc. 2006 Jun 27;1(1):23–9.eng
dcterms.referencesCannan WJ, Pederson DS. Mechanisms and Consequences of Double‐Strand DNA Break Formation in Chromatin. J Cell Physiol. 2016 Jan 28;231(1):3–14.eng
dcterms.referencesVamvakas S, Vock EH, Lutz WK. On the Role of DNA Double-Strand Breaks in Toxicity and Carcinogenesis. Crit Rev Toxicol. 1997 Jan 25;27(2):155–74.eng
dcterms.referencesGarm C, Moreno‐Villanueva M, Bürkle A, Larsen LA, Bohr VA, Christensen K, et al. Genetic and environmental influence on DNA strand break repair: A twin study. Environ Mol Mutagen. 2013 Jul 25;54(6):414–20eng
dcterms.referencesMaynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis. 2008 Sep 12;30(1):2–10.eng
dcterms.referencesCooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. The FASEB Journal. 2003 Jul;17(10):1195–214.eng
dcterms.referencesCollins AR. The Comet Assay for DNA Damage and Repair: Principles, Applications, and Limitations. Mol Biotechnol. 2004;26(3):249–61.eng
dcterms.referencesHuang B, Liu G, Wang P, Zhao X, Xu H. Effect of Nitric Acid Modification on Characteristics and Adsorption Properties of Lignite. Processes. 2019 Mar 22;7(3):167.eng
dcterms.referencesSingh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988 Mar;175(1):184–91.eng
dcterms.referencesLu Y, Liu Y, Yang C. Evaluating <em>In Vitro</em> DNA Damage Using Comet Assay. Journal of Visualized Experiments. 2017 Oct 11;(128).eng
dcterms.referencesMøller P. Genotoxicity of environmental agents assessed by the alkaline comet assay. Basic Clin Pharmacol Toxicol. 2005;96 Suppl 1:1–42.eng
dcterms.referencesLinstrom PJ& MWG. Linstrom, P.J. & Mallard, W.G. (2022). NIST chemistry WebBook, NIST Standard Reference Database Number 69. In: National Institute of Standards and Technology. Gaithersburg MD; 2022.eng
dcterms.referencesGualtieri M, Mantecca P, Corvaja V, Longhin E, Perrone MG, Bolzacchini E, et al. Winter fine particulate matter from Milan induces morphological and functional alterations in human pulmonary epithelial cells (A549). Toxicol Lett. 2009 Jul;188(1):52–62.eng
dcterms.referencesHuang X, Shi X, Zhou J, Li S, Zhang L, Zhao H, et al. The activation of antioxidant and apoptosis pathways involved in damage of human proximal tubule epithelial cells by PM2.5 exposure. Environ Sci Eur. 2020 Dec 16;32(1):2.eng
dcterms.referencesDeng X, Zhang F, Rui W, Long F, Wang L, Feng Z, et al. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicology in Vitro. 2013 Sep;27(6):1762–70.eng
dcterms.referencesAllen M, Millett P, Dawes E, Rushton N. Lactate dehydrogenase activity as a rapid and sensitive test for the quantification of cell numbers in vitro. Clin Mater. 1994 Jan;16(4):189–94.eng
dcterms.referencesMiranda Guevara AJFMOAHAQSMPLLRJTFJPMFMLWLMG. Análisis in vitro de citotoxicidad y genotoxicidad causado por nanopartículas de carbón. In: Calidad de aire, cambio climático y salud pública . Hill Consulting; 2023.eng
dcterms.referencesWang G, Zheng X, Duan H, Dai Y, Niu Y, Gao J, et al. High-content analysis of particulate matters-induced oxidative stress and organelle dysfunction in vitro. Toxicology in Vitro. 2019 Sep;59:263–74.eng
dcterms.referencesGeiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, et al. Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells. Environ Health Perspect. 2005 Nov;113(11):1555–60.eng
dcterms.referencesJomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011 May;283(2–3):65–87.eng
dcterms.referencesLuo H, Lu Y, Shi X, Mao Y, Dalal NS. Chromium (IV)-mediated fenton-like reaction causes DNA damage: implication to genotoxicity of chromate. Ann Clin Lab Sci. 1996;26(2):185–91eng
dcterms.referencesLeón-Mejía G, Sosa MQ, Rohr P, Kvitko K, Henriques JAP, da Silva J. Occupational Exposure to Coal, Genotoxicity, and Cancer Risk. In: Environmental Health Risk - Hazardous Factors to Living Species. InTech; 2016.eng
dcterms.referencesBjelland S. Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2003 Oct 29;531(1–2):37–80.eng
dcterms.referencesDesler C, Johannessen C, Rasmussen LJ. Repair of DNA damage induced by anthanthrene, a polycyclic aromatic hydrocarbon (PAH) without bay or fjord regions. Chem Biol Interact. 2009 Feb;177(3):212–7.eng
dcterms.referencesChen C, editor. Selected Topics in DNA Repair. InTech; 2011.eng
dcterms.referencesGurbani D, Bharti SK, Kumar A, Pandey AK, Ana GREE, Verma A, et al. Polycyclic aromatic hydrocarbons and their quinones modulate the metabolic profile and induce DNA damage in human alveolar and bronchiolar cells. Int J Hyg Environ Health. 2013 Aug;216(5):553–65eng
dcterms.referencesJacob J, Raab G, Soballa V, Schmalix WA, Grimmer G, Greim H, et al. Cytochrome P450-mediated activation of phenanthrene in genetically engineered V79 Chinese hamster cells. Environ Toxicol Pharmacol. 1996 Feb;1(1):1–11.eng
dcterms.referencesBeach AC, Harmon J. Additive effects and potential inhibitory mechanism of some common aromatic pollutants on in vitro mitochondrial respiration. J Biochem Toxicol. 1992 Sep 8;7(3):155–61.eng
dcterms.referencesHarmon HJ, Sanborn MR. Effect of naphthalene on respiration in heart mitochondria and intact cultured cells. Environ Res. 1982 Oct;29(1):160–73.eng
dcterms.referencesSchirmer K, Dixon DG, Greenberg BM, Bols NC. Ability of 16 priority PAHs to be directly cytotoxic to a cell line from the rainbow trout gill. Toxicology. 1998 May;127(1–3):129–41.eng
dcterms.referencesSun K, Song Y, Zong W, Tang J, Liu R. Anthracene-induced DNA damage and oxidative stress: a combined study at molecular and cellular levels. Environmental Science and Pollution Research. 2020 Nov 19;27(33):41458–74.eng
oaire.versioninfo:eu-repo/semantics/acceptedVersionspa
sb.programaMicrobiologíaspa
sb.sedeSede Barranquillaspa

Archivos

Colecciones