Análisis de un panel multigénico y prevalencia de variantes genéticas en pacientes con cáncer de mama hereditario en Córdoba, 2016-2020
datacite.rights | http://purl.org/coar/access_right/c_16ec | eng |
dc.contributor.advisor | Trindade, Cristiano | |
dc.contributor.advisor | Rugeles Mindiola, Jorge Andres | |
dc.contributor.author | Hoyos Verbel, Jorge Hernan | |
dc.date.accessioned | 2022-02-14T19:51:39Z | |
dc.date.available | 2022-02-14T19:51:39Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Introducción: El cáncer de mama es una enfermedad neoplásica que afecta una de cada 8 mujeres (12.5%), siendo esta la patología más frecuente en mujeres en lo que se refiere a cáncer. Sus causas son multifactoriales por lo que confieren un riesgo variable en diferentes poblaciones, dado a condiciones esporádicas, o a una predisposición hereditaria o poligénica. Cerca del 10% de los tumores son hereditarios por mutaciones de línea germinal en genes con un grado de susceptibilidad variable en el desarrollo del cáncer de mama. La identificación de variantes patogénicas por secuenciación de siguiente generación tiene gran utilidad en la toma de decisiones. Por lo que este estudio realizó un análisis descriptivo de variantes genéticas de un panel multigénico realizadas a pacientes con diagnóstico de cáncer de mama, enfocado a evaluar la prevalencia de mutaciones de línea germinal en un instituto oncológico para determinar las variantes encontradas en la población de córdoba. Objetivo: Determinar la prevalencia de las variantes genéticas del panel multigénico y caracterizar las variables clínico-epidemiológicas de pacientes con diagnóstico de cáncer de mama hereditario en la clínica IMAT-Oncomedica de Montería durante el periodo del 2016-2020. Métodos: Mediante los resultados de un panel multigénico realizado a 452 pacientes con cáncer de mama no seleccionada por edad o historia familiar, que han acudido al instituto oncológica IMAT-Oncomedica, se hizo un análisis estadístico de la prevalencia de las variantes genéticas encontradas. Resultados: Se observaron 57 (12.6%) pacientes con resultado positivo para una mutación de 452 (100%), entre estos predominó el género femenino con el 99.3% (449) y el 0.7% (3) para el sexo masculino, las mutaciones identificadas en la secuenciación de próxima generación (NGS) fueron de tipo sustitución con el 5.8% (26), seguidas de la deleciones con el 4.6% (21), largas deleciones o duplicaciones del gen BRCA1 y PALB2 con el 1.8% (8) y por ultimo las duplicaciones con el 0.4% (2). Conclusiones: La tasa de prevalencia de las mutaciones en el panel multigénico fue mayor en las sustituciones identificando genes de alta penetrancia BRCA1/2, TP53, genes de moderada penetrancia ATM, CHEK2, PALB2, y genes de baja penetrancia RAD51C, MLH1, MUTYH en casos de cáncer de mama no seleccionados de la región de Córdoba en Colombia y es de aproximadamente 5.8%. | spa |
dc.description.abstract | Introduction: Breast cancer is a neoplastic disease that affects one in every 8 women (12.5%), this being the most frequent pathology in women in terms of cancer. Its causes are multifactorial, so they confer a variable risk in different populations, due to sporadic conditions, or a hereditary or polygenetic predisposition. About 10% of tumors are hereditary due to germline mutations in genes with a variable degree of susceptibility in the development of breast cancer. The identification of pathogenic variants by next generation sequencing is very useful in decision making. Therefore, this study carried out a descriptive analysis of genetic variants of a multigenic panel performed on patients diagnosed with breast cancer, focused on evaluating the prevalence of germline mutations in a cancer institute to determine the variants found in the population of Córdoba. Objective: To determine the prevalence of genetic variants of the multigenic panel and to characterize the clinical-epidemiological variables of patients diagnosed with hereditary breast cancer at the IMAT-Oncomedica clinic in Montería during the period 2016-2020. Methods: Using the results of a multigenic panel performed on 452 patients with breast cancer not selected by age or family history, who have attended the IMAT-Oncomedica cancer institute, a statistical analysis of the prevalence of the genetic variants found was made. Results: 57 (12.6%) patients with a positive result for a mutation of 452 (100%) were observed, among them the female gender predominated with 99.3% (449) and 0.7% (3) for males, the mutations identified in Next generation sequencing (NGS) were of the substitution type with 5.8% (26), followed by deletions with 4.6% (21), long deletions or duplications of the BRCA1 and PALB2 gene with 1.8% (8) and by last duplications with 0.4% (2). Conclusions: The prevalence rate of mutations in the multigenic panel was higher in the substitutions identifying high penetrance genes BRCA1/2, TP53, moderate penetrance genes ATM, CHEK2, PALB2, and low penetrance genes RAD51C, MLH1, MUTYH in cases of unselected breast cancer from the Córdoba region in Colombia and is approximately 5.8%. | eng |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/9362 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolivar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | eng |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Cáncer de mama | spa |
dc.subject | BRCA 1 | spa |
dc.subject | BRCA 2 | spa |
dc.subject | Panel de genes | spa |
dc.subject | Breast cancer | eng |
dc.subject | Gene panel | eng |
dc.title | Análisis de un panel multigénico y prevalencia de variantes genéticas en pacientes con cáncer de mama hereditario en Córdoba, 2016-2020 | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | eng |
dc.type.spa | Trabajo de grado máster | spa |
dcterms.references | Casaubon JT, Grewal US, Kashyap S, et al. BRCA 1 y 2. [Actualizado el 17 de julio de 2020]. En: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020 enero. https://www.ncbi.nlm.nih.gov/books/NBK470239/ | eng |
dcterms.references | Yoshida R. Hereditary breast and ovarian cancer (HBOC): review of its molecular characteristics, screening, treatment, and prognosis. Breast Cancer. agosto de 2020;1:3. DOI: 10.1007/s12282-020-01148-2 | eng |
dcterms.references | Londoño Hernández JE, Llacuachaqui M, Palacio GV, Figueroa JD, Madrid J, Lema M, et al. Prevalence of BRCA1 and BRCA2 mutations in unselected breast cancer patients from medellín, Colombia. Hered Cancer Clin Pract. 2014;12(1)(11):1–5. DOI: 10.1186/1897-4287-12-11 | eng |
dcterms.references | Torres D, Lorenzo Bermejo J, Rashid MU, Bricenõ I, Gil F, Beltran A, et al. Prevalence and Penetrance of BRCA1 and BRCA2 Germline Mutations in Colombian Breast Cancer Patients. Sci Rep. 2017;7(1):1–9. DOI: 10.1038/s41598-017-05056-y | eng |
dcterms.references | Sandra E. Filippini 1 2 and Ana Vega 3 1. Breast cancer genes: beyond BRCA1 and BRCA2. Front Biosci. 2013;1(18):1358–72. DOI: 10.2741/4185 | eng |
dcterms.references | Monteiro AN, Bouwman P, Nedergaard Kousholt A, Eccles DM, Millot GA, Masson J-Y, et al. Variants of uncertain clinical significance in hereditary breast and ovarian cancer genes: best practices in functional analysis for clinical annotation. J Med Genet. agosto de 2020; 57(8):509–18. DOI: 10.1136/jmedgenet-2019-106368 | eng |
dcterms.references | Cock-Rada AM, Ossa CA, Garcia HI, Gomez LR. A multi-gene panel study in hereditary breast and ovarian cancer in Colombia. Fam Cancer. 2018;17(1):23–30. DOI: 10.1007/s10689-017-0004-z | eng |
dcterms.references | Echeverry-Aguilar CA, Gaviria-Bravo ML. Causas del desprendimiento de retina y el desenlace visual final en menores de 18 años en el Hospital San Vicente Fundación. Iatreia. 2019;32(4):259–65. DOI: https://doi.org/10.17533/udea.iatreia.29 | spa |
dcterms.references | Della Valle A, Rossi BM, Palmero EI, Antelo M, Vaccaro CA, López-Kostner F, et al. A snapshot of current genetic testing practice in Lynch syndrome: The results of a representative survey of 33 Latin American existing centres/registries. Eur J Cancer. 2019;119:112–21. DOI: 10.1016/j.ejca.2019.07.017 | eng |
dcterms.references | Beltran E, Garcia-Robledo JE, Rodríguez-Rojas LX, Rengifo M, Perez B, Pachajoa H, et al. Clear cell renal carcinoma synchronous with dedifferentiated liposarcoma: a case report and review of the literature. J Med Case Rep. 2020;14(4). https://doi.org/10.1186/s13256-019-2320-4 | eng |
dcterms.references | Sun Y-S, Zhao Z, Yang Z-N, Xu F, Lu H-J, Zhu Z-Y, et al. Risk Factors and Preventions of Breast Cancer. Int J Biol Sci. 2017;13(11):1387–97. DOI: 10.7150/ijbs.21635 | eng |
dcterms.references | Anastasiadi, Z., Lianos, G.D., Ignatiadou, E. et al. Breast cancer in young women: an overview. Updates Surg, (2017), 69, 313–317. DOI: 10.1007/s13304-017-0424-1 | eng |
dcterms.references | Hasson SP, Menes T, Sonnenblick A. Comparison of Patient Susceptibility Genes Across Breast Cancer: Implications for Prognosis and Therapeutic Outcomes. Pharmacogenomics Pers Med. 2020;13:227-238. DOI: 10.2147/PGPM.S233485 | eng |
dcterms.references | French JD, Edwards SL. Genetic determinants of breast cancer risk. Curr Opin Endocr Metab Res. 2020;15:1–7. DOI:10.1016/j.coemr.2020.07.009 | eng |
dcterms.references | Petracchi F, Gonzalez V, Rodriguez A. Uso de paneles multigénicos en el estudio de cáncer de mama hereditario. Rev argentina Mastología. 2019;38(138):7–16. http://www.fasgo.org.ar/images/SAMAS_Multigenicos.pdf | spa |
dcterms.references | Pedram N, Pouladi N, Feizi MAH, Gavgani RR, Asadi M, Bornehdeli S, et al. Correlation between P53 Arg72Pro and MDM4 gene rs4245739 polymorphisms in breast cancer. Gene Reports. 2020;20. DOI:10.1016/j.genrep.2020.100785 | eng |
dcterms.references | Dalla Palma M, Domchek SM, Stopfer J, Erlichman J, Siegfried JD, Tigges- Cardwell J, et al. The relative contribution of point mutations and genomic rearrangements in BRCA1 and BRCA2 in high risk breast cancer families NIH Public Access. Cancer Res. 2008;68(17):7006–7014. DOI: 10.1158/0008-5472.CAN-08-0599 | eng |
dcterms.references | Dullens B, De Putter R, Lambertini M, Toss A, Han S, Van Nieuwenhuysen E, et al. Cancer Surveillance in Healthy Carriers of Germline Pathogenic Variants in BRCA1/2: A Review of Secondary Prevention Guidelines. Hindawi J Oncol. 2020;2020:13. DOI: 10.1155/2020/9873954 | eng |
dcterms.references | Peshkin BN, Alabek ML, Isaacs C, Fisher M. BRCA1/2 MUTATIONS AND TRIPLE NEGATIVE BREAST CANCERS NIH Public Access. Breast Dis. 2010;32(0). DOI: 10.3233/BD-2010-0306 | eng |
dcterms.references | Suhail Y, Cain MP, Vanaja K, Kurywchak PA, Levchenko A, Kalluri R, et al. Systems Biology of Cancer Metastasis. Cell Syst. 2019;9(2):109–27. DOI: 10.1016/j.cels.2019.07.003 | eng |
dcterms.references | Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science (80- ). 2020;368(6487). DOI: 10.1126/science.aaw5473 | eng |
dcterms.references | Gupta GP, Massagué J. Cancer Metastasis: Building a Framework. Cell. 2006;127(4):679–95. DOI: 10.1016/j.cell.2006.11.001 | eng |
dcterms.references | Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646–74. DOI: 10.1016/j.cell.2011.02.013 | eng |
dcterms.references | Globocan 2002. Int Agen Res Cancer. http://www-dep.iarc.fr/. | eng |
dcterms.references | Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res. 2017;50(1):1–23. DOI: 10.1186/s40659-017-0140-9 | eng |
dcterms.references | Alkabban FM, Ferguson T. Breast Cancer. [Updated 2020 Nov 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. https://www.ncbi.nlm.nih.gov/books/NBK482286/ | eng |
dcterms.references | Arpino G, Bardou VJ, Clark GM, Elledge RM. Infiltrating lobular carcinoma of the breast: Tumor characteristics and clinical outcome. Breast Cancer Res. 2004;6(3):7–11. DOI: 10.1186/bcr767 | eng |
dcterms.references | Larribe M, Thomassin-Piana J, Jalaguier-Coudray A. Breast cancers with round lumps: Correlations between imaging and anatomopathology. Diagn Interv Imaging [Internet]. 2014;95(1):37–46. DOI: 10.1016/j.diii.2013.04.003 | eng |
dcterms.references | Anuradha D, Lakshmi A. Mucinous carcinoma of breast with neuroendocrine differentiation: a rare case report with review of literature. Int J Res Med Sci. 2014;2(4):1751. DOI:10.5455/2320-6012.IJRMS201411102 | eng |
dcterms.references | Priya VSL, Prasaad PR. Tubulo- lobular carcinoma: a rare mixed invasive carcinoma of breast. Int J Res Med Sci. 2017;5(6):2818-2820. DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20172496 | eng |
dcterms.references | Cariati M, Bennett-Britton TM, Pinder SE, Purushotham AD. “Inflammatory” breast cancer. Surg Oncol. 2005;14(3):133–43. DOI: 10.1016/j.suronc.2005.07.004 | eng |
dcterms.references | Arafah MM, Arain SA, Raddaoui EMS, Tulba A, Alkhawaja FH, Shedoukhy A Al. Molecular subtyping of mammary paget’s disease using immunohistochemistry. Saudi Med J. 2019;40(5):440–6. DOI: 10.15537/smj.2019.5.23967 | eng |
dcterms.references | Shepardson LB, Dean L. Current controversies in breast cancer screening. Semin Oncol. 2020;47(4):177–81. DOI: 10.1053/j.seminoncol.2020.05.002 | eng |
dcterms.references | Momenimovahed Z, Salehiniya H. epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer - Targets Ther. 2019;11:151–64. DOI: 10.2147/BCTT.S176070 | eng |
dcterms.references | Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, et al. Risk factors and preventions of breast cancer. Int J Biol Sci. 2017;13(11):1387–97. DOI: 10.7150/ijbs.21635 | eng |
dcterms.references | Forbes C, Fayter D, De Kock SK, Quek RGW. A systematic review of international guidelines and recommendations for the genetic screening, diagnosis, genetic counseling, and treatment of BRCA-mutated breast cancer. Cancer Manag Res. 2019;11:2321–37. DOI: 10.2147/CMAR.S189627 | eng |
dcterms.references | Yoshida K, Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci. 2004;95(11):866–71. DOI: 10.1111/j.1349-7006.2004.tb02195.x | eng |
dcterms.references | Chen CY, Chen J, He L, Stiles BL. PTEN: Tumor suppressor and metabolic regulator. Front Endocrinol (Lausanne). 2018;9(JUL):1–12. https://doi.org/10.3389/fendo.2018.00338 | eng |
dcterms.references | Carbognin L, Miglietta F, Paris I, Dieci MV. Prognostic and predictive implications of PTEN in breast cancer: Unfulfilled promises but intriguing perspectives. Cancers (Basel). 2019;11(9):1–18. DOI: 10.3390/cancers11091401 | eng |
dcterms.references | Shiovitz S, Korde LA. Genetics of breast cancer: A topic in evolution. Ann Oncol. 2015;26(7):1291–9. DOI: 10.1093/annonc/mdv022 | eng |
dcterms.references | Schon K, Tischkowitz M. Clinical implications of germline mutations in breast cancer: TP53. Breast Cancer Res Treat. 2018;167(2):417–23. DOI: 10.1007/s10549-017-4531-y | eng |
dcterms.references | Angeli D, Salvi S, Tedaldi G. Genetic predisposition to breast and ovarian cancers: How many and which genes to test? Int J Mol Sci. 2020;21(3). DOI: 10.3390/ijms21031128 | eng |
dcterms.references | Suszynska M, Kluzniak W, Wokolorczyk D, Jakubowska A, Huzarski T, Gronwald J, et al. Bard1 is a low/moderate breast cancer risk gene: Evidence based on an association study of the central european p.q564x recurrent mutation. Cancers (Basel). 2019;11(6):1–18. DOI: 10.3390/cancers11060740 | eng |
dcterms.references | Hasbaoui B El, Elyajouri A, Abilkassem R, Agadr A. Nijmegen breakage syndrome: Case report and review of literature. Pan Afr Med J. 2020;35(85):1–7. DOI: 10.11604/pamj.2020.35.85.14746 | eng |
dcterms.references | Somyajit K, Subramanya S, Nagaraju G. Distinct roles of fanco/rad51c protein in DNA damage signaling and repair implications for fanconi anemia and breast cancer susceptibility. J Biol Chem. 2012;287(5):3366–80. DOI: 10.1074/jbc.M111.311241 | eng |
dcterms.references | Chávarri-Guerra Y, Marcum CA, Hendricks CB, Wilbur D, Cescon T, Hake C, et al. Breast cancer associated pathogenic variants among women 61 years and older with triple negative breast cancer. J Geriatr Oncol. 2020;11(008):1–3. DOI: 10.1016/j.jgo.2020.11.008 | eng |
dcterms.references | Chen X, Li Y, Ouyang T, Li J, Wang T, Fan Z, et al. Associations between RAD51D germline mutations and breast cancer risk and survival in BRCA1/2-negative breast cancers. Ann Oncol. 2018;29(10):2046–51. DOI: 10.1093/annonc/mdy338 | eng |
dcterms.references | Saelee P, Pongtheerat T. APC Promoter Hypermethylation as a Prognostic Marker in Breast Cancer Patients. Asian Pacific Journal of Cancer Prevention. 2020 Dec 1;21(12):3627–32. DOI: 10.31557/APJCP.2020.21.12.3627 | eng |
dcterms.references | Laitman Y, Newberg J, Molho RB, Jin DX, Friedman E. The spectrum of tumors harboring BAP1 gene alterations. Cancer Genetics. 2021 Aug 1;256–257:31–5. https://doi.org/10.1016/j.cancergen.2021.03.007 | eng |
dcterms.references | Liu Y, Zhang RX, Yuan W, Chen HQ, Tian DD, Li H, et al. Knockdown of Bone Morphogenetic Proteins Type 1a Receptor (BMPR1a) in Breast Cancer Cells Protects Bone from Breast Cancer-Induced Osteolysis by Suppressing RANKL Expression. Cellular Physiology and Biochemistry. 2018 Mar 1;45(5):1759–71. DOI: 10.1159/000487784 | eng |
dcterms.references | Braal CL, Jongbloed EM, Wilting SM, Mathijssen RHJ, Koolen SLW, Jager A. Inhibiting CDK4/6 in Breast Cancer with Palbociclib, Ribociclib, and Abemaciclib: Similarities and Differences. Vol. 81, Drugs. Adis; 2021. p. 317–31. DOI: 10.1007/s40265-020-01461-2 | eng |
dcterms.references | Aftab A, Shahzad S, Hussain HMJ, Khan R, Irum S, Tabassum S. CDKN2A/P16INK4A variants association with breast cancer and their in-silico analysis. Vol. 26, Breast Cancer. Springer Tokyo; 2019. p. 11–28. DOI: 10.1007/s12282-018-0894-0 | eng |
dcterms.references | Ren J, Smid M, Iaria J, Salvatori DCF, van Dam H, Zhu HJ, et al. Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression. Breast Cancer Research. 2019 Sep 18;21(1). https://doi.org/10.1186/s13058-019-1194-0 | eng |
dcterms.references | Hartman ML, Czyz M. MITF in melanoma: Mechanisms behind its expression and activity. Vol. 72, Cellular and Molecular Life Sciences. Birkhauser Verlag AG; 2015. p. 1249–60. DOI: 10.1007/s00018-014-1791-0 | eng |
dcterms.references | Moscatello C, di Nicola M, Veschi S, di Gregorio P, Cianchetti E, Stuppia L, et al. Relationship between mutyh, ogg1 and brca1 mutations and mrna expression in breast and ovarian cancer predisposition. Molecular and Clinical Oncology. 2021;14(1):1–8. DOI: 10.3892/mco.2020.2177 | eng |
dcterms.references | Qin Q, Tan Q, Li J, Yang W, Lian B, Mo Q, et al. Elevated expression of POLD1 is associated with poor prognosis in breast cancer. Oncology Letters. 2018 Nov 1;16(5):5591–8. DOI: 10.3892/ol.2018.9392 | eng |
dcterms.references | Mur P, García-Mulero S, del Valle J, Magraner-Pardo L, Vidal A, Pineda M, et al. Role of POLE and POLD1 in familial cancer. GENETICS in MEDICINE. 2020;22(12):2089–100. DOI: 10.1038/s41436-020-0922-2 | eng |
dcterms.references | Liu N, Yu C, Shi Y, Jiang J, Liu Y. SMAD4 expression in breast ductal carcinoma correlates with prognosis. Oncology Letters. 2015 Sep 1;10(3):1709–15. DOI: 10.3892/ol.2015.3442 | eng |
dcterms.references | Caputo SM, Telly D, Briaux A, Sesen J, Ceppi M, Bonnet F, et al. 5′ region large genomic rearrangements in the BRCA1 gene in french families: Identification of a tandem triplication and nine distinct deletions with five recurrent breakpoints. Cancers. 2021 Jul 1;13(13). DOI: 10.3390/cancers13133171 | eng |
dcterms.references | BYRNES, Graham B.; SOUTHEY, Melissa C.; HOPPER, John L. Are the so-called low penetrance breast cancer genes, ATM, BRIP1, PALB2 and CHEK2, high risk for women with strong family histories? Breast Cancer Research, v. 10, n. 3, p. 208, 2008. https://doi.org/10.1186/bcr2099 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | eng |
sb.programa | Maestría en Genética | spa |
sb.sede | Sede Barranquilla | spa |