Análisis de un panel multigénico y prevalencia de variantes genéticas en pacientes con cáncer de mama hereditario en Córdoba, 2016-2020

datacite.rightshttp://purl.org/coar/access_right/c_16eceng
dc.contributor.advisorTrindade, Cristiano
dc.contributor.advisorRugeles Mindiola, Jorge Andres
dc.contributor.authorHoyos Verbel, Jorge Hernan
dc.date.accessioned2022-02-14T19:51:39Z
dc.date.available2022-02-14T19:51:39Z
dc.date.issued2022
dc.description.abstractIntroducción: El cáncer de mama es una enfermedad neoplásica que afecta una de cada 8 mujeres (12.5%), siendo esta la patología más frecuente en mujeres en lo que se refiere a cáncer. Sus causas son multifactoriales por lo que confieren un riesgo variable en diferentes poblaciones, dado a condiciones esporádicas, o a una predisposición hereditaria o poligénica. Cerca del 10% de los tumores son hereditarios por mutaciones de línea germinal en genes con un grado de susceptibilidad variable en el desarrollo del cáncer de mama. La identificación de variantes patogénicas por secuenciación de siguiente generación tiene gran utilidad en la toma de decisiones. Por lo que este estudio realizó un análisis descriptivo de variantes genéticas de un panel multigénico realizadas a pacientes con diagnóstico de cáncer de mama, enfocado a evaluar la prevalencia de mutaciones de línea germinal en un instituto oncológico para determinar las variantes encontradas en la población de córdoba. Objetivo: Determinar la prevalencia de las variantes genéticas del panel multigénico y caracterizar las variables clínico-epidemiológicas de pacientes con diagnóstico de cáncer de mama hereditario en la clínica IMAT-Oncomedica de Montería durante el periodo del 2016-2020. Métodos: Mediante los resultados de un panel multigénico realizado a 452 pacientes con cáncer de mama no seleccionada por edad o historia familiar, que han acudido al instituto oncológica IMAT-Oncomedica, se hizo un análisis estadístico de la prevalencia de las variantes genéticas encontradas. Resultados: Se observaron 57 (12.6%) pacientes con resultado positivo para una mutación de 452 (100%), entre estos predominó el género femenino con el 99.3% (449) y el 0.7% (3) para el sexo masculino, las mutaciones identificadas en la secuenciación de próxima generación (NGS) fueron de tipo sustitución con el 5.8% (26), seguidas de la deleciones con el 4.6% (21), largas deleciones o duplicaciones del gen BRCA1 y PALB2 con el 1.8% (8) y por ultimo las duplicaciones con el 0.4% (2). Conclusiones: La tasa de prevalencia de las mutaciones en el panel multigénico fue mayor en las sustituciones identificando genes de alta penetrancia BRCA1/2, TP53, genes de moderada penetrancia ATM, CHEK2, PALB2, y genes de baja penetrancia RAD51C, MLH1, MUTYH en casos de cáncer de mama no seleccionados de la región de Córdoba en Colombia y es de aproximadamente 5.8%.spa
dc.description.abstractIntroduction: Breast cancer is a neoplastic disease that affects one in every 8 women (12.5%), this being the most frequent pathology in women in terms of cancer. Its causes are multifactorial, so they confer a variable risk in different populations, due to sporadic conditions, or a hereditary or polygenetic predisposition. About 10% of tumors are hereditary due to germline mutations in genes with a variable degree of susceptibility in the development of breast cancer. The identification of pathogenic variants by next generation sequencing is very useful in decision making. Therefore, this study carried out a descriptive analysis of genetic variants of a multigenic panel performed on patients diagnosed with breast cancer, focused on evaluating the prevalence of germline mutations in a cancer institute to determine the variants found in the population of Córdoba. Objective: To determine the prevalence of genetic variants of the multigenic panel and to characterize the clinical-epidemiological variables of patients diagnosed with hereditary breast cancer at the IMAT-Oncomedica clinic in Montería during the period 2016-2020. Methods: Using the results of a multigenic panel performed on 452 patients with breast cancer not selected by age or family history, who have attended the IMAT-Oncomedica cancer institute, a statistical analysis of the prevalence of the genetic variants found was made. Results: 57 (12.6%) patients with a positive result for a mutation of 452 (100%) were observed, among them the female gender predominated with 99.3% (449) and 0.7% (3) for males, the mutations identified in Next generation sequencing (NGS) were of the substitution type with 5.8% (26), followed by deletions with 4.6% (21), long deletions or duplications of the BRCA1 and PALB2 gene with 1.8% (8) and by last duplications with 0.4% (2). Conclusions: The prevalence rate of mutations in the multigenic panel was higher in the substitutions identifying high penetrance genes BRCA1/2, TP53, moderate penetrance genes ATM, CHEK2, PALB2, and low penetrance genes RAD51C, MLH1, MUTYH in cases of unselected breast cancer from the Córdoba region in Colombia and is approximately 5.8%.eng
dc.format.mimetypepdfspa
dc.identifier.urihttps://hdl.handle.net/20.500.12442/9362
dc.language.isospaspa
dc.publisherEdiciones Universidad Simón Bolivarspa
dc.publisherFacultad de Ciencias Básicas y Biomédicasspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectCáncer de mamaspa
dc.subjectBRCA 1spa
dc.subjectBRCA 2spa
dc.subjectPanel de genesspa
dc.subjectBreast cancereng
dc.subjectGene paneleng
dc.titleAnálisis de un panel multigénico y prevalencia de variantes genéticas en pacientes con cáncer de mama hereditario en Córdoba, 2016-2020spa
dc.type.driverinfo:eu-repo/semantics/masterThesiseng
dc.type.spaTrabajo de grado másterspa
dcterms.referencesCasaubon JT, Grewal US, Kashyap S, et al. BRCA 1 y 2. [Actualizado el 17 de julio de 2020]. En: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020 enero. https://www.ncbi.nlm.nih.gov/books/NBK470239/eng
dcterms.referencesYoshida R. Hereditary breast and ovarian cancer (HBOC): review of its molecular characteristics, screening, treatment, and prognosis. Breast Cancer. agosto de 2020;1:3. DOI: 10.1007/s12282-020-01148-2eng
dcterms.referencesLondoño Hernández JE, Llacuachaqui M, Palacio GV, Figueroa JD, Madrid J, Lema M, et al. Prevalence of BRCA1 and BRCA2 mutations in unselected breast cancer patients from medellín, Colombia. Hered Cancer Clin Pract. 2014;12(1)(11):1–5. DOI: 10.1186/1897-4287-12-11eng
dcterms.referencesTorres D, Lorenzo Bermejo J, Rashid MU, Bricenõ I, Gil F, Beltran A, et al. Prevalence and Penetrance of BRCA1 and BRCA2 Germline Mutations in Colombian Breast Cancer Patients. Sci Rep. 2017;7(1):1–9. DOI: 10.1038/s41598-017-05056-yeng
dcterms.referencesSandra E. Filippini 1 2 and Ana Vega 3 1. Breast cancer genes: beyond BRCA1 and BRCA2. Front Biosci. 2013;1(18):1358–72. DOI: 10.2741/4185eng
dcterms.referencesMonteiro AN, Bouwman P, Nedergaard Kousholt A, Eccles DM, Millot GA, Masson J-Y, et al. Variants of uncertain clinical significance in hereditary breast and ovarian cancer genes: best practices in functional analysis for clinical annotation. J Med Genet. agosto de 2020; 57(8):509–18. DOI: 10.1136/jmedgenet-2019-106368eng
dcterms.referencesCock-Rada AM, Ossa CA, Garcia HI, Gomez LR. A multi-gene panel study in hereditary breast and ovarian cancer in Colombia. Fam Cancer. 2018;17(1):23–30. DOI: 10.1007/s10689-017-0004-zeng
dcterms.referencesEcheverry-Aguilar CA, Gaviria-Bravo ML. Causas del desprendimiento de retina y el desenlace visual final en menores de 18 años en el Hospital San Vicente Fundación. Iatreia. 2019;32(4):259–65. DOI: https://doi.org/10.17533/udea.iatreia.29spa
dcterms.referencesDella Valle A, Rossi BM, Palmero EI, Antelo M, Vaccaro CA, López-Kostner F, et al. A snapshot of current genetic testing practice in Lynch syndrome: The results of a representative survey of 33 Latin American existing centres/registries. Eur J Cancer. 2019;119:112–21. DOI: 10.1016/j.ejca.2019.07.017eng
dcterms.referencesBeltran E, Garcia-Robledo JE, Rodríguez-Rojas LX, Rengifo M, Perez B, Pachajoa H, et al. Clear cell renal carcinoma synchronous with dedifferentiated liposarcoma: a case report and review of the literature. J Med Case Rep. 2020;14(4). https://doi.org/10.1186/s13256-019-2320-4eng
dcterms.referencesSun Y-S, Zhao Z, Yang Z-N, Xu F, Lu H-J, Zhu Z-Y, et al. Risk Factors and Preventions of Breast Cancer. Int J Biol Sci. 2017;13(11):1387–97. DOI: 10.7150/ijbs.21635eng
dcterms.referencesAnastasiadi, Z., Lianos, G.D., Ignatiadou, E. et al. Breast cancer in young women: an overview. Updates Surg, (2017), 69, 313–317. DOI: 10.1007/s13304-017-0424-1eng
dcterms.referencesHasson SP, Menes T, Sonnenblick A. Comparison of Patient Susceptibility Genes Across Breast Cancer: Implications for Prognosis and Therapeutic Outcomes. Pharmacogenomics Pers Med. 2020;13:227-238. DOI: 10.2147/PGPM.S233485eng
dcterms.referencesFrench JD, Edwards SL. Genetic determinants of breast cancer risk. Curr Opin Endocr Metab Res. 2020;15:1–7. DOI:10.1016/j.coemr.2020.07.009eng
dcterms.referencesPetracchi F, Gonzalez V, Rodriguez A. Uso de paneles multigénicos en el estudio de cáncer de mama hereditario. Rev argentina Mastología. 2019;38(138):7–16. http://www.fasgo.org.ar/images/SAMAS_Multigenicos.pdfspa
dcterms.referencesPedram N, Pouladi N, Feizi MAH, Gavgani RR, Asadi M, Bornehdeli S, et al. Correlation between P53 Arg72Pro and MDM4 gene rs4245739 polymorphisms in breast cancer. Gene Reports. 2020;20. DOI:10.1016/j.genrep.2020.100785eng
dcterms.referencesDalla Palma M, Domchek SM, Stopfer J, Erlichman J, Siegfried JD, Tigges- Cardwell J, et al. The relative contribution of point mutations and genomic rearrangements in BRCA1 and BRCA2 in high risk breast cancer families NIH Public Access. Cancer Res. 2008;68(17):7006–7014. DOI: 10.1158/0008-5472.CAN-08-0599eng
dcterms.referencesDullens B, De Putter R, Lambertini M, Toss A, Han S, Van Nieuwenhuysen E, et al. Cancer Surveillance in Healthy Carriers of Germline Pathogenic Variants in BRCA1/2: A Review of Secondary Prevention Guidelines. Hindawi J Oncol. 2020;2020:13. DOI: 10.1155/2020/9873954eng
dcterms.referencesPeshkin BN, Alabek ML, Isaacs C, Fisher M. BRCA1/2 MUTATIONS AND TRIPLE NEGATIVE BREAST CANCERS NIH Public Access. Breast Dis. 2010;32(0). DOI: 10.3233/BD-2010-0306eng
dcterms.referencesSuhail Y, Cain MP, Vanaja K, Kurywchak PA, Levchenko A, Kalluri R, et al. Systems Biology of Cancer Metastasis. Cell Syst. 2019;9(2):109–27. DOI: 10.1016/j.cels.2019.07.003eng
dcterms.referencesFaubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science (80- ). 2020;368(6487). DOI: 10.1126/science.aaw5473eng
dcterms.referencesGupta GP, Massagué J. Cancer Metastasis: Building a Framework. Cell. 2006;127(4):679–95. DOI: 10.1016/j.cell.2006.11.001eng
dcterms.referencesHanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646–74. DOI: 10.1016/j.cell.2011.02.013eng
dcterms.referencesGlobocan 2002. Int Agen Res Cancer. http://www-dep.iarc.fr/.eng
dcterms.referencesAkram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res. 2017;50(1):1–23. DOI: 10.1186/s40659-017-0140-9eng
dcterms.referencesAlkabban FM, Ferguson T. Breast Cancer. [Updated 2020 Nov 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. https://www.ncbi.nlm.nih.gov/books/NBK482286/eng
dcterms.referencesArpino G, Bardou VJ, Clark GM, Elledge RM. Infiltrating lobular carcinoma of the breast: Tumor characteristics and clinical outcome. Breast Cancer Res. 2004;6(3):7–11. DOI: 10.1186/bcr767eng
dcterms.referencesLarribe M, Thomassin-Piana J, Jalaguier-Coudray A. Breast cancers with round lumps: Correlations between imaging and anatomopathology. Diagn Interv Imaging [Internet]. 2014;95(1):37–46. DOI: 10.1016/j.diii.2013.04.003eng
dcterms.referencesAnuradha D, Lakshmi A. Mucinous carcinoma of breast with neuroendocrine differentiation: a rare case report with review of literature. Int J Res Med Sci. 2014;2(4):1751. DOI:10.5455/2320-6012.IJRMS201411102eng
dcterms.referencesPriya VSL, Prasaad PR. Tubulo- lobular carcinoma: a rare mixed invasive carcinoma of breast. Int J Res Med Sci. 2017;5(6):2818-2820. DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20172496eng
dcterms.referencesCariati M, Bennett-Britton TM, Pinder SE, Purushotham AD. “Inflammatory” breast cancer. Surg Oncol. 2005;14(3):133–43. DOI: 10.1016/j.suronc.2005.07.004eng
dcterms.referencesArafah MM, Arain SA, Raddaoui EMS, Tulba A, Alkhawaja FH, Shedoukhy A Al. Molecular subtyping of mammary paget’s disease using immunohistochemistry. Saudi Med J. 2019;40(5):440–6. DOI: 10.15537/smj.2019.5.23967eng
dcterms.referencesShepardson LB, Dean L. Current controversies in breast cancer screening. Semin Oncol. 2020;47(4):177–81. DOI: 10.1053/j.seminoncol.2020.05.002eng
dcterms.referencesMomenimovahed Z, Salehiniya H. epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer - Targets Ther. 2019;11:151–64. DOI: 10.2147/BCTT.S176070eng
dcterms.referencesSun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, et al. Risk factors and preventions of breast cancer. Int J Biol Sci. 2017;13(11):1387–97. DOI: 10.7150/ijbs.21635eng
dcterms.referencesForbes C, Fayter D, De Kock SK, Quek RGW. A systematic review of international guidelines and recommendations for the genetic screening, diagnosis, genetic counseling, and treatment of BRCA-mutated breast cancer. Cancer Manag Res. 2019;11:2321–37. DOI: 10.2147/CMAR.S189627eng
dcterms.referencesYoshida K, Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci. 2004;95(11):866–71. DOI: 10.1111/j.1349-7006.2004.tb02195.xeng
dcterms.referencesChen CY, Chen J, He L, Stiles BL. PTEN: Tumor suppressor and metabolic regulator. Front Endocrinol (Lausanne). 2018;9(JUL):1–12. https://doi.org/10.3389/fendo.2018.00338eng
dcterms.referencesCarbognin L, Miglietta F, Paris I, Dieci MV. Prognostic and predictive implications of PTEN in breast cancer: Unfulfilled promises but intriguing perspectives. Cancers (Basel). 2019;11(9):1–18. DOI: 10.3390/cancers11091401eng
dcterms.referencesShiovitz S, Korde LA. Genetics of breast cancer: A topic in evolution. Ann Oncol. 2015;26(7):1291–9. DOI: 10.1093/annonc/mdv022eng
dcterms.referencesSchon K, Tischkowitz M. Clinical implications of germline mutations in breast cancer: TP53. Breast Cancer Res Treat. 2018;167(2):417–23. DOI: 10.1007/s10549-017-4531-yeng
dcterms.referencesAngeli D, Salvi S, Tedaldi G. Genetic predisposition to breast and ovarian cancers: How many and which genes to test? Int J Mol Sci. 2020;21(3). DOI: 10.3390/ijms21031128eng
dcterms.referencesSuszynska M, Kluzniak W, Wokolorczyk D, Jakubowska A, Huzarski T, Gronwald J, et al. Bard1 is a low/moderate breast cancer risk gene: Evidence based on an association study of the central european p.q564x recurrent mutation. Cancers (Basel). 2019;11(6):1–18. DOI: 10.3390/cancers11060740eng
dcterms.referencesHasbaoui B El, Elyajouri A, Abilkassem R, Agadr A. Nijmegen breakage syndrome: Case report and review of literature. Pan Afr Med J. 2020;35(85):1–7. DOI: 10.11604/pamj.2020.35.85.14746eng
dcterms.referencesSomyajit K, Subramanya S, Nagaraju G. Distinct roles of fanco/rad51c protein in DNA damage signaling and repair implications for fanconi anemia and breast cancer susceptibility. J Biol Chem. 2012;287(5):3366–80. DOI: 10.1074/jbc.M111.311241eng
dcterms.referencesChávarri-Guerra Y, Marcum CA, Hendricks CB, Wilbur D, Cescon T, Hake C, et al. Breast cancer associated pathogenic variants among women 61 years and older with triple negative breast cancer. J Geriatr Oncol. 2020;11(008):1–3. DOI: 10.1016/j.jgo.2020.11.008eng
dcterms.referencesChen X, Li Y, Ouyang T, Li J, Wang T, Fan Z, et al. Associations between RAD51D germline mutations and breast cancer risk and survival in BRCA1/2-negative breast cancers. Ann Oncol. 2018;29(10):2046–51. DOI: 10.1093/annonc/mdy338eng
dcterms.referencesSaelee P, Pongtheerat T. APC Promoter Hypermethylation as a Prognostic Marker in Breast Cancer Patients. Asian Pacific Journal of Cancer Prevention. 2020 Dec 1;21(12):3627–32. DOI: 10.31557/APJCP.2020.21.12.3627eng
dcterms.referencesLaitman Y, Newberg J, Molho RB, Jin DX, Friedman E. The spectrum of tumors harboring BAP1 gene alterations. Cancer Genetics. 2021 Aug 1;256–257:31–5. https://doi.org/10.1016/j.cancergen.2021.03.007eng
dcterms.referencesLiu Y, Zhang RX, Yuan W, Chen HQ, Tian DD, Li H, et al. Knockdown of Bone Morphogenetic Proteins Type 1a Receptor (BMPR1a) in Breast Cancer Cells Protects Bone from Breast Cancer-Induced Osteolysis by Suppressing RANKL Expression. Cellular Physiology and Biochemistry. 2018 Mar 1;45(5):1759–71. DOI: 10.1159/000487784eng
dcterms.referencesBraal CL, Jongbloed EM, Wilting SM, Mathijssen RHJ, Koolen SLW, Jager A. Inhibiting CDK4/6 in Breast Cancer with Palbociclib, Ribociclib, and Abemaciclib: Similarities and Differences. Vol. 81, Drugs. Adis; 2021. p. 317–31. DOI: 10.1007/s40265-020-01461-2eng
dcterms.referencesAftab A, Shahzad S, Hussain HMJ, Khan R, Irum S, Tabassum S. CDKN2A/P16INK4A variants association with breast cancer and their in-silico analysis. Vol. 26, Breast Cancer. Springer Tokyo; 2019. p. 11–28. DOI: 10.1007/s12282-018-0894-0eng
dcterms.referencesRen J, Smid M, Iaria J, Salvatori DCF, van Dam H, Zhu HJ, et al. Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression. Breast Cancer Research. 2019 Sep 18;21(1). https://doi.org/10.1186/s13058-019-1194-0eng
dcterms.referencesHartman ML, Czyz M. MITF in melanoma: Mechanisms behind its expression and activity. Vol. 72, Cellular and Molecular Life Sciences. Birkhauser Verlag AG; 2015. p. 1249–60. DOI: 10.1007/s00018-014-1791-0eng
dcterms.referencesMoscatello C, di Nicola M, Veschi S, di Gregorio P, Cianchetti E, Stuppia L, et al. Relationship between mutyh, ogg1 and brca1 mutations and mrna expression in breast and ovarian cancer predisposition. Molecular and Clinical Oncology. 2021;14(1):1–8. DOI: 10.3892/mco.2020.2177eng
dcterms.referencesQin Q, Tan Q, Li J, Yang W, Lian B, Mo Q, et al. Elevated expression of POLD1 is associated with poor prognosis in breast cancer. Oncology Letters. 2018 Nov 1;16(5):5591–8. DOI: 10.3892/ol.2018.9392eng
dcterms.referencesMur P, García-Mulero S, del Valle J, Magraner-Pardo L, Vidal A, Pineda M, et al. Role of POLE and POLD1 in familial cancer. GENETICS in MEDICINE. 2020;22(12):2089–100. DOI: 10.1038/s41436-020-0922-2eng
dcterms.referencesLiu N, Yu C, Shi Y, Jiang J, Liu Y. SMAD4 expression in breast ductal carcinoma correlates with prognosis. Oncology Letters. 2015 Sep 1;10(3):1709–15. DOI: 10.3892/ol.2015.3442eng
dcterms.referencesCaputo SM, Telly D, Briaux A, Sesen J, Ceppi M, Bonnet F, et al. 5′ region large genomic rearrangements in the BRCA1 gene in french families: Identification of a tandem triplication and nine distinct deletions with five recurrent breakpoints. Cancers. 2021 Jul 1;13(13). DOI: 10.3390/cancers13133171eng
dcterms.referencesBYRNES, Graham B.; SOUTHEY, Melissa C.; HOPPER, John L. Are the so-called low penetrance breast cancer genes, ATM, BRIP1, PALB2 and CHEK2, high risk for women with strong family histories? Breast Cancer Research, v. 10, n. 3, p. 208, 2008. https://doi.org/10.1186/bcr2099eng
oaire.versioninfo:eu-repo/semantics/acceptedVersioneng
sb.programaMaestría en Genéticaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
PDF
Tamaño:
1.24 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
PDF_Resumen
Tamaño:
298.91 KB
Formato:
Adobe Portable Document Format

Colecciones