Urinary metabolomic profling of a cohort of Colombian patients with systemic lupus erythematosus

datacite.rightshttp://purl.org/coar/access_right/c_abf2
dc.contributor.authorRojo‑Sánchez, Alejandra
dc.contributor.authorCarmona‑Martes, Ada
dc.contributor.authorDíaz‑Olmos, Yirys
dc.contributor.authorSantamaría‑Torres, Mary
dc.contributor.authorP. Cala, Mónica P.
dc.contributor.authorOrozco‑Acosta, Erick
dc.contributor.authorAroca‑Martínez, Gustavo
dc.contributor.authorPacheco‑Londoño, Leonardo
dc.contributor.authorNavarro‑Quiroz, Elkin
dc.contributor.authorPacheco‑Lugo, Lisandro A.
dc.date.accessioned2024-04-29T21:57:05Z
dc.date.available2024-04-29T21:57:05Z
dc.date.issued2024
dc.description.abstractSystemic lupus erythematosus (SLE) is an autoimmune and multisystem disease with a high public health impact. Lupus nephritis (LN), commonly known as renal involvement in SLE, is associated with a poorer prognosis and increased rates of morbidity and mortality in patients with SLE. Identifying new urinary biomarkers that can be used for LN prognosis or diagnosis is essential and is part of current active research. In this study, we applied an untargeted metabolomics approach involving liquid and gas chromatography coupled with mass spectrometry to urine samples collected from 17 individuals with SLE and no kidney damage, 23 individuals with LN, and 10 clinically healthy controls (HCs) to identify differential metabolic profiles for SLE and LN. The data analysis revealed a differentially abundant metabolite expression profile for each study group, and those metabolites may act as potential differential biomarkers of SLE and LN. The differential metabolic pathways found between the LN and SLE patients with no kidney involvement included primary bile acid biosynthesis, branched-chain amino acid synthesis and degradation, pantothenate and coenzyme A biosynthesis, lysine degradation, and tryptophan metabolism. Receiver operating characteristic curve analysis revealed that monopalmitin, glycolic acid, and glutamic acid allowed for the differentiation of individuals with SLE and no kidney involvement and individuals with LN considering high confidence levels. While the results offer promise, it is important to recognize the significant influence of medications and other external factors on metabolomics studies. This impact has the potential to obscure differences in metabolic profiles, presenting a considerable challenge in the identification of disease biomarkers. Therefore, experimental validation should be conducted with a larger sample size to explore the diagnostic potential of the metabolites found as well as to examine how treatment and disease activity influence the identified chemical compounds. This will be crucial for refining the accuracy and effectiveness of using urine metabolomics for diagnosing and monitoring lupus and lupus nephritis.eng
dc.format.mimetypepdf
dc.identifier.doihttps://doi.org/10.1038/s41598-024-60217-0
dc.identifier.issn20452322 (en línea)
dc.identifier.urihttps://hdl.handle.net/20.500.12442/14561
dc.identifier.urlhttps://www.nature.com/articles/s41598-024-60217-0
dc.language.isoengeng
dc.publisherSpringer natureeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.sourceScientific reportseng
dc.sourceVol. 14 No. 9555, (2024)
dc.subjectBiochemistryeng
dc.subjectBioinformaticseng
dc.subjectBiomarkerseng
dc.subjectComputational biology and bioinformaticseng
dc.subjectKidneyeng
dc.subjectMass spectrometryeng
dc.subjectMetabolomicseng
dc.subjectProteomic analysiseng
dc.titleUrinary metabolomic profling of a cohort of Colombian patients with systemic lupus erythematosuseng
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.spaArtículo científicospa
dcterms.referencesTsokos, G. C. Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110–2121 (2011).eng
dcterms.referencesMok, C. C. Metabolic syndrome and systemic lupus erythematosus: The connection. Expert Rev. Clin. Immunol. 15, 765–775 (2019).eng
dcterms.referencesMaria, N. I. & Davidson, A. Protecting the kidney in systemic lupus erythematosus: from diagnosis to therapy. Nat. Rev. Rheumatol. 16, 255–267 (2020).eng
dcterms.referencesAragón, C. C. et al. Urinary biomarkers in lupus nephritis. J. Transl. Autoimmun. 3, 100042 (2020)eng
dcterms.referencesClish, C. B. Metabolomics: An emerging but powerful tool for precision medicine. Mol. Case Stud. 1, a000588 (2015).eng
dcterms.referencesZhang, Y. et al. Metabolic profiling reveals new serum signatures to discriminate lupus nephritis from systemic lupus erythematosus. Front. Immunol. 13, 967371 (2022).eng
dcterms.referencesZhang, A., Sun, H., Yan, G., Wang, P. & Wang, X. Metabolomics for biomarker discovery: Moving to the clinic. BioMed Res. Int. 2015, 1–6 (2015).eng
dcterms.referencesKalantari, S., Chashmniam, S., Nafar, M., Zakeri, Z. & Parvin, M. Metabolomics approach reveals urine biomarkers and pathways associated with the pathogenesis of lupus nephritis. Iran. J. Basic Med. Sci. 22, (2019).eng
dcterms.referencesAringer, M. et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann. Rheum. Dis. 78, 1151–1159 (2019).eng
dcterms.referencesRey-Stolle, F. et al. Low and high resolution gas chromatography-mass spectrometry for untargeted metabolomics: A tutorial. Anal. Chim. Acta 1210, 339043 (2022).eng
dcterms.referencesKind, T. et al. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81, 10038–10048 (2009).eng
dcterms.referencesBlaženović, I., Kind, T., Ji, J. & Fiehn, O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites 8(2), 31. https://doi.org/10.3390/metabo8020031 (2018).eng
dcterms.referencesKaraman, I. Preprocessing and Pretreatment of Metabolomics Data for Statistical Analysis. in Metabolomics: From Fundamentals to Clinical Applications (ed. Sussulini, A.) vol. 965 145–161 (Springer International Publishing, Cham, 2017).eng
dcterms.referencesWarrack, B. M. et al. Normalization strategies for metabonomic analysis of urine samples. J. Chromatogr. B 877, 547–552 (2009).eng
dcterms.referencesOuyang, X., Dai, Y., Wen, J. & Wang, L. 1 H NMR-based metabolomic study of metabolic profiling for systemic lupus erythematosus. Lupus 20, 1411–1420 (2011).eng
dcterms.referencesShin, T. H. et al. Analysis of the free fatty acid metabolome in the plasma of patients with systemic lupus erythematosus and fever. Metabolomics 14, 14 (2018).eng
dcterms.referencesRuan, X. Z., Varghese, Z. & Moorhead, J. F. An update on the lipid nephrotoxicity hypothesis. Nat. Rev. Nephrol. 5, 713–721 (2009).eng
dcterms.referencesFrostegård, J. SLE, atherosclerosis and cardiovascular disease. J. Intern. Med. 257, 485–495 (2005).eng
dcterms.referencesSun, W. et al. Lipid metabolism: Immune regulation and therapeutic prospectives in systemic lupus erythematosus. Front. Immunol. 13, (2022).eng
dcterms.referencesFerrara, D., Montecucco, F., Dallegri, F. & Carbone, F. Impact of different ectopic fat depots on cardiovascular and metabolic diseases. J. Cell. Physiol. 234, 21630–21641 (2019).eng
dcterms.referencesRoubicek, T. et al. Increased production of proinflammatory cytokines in adipose tissue of patients with end-stage renal disease. Nutrition 25, 762–768 (2009).eng
dcterms.referencesFrostegård, J. et al. Lipid peroxidation is enhanced in patients with systemic lupus erythematosus and is associated with arterial and renal disease manifestations. Arthritis Rheum. 52, 192–200 (2005).eng
dcterms.referencesHu, C. et al. Lipidomics revealed aberrant metabolism of lipids including FAHFAs in renal tissue in the progression of lupus nephritis in a murine model. Metabolites 11, 142 (2021).eng
dcterms.referencesYoshida, N. et al. ICER is requisite for Th17 differentiation. Nat. Commun. 7, 12993 (2016).eng
dcterms.referencesKono, M., Yoshida, N., Maeda, K. & Tsokos, G. C. Transcriptional factor ICER promotes glutaminolysis and the generation of Th17 cells. Proc. Natl. Acad. Sci. U. S. A. 115, 2478–2483 (2018).eng
dcterms.referencesKono, M. et al. Glutaminase 1 inhibition reduces glycolysis and ameliorates lupus-like disease in MRL/lpr mice and experimental autoimmune encephalomyelitis. Arthritis Rheumatol. Hoboken NJ 71, 1869–1878 (2019).eng
dcterms.referencesKono, M., Yoshida, N. & Tsokos, G. C. Amino acid metabolism in lupus. Front. Immunol. 12, 623844 (2021).eng
dcterms.referencesXu, T. et al. Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature 548, 228–233 (2017).eng
dcterms.referencesChu, L., Zhang, K., Zhang, Y., Jin, X. & Jiang, H. Mechanism underlying an elevated serum bile acid level in chronic renal failure patients. Int. Urol. Nephrol. 47, 345–351 (2015).eng
dcterms.referencesErlinger, S. Bile acids in cholestasis: Bad for the liver, not so good for the kidney. Clin. Res. Hepatol. Gastroenterol. 38, 392–394 (2014).eng
dcterms.referencesHe, J. et al. Microbiome and metabolome analyses reveal the disruption of lipid metabolism in systemic lupus erythematosus. Front. Immunol. 11, 1703 (2020).eng
dcterms.referencesSarkissian, T., Beyene, J., Feldman, B., McCrindle, B. & Silverman, E. D. Longitudinal examination of lipid profiles in pediatric systemic lupus erythematosus. Arthritis Rheum. 56, 631–638 (2007).eng
dcterms.referencesGodlewska, U., Bulanda, E. & Wypych, T. P. Bile acids in immunity: Bidirectional mediators between the host and the microbiota. Front. Immunol. 13, 949033 (2022).eng
dcterms.referencesLian, F. et al. Activation of farnesoid X receptor attenuates liver injury in systemic lupus erythematosus. Rheumatol. Int. 32, 1705–1710 (2012).eng
dcterms.referencesZhang, L. et al. Gut Microbiome and Metabolites in Systemic Lupus Erythematosus: Link, Mechanisms and Intervention. Front. Immunol. 12, (2021).eng
dcterms.referencesHang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).eng
dcterms.referencesKato, H. & Perl, A. Mechanistic target of rapamycin complex 1 expands Th17 and IL-4+ CD4-CD8- double-negative T cells and contracts regulatory T cells in systemic lupus erythematosus. J. Immunol. Baltim. Md 1950(192), 4134–4144 (2014).eng
dcterms.referencesShi, H. et al. Amino acids license kinase mTORC1 activity and Treg cell function via small G proteins Rag and Rheb. Immunity 51, 1012-1027.e7 (2019).eng
dcterms.referencesAnanieva, E. A., Patel, C. H., Drake, C. H., Powell, J. D. & Hutson, S. M. Cytosolic branched chain aminotransferase (BCATc) regulates mTORC1 signaling and glycolytic metabolism in CD4+ T Cells. J. Biol. Chem. 289, 18793–18804 (2014).eng
dcterms.referencesPapathanassiu, A. E. et al. BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. Nat. Commun. 8, 16040 (2017).eng
dcterms.referencesZhang, T. & Mohan, C. Caution in studying and interpreting the lupus metabolome. Arthritis Res. Ther. 22, 172 (2020).eng
dcterms.referencesWu, T. et al. Metabolic disturbances associated with systemic lupus erythematosus. PloS One 7, e37210 (2012).eng
dcterms.referencesBarone, F. P. et al. Metabolomics and biomarkers for lupus nephritis—a systematic review. Surg. Exp. Pathol. 6, 11 (2023).eng
dcterms.referencesAlexander, J. J., Zwingmann, C., Jacob, A. & Quigg, R. Alteration in kidney glucose and amino acids are implicated in renal pathology in MRL/lpr mice. Biochim. Biophys. Acta BBA - Mol. Basis Dis. 1772, 1143–1149 (2007).eng
dcterms.referencesBrown, J. et al. Microbiota-mediated skewing of tryptophan catabolism modulates CD4+ T cells in lupus-prone mice. iScience 25, 104241 (2022).eng
dcterms.referencesPerl, A. et al. Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: implications for activation of the mechanistic target of rapamycin. Metabolomics 11, 1157–1174 (2015).eng
dcterms.referencesOaks, Z., Winans, T., Huang, N., Banki, K. & Perl, A. Activation of the mechanistic target of rapamycin in SLE: Explosion of evidence in the last five years. Curr. Rheumatol. Rep. 18, 73 (2016).eng
dcterms.referencesTzeng, H.-T. & Chyuan, I.-T. Immunometabolism in systemic lupus erythematosus: Relevant pathogenetic mechanisms and potential clinical applications. J. Formos. Med. Assoc. 120, 1667–1675 (2021).eng
dcterms.referencesAnekthanakul, K. et al. Predicting lupus membranous nephritis using reduced picolinic acid to tryptophan ratio as a urinary biomarker. iScience 24, 103355 (2021).eng
dcterms.referencesPawlak, K., Kowalewska, A., Mysliwiec, M. & Pawlak, D. 3-hydroxyanthranilic acid is independently associated with monocyte chemoattractant protein-1 (CCL2) and macrophage inflammatory protein-1β (CCL4) in patients with chronic kidney disease. Clin. Biochem. 43, 1101–1106 (2010).eng
dcterms.referencesGuleria, A. et al. NMR based serum metabolomics reveals a distinctive signature in patients with Lupus Nephritis. Sci. Rep. 6, 35309 (2016).eng
dcterms.referencesWen, Y. & Parikh, C. R. Current concepts and advances in biomarkers of acute kidney injury. Crit. Rev. Clin. Lab. Sci. 58, 354–368 (2021).eng
dcterms.referencesGanguly, S. et al. Nuclear magnetic resonance–based targeted profiling of urinary acetate and citrate following cyclophosphamide therapy in patients with lupus nephritis. Lupus 29, 782–786 (2020)eng
dcterms.referencesMalkawi, A. K. et al. Metabolomics based profiling of dexamethasone side effects in rats. Front. Pharmacol. 9, 46 (2018).eng
dcterms.referencesBordag, N. et al. Glucocorticoid (dexamethasone)-induced metabolome changes in healthy males suggest prediction of response and side effects. Sci. Rep. 5, 15954 (2015).eng
dcterms.referencesDi Dalmazi, G. et al. Cortisol-related metabolic alterations assessed by mass spectrometry assay in patients with Cushing’s syndrome. Eur. J. Endocrinol. 177, 227–237 (2017).eng
dcterms.referencesBabary, H. et al. Favorable effects of hydroxychloroquine on serum low density lipid in patients with systemic lupus erythematosus: A systematic review and meta-analysis. Int. J. Rheum. Dis. 21, 84–92 (2018).eng
dcterms.referencesDurcan, L. et al. Longitudinal evaluation of lipoprotein variables in systemic lupus erythematosus reveals adverse changes with disease activity and prednisone and more favorable profiles with hydroxychloroquine therapy. J. Rheumatol. 43, 745–750 (2016).eng
dcterms.referencesPereira, M. J. et al. The immunosuppressive agents rapamycin, cyclosporin A and tacrolimus increase lipolysis, inhibit lipid storage and alter expression of genes involved in lipid metabolism in human adipose tissue. Mol. Cell. Endocrinol. 365, 260–269 (2013).eng
dcterms.referencesFernandez Nieto, M. & Jayne, D. R. Con: The use of calcineurin inhibitors in the treatment of lupus nephritis: Table 1. Nephrol. Dial. Transplant. 31, 1567–1571 (2016).eng
oaire.versioninfo:eu-repo/semantics/publishedVersionspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
2.74 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones